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Abstract

This paper proposes a general framework for a large class of multi-period principal-agent
problems. In this framework, a principal has a primary stake in the performance of a
system, but delegates its control to an agent. The underlying system is a Markov Decision
Process where the state of the system can only be observed by the agent but the agent�s
action is observed by both parties. The paper develops a dynamic programming algorithm
to derive optimal long-term contracts for the principal. The principal indirectly controls
the underlying system by o¤ering the agent a menu of continuation utility vectors along
public information paths; the agent�s best response, expressed in his choice of continuation
utilities, induces truthful state revelation and results in actions that maximize the principal�s
expected payo¤. This problem is signi�cant to the Operations Research community for it can
be framed as the problem of optimally designing the reward structure of a Markov Decision
Process with hidden states, and has many applications of interest as discussed in the paper.
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1 Introduction

Many interesting managerial problems involve two decision makers in a complex dynamic

environment coupled with information asymmetry. In medical treatment, the disease state

is private information observable by the physician but not by the medical insurer paying the

physician for his services. In supply chain management, inventory levels of a downstream

�rm are often not observed by an upstream �rm which can potentially implement a dynamic

pricing mechanism. An entrepreneur is better informed about the state of new product

development than the investor providing the funds for development. Similarly, in drug

discovery the scientists are better informed about the status of the experimentation than the

strategic planner determining the resources that will be allocated to pursue the experiments.

A human resource manager is less well informed about the state of the employees�knowledge

than the employees themselves. In all these examples, the party who observes the private

information can also in�uence its evolution through its choice of actions. These actions can

be observed by the other party. This paper proposes a general framework for analyzing this

type of problems and develops a general solution. It is not only of theoretical interest but

can also shed light on signi�cant managerial problems.

Background of the Topic. When two parties engage in a business relationship, their

interests are usually not perfectly aligned and information asymmetry can further exacerbate

the tension between them. The principal-agent model is a stylish framework for studying

such a problem, which has been extensively investigated by economists since 1970s, for

example Holmstrom (1979). The party who has the bargaining power to design the contract

terms is referred to as �the principal�(�she�in this paper) and the other party �the agent�

(�he�). It is usually assumed that the agent possesses private information unobservable by

the principal. There are two basic classes of models: hidden action (or moral hazard) and

hidden information (or adverse selection). In the former, the two parties have access to the

same information initially but the agent�s response cannot be observed by the principal; in

the latter, the agent has private information to begin with but his action can be observed.

In both cases, the principal faces the problem of providing incentives for the agent to take
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the desired action, but the solution methods turn out to be drastically di¤erent.

Single-period principal-agent models and multi-period models with simple information

structures are by far the most studied, discussed in many textbooks, such as Bolton and

Dewatripont (2005), Fudenberg and Tirole (1991), Mas-Colell, Whinston and Green (1995)

and Salanié (1997). Multi-period models with dynamic information structures are less un-

derstood. Fudenberg, Holmstrom, and Milgrom (1990) is one of the �rst papers to study a

dynamic principal-agent model with an underlying stochastic process. Their model assumes

hidden actions and they propose a set of assumptions to break optimal long-term contracts

into easily computable short-term ones. Plambeck and Zenios (2000) streamlines the model

with an underlying Markov Decision Process and provides a dynamic programming solution.

This paper also studies a model with underlyingMarkov Decision Process as the Plambeck

and Zenios model, but with di¤erent cost/reward structure and with hidden information

(states) instead of hidden actions. The model captures the basic features of the examples

presented at the beginning of the introduction. In this framework, a principal has a primary

stake in the performance of a Markov Decision Process, but delegates its control to an agent.

She must design a mechanism to reimburse the agent for his e¤orts, but is constrained by

the information that is publicly available. As the principal cannot observe the state of the

system, she may pay the agent contingent on the observable action history. However, as we

will see in the paper, this is not the best solution.

The topic of this paper can also be viewed from another perspective. Markov Decision

Processes provide one of the fundamental decision models in Operations Research. In these

processes, a system changes from state to state as time passes and the transition at the end

of a period depends on the action chosen in that period. While this model is mature with

well developed theories, as in Puterman (1994), it is centered on a single decision maker,

and the reward structure which drives the optimal strategy is exogenously given. In many

applications of interest, the system�s reward structure is designed by an intelligent party that

has a stake in the performance of that system and there often exists information asymmetry.

More Literature Review. As mentioned earlier, there is vast literature on principal-
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agent problems. However, only a limited part of it is dedicated to truly dynamic models. In

the passages below, we brie�y review the existing literature related to our work.

An in�uential paper that tackles a multi-period game with asymmetric information is

Abreu, Pearce, and Stacchetti (1990) (hereafter APS). The methodology developed in APS

provides some important components behind our approach and is brie�y reviewed here. Their

paper studies a repeatedN -player game: in a single period, each player takes a private action,

these actions together generate a public random signal, and the players�payo¤s depend on

their own action and the signal; the single-period game is repeated in�nitely and payo¤s are

discounted over time. It is shown that any pro�le of the players�total payo¤s in equilibrium

can be constructed from a pro�le of their �rst period actions and a pro�le of their future

(continuation) payo¤s contingent on the �rst period signal. Furthermore, the set of total-

payo¤ pro�les is equal to the set of continuation-payo¤ pro�les, which can be found by the

value-iteration method in dynamic programming via a convergent sequence of payo¤ sets.

In a fashion analogous to APS, our approach will focus on the set of continuation payo¤s

for the principal and agent in each period and state, and will develop the optimal contract

through a dynamic programming algorithm applied to the set of continuation payo¤s. Three

other papers exemplify this approach: Fernandes and Phelan (2000) considers an in�nite-

horizon consumption model where a risk-averse agent owns a private dynamic endowment

process and the principal, a central planner, provides monetary transfers to the agent. The

principal tries to minimize the expected total transfers while maintaining the agent�s ex-

pected utility at a given level. Doepke and Townsend (2005) studies a Markov decision

process with both hidden states and hidden actions. The analysis is more complex than that

of Fernandes and Phelan because of the combination of hidden states and hidden actions,

but the approach to address hidden states is similar. The exact solution is complicated and

they resort to an approximation algorithm with �nitely many possible continuation utility

values. Cole and Kocherlakota (2001) extends the APS model to include hidden states as

well. At the end of each period, the players update their beliefs about future states of other

players according to a public signal. An important assumption in the paper is that the belief
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of each player only depends on his current state and not any private information in the past.

Some well-known models can be considered as special cases of a dynamic principal-agent

model, such as multi-period models with independent or constant states, and models with

special parameter structures so that it is su¢ cient to consider local incentive constraints.

Baron and Besanko (1984) provides an early example of the latter, and recently Battaglini

(2005) solves a two-state-in�nite-horizon model with special parameter structure. Zhang

(2004) shows that these special cases can be derived from the general framework proposed

in this paper.

There has been a growing body of literature on information asymmetry in the manage-

ment science and operations research �eld, especially in supply chain management. But the

published works are either in the single-period setting or in the multi-period setting with spe-

cial information structures. Sample works are Corbett (2001), Ha (2001) and Ozer and Wei

(2006). Cachon (2003) and Chen (2003) provide a review of this literature. Among the few

papers addressing dynamic models, Ding, Jia and Tang (2003) considers a principal-agent

model with hidden states and hidden actions and use Markov Decision Process techniques

to �nd a best stationary contract.

Characteristics of the Paper. Our model integrates the physical structure of Markov

Decision Processes with the information structure of the principal-agent paradigm. One

challenge of the dynamic hidden-information principal-agent problem is the immense space

of possible mechanisms that can be designed by the principal. We show a dynamic revelation

principle: it is su¢ cient to consider revelation contracts. This type of contract asks the

agent to report the hidden states, and his actions and payments are prescribed contingent

on the reports. It is a generalization of the well-known single-period revelation principle;

see Myerson (1981) for an early formulation. Doepke and Townsend (2005) proves a similar

result for the class of communication games (where the two parties can exchange messages

at certain points in time). In this paper, we show this result for more general long-term

contracts.

Another challenge of the problem is that the optimal mechanisms may utilize the entire
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information history and therefore may appear too complicated to analyze. To address this

problem, we derive the optimal contract by backward induction. That is, we break the

problem into a series of constrained optimization problems, each of which �nds an optimal

action and payment menu in the current period and the optimal utility-to-go from the next

period. The principal and agent�s expected utility-to-go at the beginning of any period

are vector valued: since the principal cannot observe the underlying state, any remaining

contract will generate an expected future utility for each party in each potential state. The

principal�s maximum utility vector as a function of the agent�s utility vector at the beginning

of each period is called the e¢ cient utility frontier in that period. Although backward

induction has also been used in the papers mentioned above, explicitly characterizing the

e¢ cient frontiers is unique in this paper. As our results show, these frontiers possess nice

properties such as polyhedral convexity/concavity which enables a hyperplane representation

and computational geometry solution.

Our paper extends the existing literature in the following ways: it allows general long-

term contracts, treats randomization explicitly, obtains sharper characterizations of the op-

timal solution, and provides an algorithm to �nd the exact solution. It should be pointed

out, though, that some of our treatments and some properties of the optimal solution are

enabled by the assumption that the agent is risk neutral toward monetary transfers (or, has

quasi-linear utility function). This is a more restrictive assumption than that made in some

of the previous papers.

Organization. The main part of the paper is organized as follows. In Section 2, we de-

scribe the model environment, long-term contracts and principal�s problem. In Section 3, we

establish the su¢ ciency of revelation contracts and present a reformulation of the principal�s

problem. We also discuss some extensions and potential applications of the model in this

section. We solve the principal�s problem in Section 4 by a dynamic programming algorithm,

based on properties of the e¢ cient utility frontiers. A computational geometry implementa-

tion is also presented. In Section 5, we focus on the two-state special case and discuss two

numerical examples. We conclude with Section 6 on future research directions. Appendix A
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presents a road map of the paper, highlighting the main results and their connections. The

reader may wish to consult this diagram as he or she proceeds through the paper. Technical

proofs and additional materials for the computational geometry implementation are given

in Appendices B and C.

2 Dynamic Principal-Agent Problem and Long-Term

Contracts

Underlying System and Information Structure. The model has T periods indexed

by t = 1; :::; T . Within each period t the following events take place: First, the agent

privately observes the state of a Markov Decision Process, denoted by xt; the state set

is �nite and denoted by X = f1; 2; � � � ; jXjg, with slight abuse of notation. Next, the

agent takes a publicly observable action at and incurs a cost cxt(at); the action set is also

�nite, and is denoted by A = f1; 2; � � � ; jAjg. Toward the end of the period, the principal

receives a reward rxt(at). She then pays the agent st depending on publicly observable

and veri�able information. Finally, the transition to state xt+1 occurs. The transition

probability Pr(xt+1 = yjxt = x; at = a) is denoted by px;y(a) and we de�ne a row vector

px(a) = (px;1(a); :::; px;jXj(a)) for any x 2 X and a 2 A. The cost and reward structure and

the transition probabilities are known to both parties. The distribution of the initial state

x1 is also publicly known, given by the probabilities �x1 with
P

x12X �x1 = 1. The beginning

of period t after the agent observes the state xt is called time t. The end of period T is

called the terminal time, or, time T + 1. The sequence of events and information structure

is illustrated in Figure 1.

In the model, some information is public, such as the actions and payments, and the

rest is private (only known by the agent), such as the system state. The history of public

information ht is a vector of all the public information up to time t. By default, h1 = ?.

The history of full information !t is a vector of all the public and private information up to

time t (including xt). We adopt a standard assumption from the contract theory literature:
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Agent observes
state tx
(private)

Agent takes
action ta
(public)

Principal pays
Agent ts
(public)

Transition to
state 1+tx
(private)

Time t
Period t

Figure 1: Sequence of Events.

Assumption The principal cannot infer the state xt from the reward rxt(at).

If this assumption is violated, the incentive issue caused by information asymmetry is

eliminated and there is no need for strategic interactions as studied in this paper. The

assumption can be justi�ed in at least two situations: In one situation (such as the classic

seller-buyer problem, where the seller is the principal and the payments are from the agent to

the principal), the reward r(at) (the seller�s cost) is independent of the state xt (the buyer�s

type) and therefore the state cannot be inferred from the reward. In another situation, the

reward is an intangible value, for instance, the welfare or well-being of a patient in a health

care setting. Even though the reward may depend on the state (the patient�s health status),

it cannot be physically measured or veri�ed and therefore cannot reveal the state credibly.

We assume the principal and agent�s utilities are additively separable across time periods

and they are both risk-neutral toward monetary transfers. The discounted future utilities of

the two parties at time t are given by:

Principal:
TX
�=t

���t(rx� (a� )� s� ) + �T+1�t�xT+1 ; (1)

Agent:
TX
�=t

���t(s� � cx� (a� )) + �T+1�tuxT+1 ; (2)

where the discount factor � 2 [0; 1], and �xT+1 and uxT+1 denote the two parties� termi-

nal utilities. We abbreviate (x1; � � � ; xt) as xt, (a1; � � � ; at) as at, and (s1; � � � ; st) as st.

Evidently, the vector (xT+1;aT ; sT ) = (x1; a1; s1; � � � ; xT ; aT ; sT ; xT+1) contains the most

important public and private information and we call it the history of essential information.
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General Long-Term Contracts. The principal is trying to design a contract that

induces the agent to take desired actions. Before we provide a rigorous formulation of

the principal�s problem, a de�nition for contract is necessary. �Contract� is a synonym of

�payment scheme�or �mechanism�. We propose the following general de�nition:

De�nition 1 A long-term contract � is an agreement between the principal and agent that

speci�es their public activities in periods 1 through T , including but not limited to the agent�s

actions at and the principal�s payments st, contingent on all public information available up

to any given point in time.

A long-term contract can be de�ned recursively as well:

De�nition 2 A time-t continuation contract �t(ht) speci�es the principal and agent�s

public activities in period t after public history ht (including but not limited to action at

and payment st), and a set of time-(t + 1) continuation contracts �t+1(h
t; ht), one for each

possible realization of period-t public information ht. A long-term contract is a time-1

continuation contract.

These de�nitions reveal a main challenge of the problem, i.e., the principal is designing

a game instead of playing an existing one. It is not hard to recognize that the space of

long-term contracts is enormous and the possibilities are impossible to exhaust.

As standard in the literature, we make the following assumptions for long-term contracts:

(1) The principal can make full commitment to follow the contract and will not renegotiate

with the agent during its execution. As known in contract theory, it will hurt the principal in

ex ante if she cannot make full commitment, because then the set of agent�s future utilities

that can be credibly provided by the principal is more limited, which reduces the principal�s

choices. (2) The agent can quit at the beginning of any period if continuation of the contract

will not provide him at least his reservation utility. This captures many real world scenarios

where the agent has the freedom to stop an undesirable relationship with the principal,
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for example, in the seller-buyer situation. (3) The physical characteristics of the underlying

system cannot be altered by a contract. That is, in each period, the agent must take a

public action at, only at can a¤ect the hidden state xt, the state transition is fully governed

by pxt;xt+1(at), and so on.

After the principal designs the contract � and the agent agrees on it, the contract ex-

ecution starts. The agent�s strategy, denoted by �, will be contingent on the history of

full information. The strategy must be feasible in the sense that it must obey the contract

terms. In addition, under � and �, the agent�s expected future utility from any time t must

be well-de�ned. It leads to the following condition on the agent�s strategies:

De�nition 3 Given a long-term contract �, the agent�s strategy � is well-de�ned (with

respect to �) if the pair (�; �) induces a probability space of full information history !T+1�s.

Note that the distribution of the initial state x1 is governed by the underlying system

and not by the (�; �) pair. This condition guarantees that the essential information history

(x1; a1; s1; � � � ; xT ; aT ; sT ; xT+1) is a random vector de�ned on the full information space.

Naturally, any meaningful and unambiguous strategy of the agent should be well-de�ned.

Therefore, in this paper, we will only consider well-de�ned strategies and omit the phrase

�well-de�ned�.

The Principal�s Problem. Let 
t(�; �) = ffull information history !t under (�; �)g,

and e�t and eut denote the two parties�discounted future utilities (1) and (2) respectively,
which are random variables as well. Then, the principal�s problem can be formulated as:

max
�;�

E ( e�1j�; �) (3)

s.t. E
�eutj!t; �; �� � 0; !t 2 
t(�; �); t = 1; � � � ; T (4)

E
�eutj!t; �; �� � E �eutj!t; �; �0� ; !t 2 
t(�; �); t = 1; � � � ; T , any �0 (5)

Constraints (4) are called participation (or individual rationality, IR) constraints, which

match the agent�s expected utility with his reservation utility (normalized to 0) at any time

t. Constraints (5) are called incentive compatibility (IC ) constraints, assuming that the
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agent will choose a strategy to maximize his expected future utility at any time t. Since

these constraints are imposed in every period, the more precise names are sequential incentive

compatibility (SIC) and sequential individual rationality (SIR) constraints.

Depending on when the agent compares the continuation contract with his outside o¤er,

there are two types of IR constraints: the ex ante ones, where the agent can only leave before

he observes the state; and the ex post ones, where he can quit after the observation. Ex post

IR constraints are more restrictive from the principal�s point of view. The IR constraints

(4) are ex post ones since !t includes xt by de�nition. We will focus on this type of IR

constraints in this paper, but the analysis also applies to the ex ante case.

Examples of Long-Term Contracts. To shed more light on long-term contracts, we

now discuss some examples, starting from the most intuitive one:

Example 1 A deterministic action-based contract can be denoted by � = fs1(a1);

s2(a
2); � � � ; sT (aT )gaT2AT , or recursively, �t(at�1) = fst(at�1; at); �t+1(at�1; at)gat2A. In

such a contract, the payment st in period t depends solely on the agent�s action history at.

Action-based contracts are appealing because of their simple structure. However, �nding

the best action-based contract is not a simple task and it is suboptimal in general. The

following contract is more general:

Example 2 A deterministic revelation contract is denoted by � = fa1(bx1); s1(bx1); � � � ;
aT (bxT ); sT (bxT )gbxT2XT , or �t(bxt�1) = fat(bxt�1; bxt); st(bxt�1; bxt); �t+1(bxt�1; bxt)gbxt2X recur-

sively. Under such a contract, in any period t, the agent makes a state report bxt, then
takes the prescribed action at(bxt), and is paid st(bxt). Both the period-t action and payment
depend on the report history bxt. A revelation contract is called truthful if the agent�s best
response strategy is to report the state truthfully.

Under an arbitrary revelation contract, the state reporting need not be truthful. An

equivalent way to state that a revelation contract is truthful is that truthful reporting is
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sequentially incentive compatible. A revelation contract is more general than an action-based

contract, because it allows the agent to take the same action yet receive di¤erent payments

in di¤erent states. (But it can be shown that in the single period case, a revelation contract

cannot do any better than an action-based contract.)

This type of contract looks arti�cial, but is actually not. Consider a single period rev-

elation contract fa(bx); s(bx)g that requires the agent to report the state and then assigns
an action and payment pair (a; s) to him according to the report. The same result can be

achieved if the principal proposes a menu of (a; s) pairs and lets the agent freely choose one

from them. The agent would choose a pair depending on the true state x, which has the

same e¤ect as reporting the state under a revelation contract.

The deterministic revelation contracts can be further generalized by randomization:

Example 3 A randomized revelation contract is denoted by � = f�1(bx1; a1); s1(bx1; a1); � � � ;
�T (bxT ; aT jbxT�1;aT�1); sT (bxT ; aT jbxT�1;aT�1)gbxT2XT ;aT2AT , or recursively, �t(bxt�1;at�1) =
f�t(bxt; atjbxt�1;at�1); st(bxt; atjbxt�1;at�1); �t+1(bxt�1;at�1; bxt; at)gbxt2X;at2A. Under such a con-
tract, in any period t after the report and action history (bxt�1;at�1), the following events take
place: the agent reports the state bxt; he takes an action at determined by a public random vari-
able with probability mass function �t(bxt; atjbxt�1;at�1), wherePat2A �t(bxt; atjbxt�1;at�1) = 1
for each bxt; and the principal pays the agent st(bxt; atjbxt�1;at�1).
A deterministic revelation contract is a special case of a randomized one by restricting the

probabilities to be 0 or 1. As will be shown in the next section, we can restrict our attention

to these randomized revelation contracts without loss of generality. Later in Subsection 4.4,

we will see the necessity to allow randomization. For convenience, we will often drop the

�hat�sign from the reported states when it is clear from the context.
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3 Revelation Principle and Principal�s Problem

In this section, we will establish the su¢ ciency of revelation contracts, and reformulate the

principal�s problem under such contracts. We will also show that the sequential individual

rationality constraints are unnecessary: only the individual rationality constraints in period

one are required. At the end, we will discuss some simple extensions and possible applications

of the model.

First, it is necessary to introduce notation for the two parties�expected utilities under a

randomized revelation contract. If the agent reports the states truthfully, the two parties�

expected future utilities from time t given (xt�1;at�1) can be computed recursively as follows:

�t(xtjxt�1;at�1) =
X
at2A

�t(xt; atjxt�1;at�1)frxt(at)� st(xt; atjxt�1;at�1) +

�
X

xt+12X
pxt;xt+1(at)�t+1(xt+1jxt�1;at�1; xt; at))g; t = 1; � � � ; T (6)

ut(xtjxt�1;at�1) =
X
at2A

�t(xt; atjxt�1;at�1)fst(xt; atjxt�1;at�1)� cxt(at) +

�
X

xt+12X
pxt;xt+1(at)ut+1(xt+1jxt�1;at�1; xt; at))g; t = 1; � � � ; T (7)

�T+1(xT+1jxT ;aT ) = �xT+1 ; uT+1(xT+1jxT ;aT ) = uxT+1 : (8)

If the agent misreports state xt as bxt (and reports truthfully after period t), he will trigger
the part of contract (�t(bxt; atjxt�1;at�1); st(bxt; atjxt�1;at�1); �t+1(xt�1;at�1; bxt; at))at2A and
receive expected future utility

but(xt; bxtjxt�1;at�1) =
X
at2A

�t(bxt; atjxt�1;at�1)fst(bxt; atjxt�1;at�1)� cxt(at) +
�
X

xt+12X
pxt;xt+1(at)ut+1(xt+1jxt�1;at�1; bxt; at))g: (9)

Clearly, ut(xtjxt�1;at�1) = but(xt; xtjxt�1;at�1). The subscripts xt in cxt(�), rxt(�) and pxt(�)
always refer to the actual state.

Next, we present a main result:
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Theorem 1 (Dynamic Revelation Principle) For any long-term contract � coupled with

the agent�s best response strategy ��, there exists a truthful revelation contract �� which gen-

erates the same expected total utilities for the principal and agent as (�; ��) does.

The proof of the theorem is in Appendix B. The basic idea is to construct a truthful

revelation contract �� that induces the same marginal distribution of (xT+1;aT ) and the

same marginal distribution of sT conditional on (xT+1;aT ) as those induced by (�; ��). The

theorem applies to continuation contracts as well.

The theorem implies that, without loss of optimality, the principal�s problem (3)-(5) can

be recast as one of �nding a revelation contract to maximize the principal�s expected total

utility:

max
revelation contract �

X
x12X

�x1�1(x1) (10)

s.t. ut(xtjxt�1;at�1) � 0; xt 2 X t;at�1 2 At�1; t = 1; � � � ; T; (11)

ut(xtjxt�1;at�1) � but(xt; bxtjxt�1;at�1); xt 2 X t;at�1 2 At�1; bxt 2 X; t = 1; � � � ; T:
(12)X

at2A
�t(xt; atjxt�1;at�1) = 1; �t(xt; atjxt�1;at�1) � 0; xt 2 X t;at 2 At; t = 1; � � � ; T:

(13)

Constraints (11) replace the sequential individual rationality constraints (4). Constraints

(12) replace the sequential incentive compatibility constraints (5), which ensure that truth-

telling is the best response for the agent in every period. It is su¢ cient to consider the agent�s

one-period deviations in (12): using backward induction, one can show that if the agent

cannot bene�t from one-period deviations, he cannot bene�t from multi-period deviations

as well. Constraints (13) de�ne the feasible range of the probabilities.

The next lemma shows a convenient result which says the SIR constraints (11) can be

reduced to the �rst period IR constraints, i.e., u1(x1) � 0, for x1 2 X.

Lemma 1 (Redundancy of SIR) In the principal�s problem, the sequential individual ra-
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tionality constraints can be replaced by the �rst period individual rationality constraints with-

out loss of optimality.

Immediate Extensions of the Model. Problem (10)-(13) can be extended in mul-

tiple ways. Here, we present �ve straightforward extensions, which can be easily veri�ed

after the solution method is discussed in the next section. (1) For presentation convenience,

the physical structure of the model is assumed time-independent, i.e., the functions cxt(at),

rxt(at), and pxt;xt+1(at) are independent of t. But the method developed in the next section

applies to time-dependent systems as well; (2) The model assumes the payments are from

the principal to the agent, but the opposite case (as the seller-buyer example) can be ac-

commodated with a simple change of signs of the rewards r(�), costs c(�) and payments s(�);

(3) The principal may have the �exibility to contract with the agent for less than T periods.

This can be incorporated by de�ning a stopping action a = 0 with �transition probabilities�

px(0) = 0 for all x; (4) It is possible that in some situations, some states can be publicly

observed and contracted upon. This can be handled by removing incentive compatibility

constraints for those observable states; (5) The principal�s objective function can be general-

ized to
P

x12X �x1 [�1(x1) + �u1(x1)], with � 2 [0; 1]. At the two extremes, � = 0 represents

a self-interested principal who maximizes her expected utility; � = 1 represents a benevolent

principal who maximizes the expected social welfare.

Applications. The model represents a general framework, which has many possible

applications. Below are a few examples:

(1) Dynamic Pricing with Changing Customer Types. A �rm sells a non-durable product

(or service) in multiple periods. Each customer has a type it that a¤ects his or her utility

in period t and evolves according to a Markov Decision Process with transition probabilities

p(it+1jit; qt) where qt is the purchasing quantity (or quality) in period t. The �rm can observe

customers�purchase decisions but not their types. The �rm�s objective is to design a pricing

mechanism to maximize its pro�t.

(2) Purchasing Contracts with Inventory Consideration. A manufacturer wants to design
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a multi-period contract with a retailer, knowing that the retailer carries inventory to maxi-

mize its own pro�t. In each period t, the retailer observes its initial inventory It and places an

order ut to the manufacturer. The inventory process is Markov with transition probabilities

p(It+1jIt; ut) determined by the random customer demand in period t. The distribution of

customer demand is public information. The manufacturer can observe the retailer�s orders

but not its inventory level. What is the optimal contract for the manufacturer?

(3) Health Care Contracts. A payer (Medicare, private insurer) designs a contract with

a provider (hospital, independent physician practice, etc.). In each period t, the provider

observes its patients�health status xt and provides service at. Then xt can be de�ned as

the state of a Markov Decision Process with transition probabilities p(xt+1jxt; at). Existing

information systems that facilitate transactions between payers and providers permit the

payer to observe at but not xt. The objective of the payer is to maximize the patient�s utility

or the social welfare (if the payer is a government agency), or else to maximize the payer�s

own net pro�t.

(4) Product Development Contracts. An investor considers investing in a new venture.

The state of the venture st follows aMarkov process with transition probabilities p(st+1jst; et),

where et is management�s e¤ort in period t. The investor can quit in any state and receive a

reward that depends on the unobservable state. What is the investor�s optimal investment

(and exit) strategy?

4 Finding Optimal Revelation Contracts

Theorem 1 enables us to focus on the set of truthful revelation contracts without loss of gen-

erality. In this section, we will develop a dynamic programming algorithm to �nd optimal

revelation contracts and investigate their properties. We will �rst simplify the notation in

Subsection 4.1. In Subsection 4.2, we will show that at any time t there exist continuation

revelation contracts that dominate others in the Pareto sense� no other contracts can gen-

erate the same utility vector for the agent and higher utility vector for the principal. These
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continuation contracts form an e¢ cient frontier at time t and can be obtained recursively.

This result paves the way for a dynamic programming algorithm, presented in Subsection

4.3. In the course of the analysis, we will see that truthful revelation contracts can be con-

structed state by state independently; each state problem can be further decomposed into a

collection of state-action problems. This decomposition into a hierarchy of state problems

made up by state-action problems will streamline the construction of the e¢ cient frontiers.

We will investigate the properties of the e¢ cient frontiers in Subsection 4.4. The most sig-

ni�cant one is that of polyhedral concavity, which enables the construction of the e¢ cient

frontiers using hyperplanes and polytopes in Subsection 4.5. As a by-product, it will become

clear why randomization is necessary. Subsection 4.5 is mainly intended for readers who are

interested in the implementation of the algorithm in practice and can be skimmed otherwise.

4.1 Notation Simpli�cation and Continuation Utilities

As introduced in Example 3, a time-t randomized revelation contract can be represented as

�t(x
t�1;at�1) = f�t(xt; atjxt�1;at�1); st(xt; atjxt�1;at�1); �t+1(xt�1;at�1; xt; at)gxt2X;at2A. If

there is no need to emphasize the history (xt�1;at�1), it can be suppressed from the nota-

tion. We can further consolidate notation by moving the reported state xt to the sub-

script and dropping the time index t whenever it is clear from the context. The conse-

quence is a much simpli�ed notation for a time-t randomized revelation contract: �t =

f�x(a); sx(a); �t+1;x(a)gx2X;a2A. We call the collection (�x(a); sx(a); �t+1;x(a))a2A given state

x a (randomized) state-menu with respect to x; and the part (sx(a); �t+1;x(a)) given x and a

a state-action-option with respect to (x; a). In addition, the state xt+1 will be denoted by y.

If the continuation revelation contract �t is truthful, the two parties� expected future

utilities �t(xtjxt�1;at�1) and ut(xtjxt�1;at�1), de�ned in (6) and (7), are called their time-t

continuation utilities and abbreviated as �x(�t) and ux(�t) respectively. It is convenient to

de�ne the column vectors �(�t) = (�x(�t))x2X and u(�t) = (ux(�t))x2X and view that the

continuation contract �t generates the pair of continuation utility vectors (u;�)(�t). Then,
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(6) and (7) can be rewritten using the simpli�ed notation as:

�x(�t) =
X
a2A

�x(a) frx(a)� sx (a) + �px(a)�(�t+1;x(a))g ; (14)

ux(�t) =
X
a2A

�x(a) fsx(a)� cx(a) + �px(a)u(�t+1;x(a))g : (15)

Notice that we write the matrix multiplication of a row vector p and a column vector u as pu.

In subsequent discussions, it will also be convenient to work with the social welfare function,

de�ned as �x(�t) = ux(�t) + �x(�t), and the social welfare vector �(�t) = u(�t) + �(�t).

It is equivalent to say that the continuation contract �t generates the pair of continuation

utility vectors (u;�)(�t).

4.2 Existence of E¢ cient Frontiers and Sequential E¢ ciency

According to the problem formulation (10)-(13) and the recursive formulas (6)-(9), a con-

tinuation contract �t plays a role in the principal�s problem only through the utility vector

pairs (ut;�t) generated by it. Suppose two continuation contracts �t and �
y
t generate the

same utility vector ut for the agent but di¤erent utility vectors �t and �
y
t for the principal.

If �t � �yt , by formulation (10)-(13), the utility pair (ut;�t) (or contract �t) dominates the

pair (ut;�
y
t) (or contract �

y
t) from the principal�s perspective yet there is no di¤erence from

the agent�s point of view. But if neither �t � �yt nor �yt � �t, it is unclear which utility pair

is better. Fortunately, in that situation, there always exists a third utility pair (ut;��t ) that

dominates the �rst two pairs and is generated by a truthful revelation contract, as shown

below:

Lemma 2 (Dominant Continuation Contracts) Consider two truthful revelation con-

tracts: �t = f�x(a); sx(a); �t+1;x(a)gx2X;a2A and �yt = f�yx(a); syx(a); �
y
t+1;x(a)gx2X;a2A. Sup-

pose u(�t) = u(�yt) = ut, �x(�t) > �x(�
y
t) for x 2 S, �x(�t) < �x(�

y
t) for x 2 Sy, and

�x(�t) = �x(�
y
t) otherwise. Then, the contract

��t =

8><>:
�x(a); sx(a); �t+1;x(a), if x 2 S;
�yx(a); s

y
x(a); �

y
t+1;x(a), if x 2 Sy;

either one of the above, otherwise
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is a truthful revelation contract which satis�es u(��t ) = ut and �(�
�
t ) = maxf�(�t);�(�

y
t)g.

Proof. Using the simpli�ed notation, the IC constraints (12) for �t can be rewritten as

follows: for any x 2 X,X
a2A

�x(a) fsx(a)� cx(a) + �px(a)u(�t+1;x(a))g

�
X
a2A

�bx(a) fsbx(a)� cx(a) + �px(a)u(�t+1;bx(a))g ; bx 2 X: (16)

Using the fact u(�t) = ut, or more precisely,

ut;x =
X
a2A

�x(a) fsx(a)� cx(a) + �px(a)u(�t+1;x(a))g ; x 2 X; (17)

we can transform the above IC constraints as follows (with the roles of x and bx switched):
ut;bx � ut;x �X

a2A
�x(a) fcx(a)� cbx(a) + � [pbx(a)� px(a)]u(�t+1;x(a))g ; bx 2 X: (18)

That is, any state-menu (�x(a); sx(a); �t+1;x(a))a2A satis�es (18) given x.

Similarly, since �yt is truthful and u(�
y
t) = ut, each state-menu (�

y
x(a); s

y
x(a); �

y
t+1;x(a))a2A

satis�es (18) given x as well (replacing � and �t+1 by �
y and �yt+1). The third contract �

�
t is

clearly a revelation contract. The way it is constructed does not change the agent�s utility

vector or the incentive compatibility of any of the state-menus. So, ��t must be truthful and

satisfy u(��t ) = ut and �(�
�
t ) = maxf�(�t);�(�

y
t)g.

The proof is presented here instead of Appendix B because some of its expressions provide

insights that facilitate the decomposition of the principal�s problem. Speci�cally, constraints

(18) state that a state-menu of a truthful revelation contract intended for state x should

not be too attractive under another state bx. The constraints enable us to decompose the
problem of �nding a continuation contract that maximizes the principal�s continuation utility

vector given the agent�s utility vector ut into jXj independent state-menu problems. More

speci�cally, given ut and for each state x, we �nd a state-menu (�x(a); sx(a); �t+1;x(a))a2A to
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maximize the principal�s utility, subject to constraints (18). Combining these optimal state-

menus, we obtain a continuation contract that attains the highest achievable utility vector

��t for the principal while maintaining the agent�s utility at ut. The state-menu problem will

be formally de�ned in the next subsection.

The concept of e¢ cient frontier follows from Lemma 2.

De�nition 4 The set of time-t continuation truthful revelation contracts is denoted by �TRt .

The time-t agent�s utility set is de�ned as U t , fu(�t) : �t 2 �TRt g. The time-t e¢ cient

utility frontier is de�ned as:

��t (ut) = maxf�(�t) : �t 2 �TRt and u(�t) = utg; ut 2 U t; (19)

and the time-t e¢ cient social welfare frontier is de�ned as:

��t (ut) = maxf�(�t) : �t 2 �TRt and u(�t) = utg; ut 2 U t: (20)

In the de�nition, the max operation is taken component-wise. The x-th components

of ��t (ut) and �
�
t (ut) will be denoted by �

�
t;x(ut) and �

�
t;x(ut) respectively. The two types

of e¢ cient frontiers are equivalent� a utility vector pair (ut;�t) is on the e¢ cient utility

frontier if and only if (ut;�t) is on the e¢ cient social welfare frontier, thanks to the identity:

��t (ut) = �
�
t (ut) + ut: (21)

We call a contract �t e¢ cient if the utility vector pair (u;�)(�t) or (u;�)(�t) lies on the

corresponding e¢ cient frontier. It turns out the social welfare frontiers are more convenient

to analyze and thus are our focus in the subsequent development.

Lemma 2 shows the existence of e¢ cient frontiers. The result can be extended further

to establish that an e¢ cient contract is sequentially e¢ cient. As a consequence, e¢ cient

frontiers can be constructed recursively.

Theorem 2 (Sequential E¢ ciency) If �t 2 �TRt is e¢ cient, for any public history h� ,

� > t, that occurs with non-zero probability, the continuation contract �� (h
� ) is also e¢ cient.
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4.3 Dynamic Programming Formulation

Sequential e¢ ciency is derived from the principal�s problem by ignoring the sequential in-

dividual rationality constraints. Combining Lemma 1 with Theorem 2, we can recast the

principal�s problem in the dynamic programming fashion. De�ne UT+1 = fuT+1g and

��T+1(uT+1) = �T+1, where (uT+1;�T+1) is the terminal utility/social welfare vector pair.

We have the following algorithm:

1. For t = T to 1: obtain the time-t e¢ cient social welfare frontier ��t : U t ! RjXj from

the time-(t+ 1) e¢ cient social welfare frontier ��t+1 : U t+1 ! RjXj;

2. Solve the principal�s ex ante problem: maxf� (��1(u1)� u1) : u1 2 U 1;u1 � 0g.

The �rst step is an iteration step, which is the core of the algorithm. The second step is

a one-shot optimization problem to be solved at time 1, taking into account the �rst period

IR constraints and the distribution of the initial state. Below, we formulate the iteration

step precisely.

As discussed in the last subsection, a continuation contract �t+1 plays a role in the princi-

pal�s problem only through the utility vector pairs (ut+1;�t+1) generated by it. In addition,

since we only need to consider e¢ cient continuation contracts, �t+1 can be determined from

the known e¢ cient social welfare frontier ��t+1(�) through �t+1 = ��t+1(ut+1). Thus, given

��t+1(�), a randomized state-menu (�x(a); sx(a), �t+1;x(a))a2A reduces to (�x(a); sx(a);ut+1;x(a))a2A,

and the randomized state-menu problem for state x can be de�ned as:

��t;x(ut) , max
�(a);ut+1(a)2U t+1

X
a2A

�(a)
�
rx(a)� cx (a) + �px(a)��t+1(ut+1(a))

	
(22)

s.t. ut;bx � ut;x �X
a2A

�(a) fcx(a)� cbx(a) + �[pbx(a)� px(a)]ut+1(a)g ; bx 2 X (23)X
a2A

�(a) = 1, and �(a) � 0; a 2 A (24)

We call the set of parameters ut making problem (22)-(24) feasible the problem�s (feasible)

parameter set, denoted U t;x. Clearly, the optimal values of the variables �(a) and ut+1(a)



Zhang and Zenios 21

depend on the state x. The above representation highlights the recursive nature of the

principal�s problem: In period t and state x, the principal must choose a randomization

over the agent�s action a and continuation utility vector ut+1(a) to maximize the time-t

continuation social welfare while providing an exogenously chosen continuation utility vector

ut for the agent. Payments sx(a) do not appear in the formulation since they are fully

captured by ut according to (17) and can be easily recovered when needed. The formulation

reveals an important characterization of the optimal contracts: the commitment to future

payments plays a vital role in providing incentives for truth-telling.

For comparison, we consider the �rst-best case when all information is public. In that

case, the principal can dictate what the agent should do and therefore she will enforce the

highest continuation social welfare vector (while compensating the agent with his reservation

utility). It leads to a deterministic non-constrained dynamic programming formula:

��t;x = max
a2A

rx(a)� cx (a) + �px(a)��t+1: (25)

4.4 Properties of E¢ cient Frontiers

Randomized state-menus consist of state-action-options. Thus, the state-menu problem can

be further decomposed into problems of �nding the e¢ cient state-action-options. The state-

action-option (SAO) problem is de�ned as follows: for a given agent�s utility vector ut and

a given state-action pair (x; a), choose continuation utility vector ut+1 to solve

��t;x(utja) , max
ut+12U t+1

rx(a)� cx(a) + �px(a)��t+1(ut+1) (26)

s.t. ut;bx � ut;x � cx(a)� cbx(a) + � [pbx(a)� px(a)]ut+1; bx 2 X: (27)

The parameter set of the problem is denoted by U t;x(a).

The solution to the randomized state-menu problem (22)-(24) can be obtained by con-

vexi�cation over the set of optimal objective functions ��t;x(utja), a 2 A, of the state-action-

option problems in the following way:

��t;x(ut) = max
f�(a)�0;u0t(a)2U t;x(a)g

( P
a2A �(a)�

�
t;x(u

0
t(a)ja) :P

a2A �(a)u
0
t(a) = ut;

P
a2A �(a) = 1

)
: (28)
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Figure 2: Solving the state-menu problem through the state-action-option problems: (a) A
deterministic solution; (b) A randomized solution.

The relationship between ��t;x(ut) and �
�
t;x(utja) is illustrated in Figure 2(b) in the two-

action case. Figure 2(a) demonstrates that it is in general suboptimal to use deterministic

state-menus, by solving maxa2Af��t;x(utja)g, and randomization among state-action-options

is necessary.

Next, we show that the e¢ cient frontiers have an important property, as de�ned below:

De�nition 5 A set U � Rn is polyhedral convex if there exist a matrix A and a vector

b such that U = fu � Rn : Au � bg. A function � : U ! R is polyhedral convex

(concave) if the domain U is polyhedral convex and there exist �nitely many row vectors

hi and scalars di such that �(u) = max(min)i=1;��� ;Ifhiu+ dig.

Since the SAO problem (26)-(27) has a linear structure, it is not surprising that if

��t+1(ut+1) is polyhedral concave, this property will be preserved in �
�
t;x(utja). In addi-

tion, convexi�cation over ��t;x(utja) will not destroy this property as well. Let the convex

hull of set U be denoted by conv(U ) and the hypograph of function � : U ! R be de�ned

as hypo(�) = f(u; t) 2 U � R : t � �(u)g. We have the following results:

Theorem 3 (Polyhedral Convexity/Concavity) (a) The parameter set U t;x(a) of the

state-action-option problem (26)-(27) is polyhedral convex and the optimal objective func-

tion ��t;x(utja) is polyhedral concave in ut. (b) The parameter set U t;x and the optimal
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objective function ��t;x(ut) of the randomized state-menu problem (22)-(24) satisfy: U t;x =

conv ([a2AU t;x(a)) and hypo(�
�
t;x(ut)) = conv([a2Ahypo(��t;x(utja))). Consequently, U t;x

is polyhedral convex and ��t;x(ut) is polyhedral concave. (c) The time-t agent�s utility set

U t = \x2XU t;x and is polyhedral convex.

This theorem provides the foundation for the next subsection in which we will develop

an algorithm to construct e¢ cient frontiers by hyperplanes and polytopes. Before that, we

show that the agent�s utility space has a one-degree redundancy which can be exploited in

any calculation of the e¢ cient frontiers.

Lemma 3 (Redundancy of Agent�s Utility Space) The e¢ cient social welfare frontier

satis�es ��t (ut) = �
�
t (ut + �1) for any � 2 R.

The proof can be directly obtained from the problem formulation (22)-(24) and is omitted.

Intuitively, in any period, the principal can use a constant payment to alter the agent�s utility

in all states simultaneously. Since both parties are risk-neutral over monetary payments, this

will not change the agent�s relative incentives or the social welfare.

This redundancy can be resolved by shifting our attention from the agent�s absolute

utility vector ut = (ut;1; � � � ; ut;jXj) to a relative utility vector �ut = (�ut;1; � � � ;�ut;jXj)

with respect to certain state x, where �ut;bx = ut;bx � ut;x for bx 6= x and �ut;x is unde�ned
(this non-conventional treatment can facilitate the switching among di¤erent relative forms).

The e¢ cient social welfare function is still ��t (�ut) = �
�
t (ut), with jXj components. When

it is clear from the context, we can drop the sign ���from a relative utility vector.

This dimensional reduction reduces the agent�s utility set U t to a bounded polytope,

because of the following constraints for each pair of states x and bx:
ut;bx � ut;x �X

a2A
�x(a) fcx(a)� cbx(a) + �[pbx(a)� px(a)]ut+1;x(a)g (29)

ut;bx � ut;x �X
a2A

�bx(a) fcx(a)� cbx(a) + �[pbx(a)� px(a)]ut+1;bx(a)g : (30)
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Both inequalities follow from the incentive compatibility constraints (23) (the subscripts x

and bx under � and ut+1 are added for clarity); the latter inequality also requires switching
x and bx.
4.5 Implementation by Computational Geometry

We have reformulated the principal�s problem using dynamic programming, based on e¢ cient

social welfare frontiers. The iteration step consists of problems at two levels: the random-

ized state-menu problem (22)-(24) and the state-action-option problem (26)-(27). A main

challenge posed by these problems is that the parameter ut is drawn from an in�nite set U t,

the agent�s time-t utility vector set, and we need to solve these problems for every ut 2 U t.

Theorem 3 suggests a possible remedy to overcome this di¢ culty: both optimal objective

functions ��t;x(utja) and ��t;x(ut) can be represented by a �nite number of hyperplanes and

hence can be determined in �nite time. In this subsection, we outline such an implementa-

tion. The goal is to break the iteration step into standard computational geometry problems.

Our treatment is just one possible way of implementation and its e¢ ciency depends largely

on the techniques used for solving those standard problems. Due to space limitation, more

details of the implementation are provided in Appendix C. For more in-depth coverage of

computational geometry, we refer the reader to Berg et al (2000) and Boissonnat and Yvinec

(1998).

The iteration step for period t can be divided into �ve stages: (1) For each state-action

pair (x; a), represent the objective function in (26) by a set of hyperplanes in terms of ut+1;

(2) Simplify the SAO problem (26)-(27) by a change of variables; (3) Solve the simpli�ed

SAO problem by projecting the underlying polytope of the objective function along proper

axes; (4) For each state x, construct the function ��t;x(ut) and the set U t;x as the convex

hulls of ��t;x(utja) and U t;x(a), a 2 A, respectively; (5) Construct the agent�s utility set U t

as the intersection of U t;x, x 2 X.

The �rst three stages correspond to the state-action-option problem (26)-(27). The last
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Figure 3: Average of Two Polyhedral Concave Functions. �1(u) is formed from hyperplanes
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two stages correspond to the state-menu problem (22)-(24), involving standard operations

such as �nding the convex hull and the intersection of a set of polytopes. In what follows,

we elaborate on the �rst three stages.

Stage 1: Representing the Objective Function in (26) by Hyperplanes. As-

sume the hyperplane representation of the e¢ cient frontier ��t+1(ut+1) is already known as:

��t+1;y(ut+1) = mini=1;��� ;Iy
�
hiyut+1 + d

i
y

�
, for y 2 X and a set of integers fIyg (recall that

y denotes xt+1). The immediate task we face is to represent the objective function of the

SAO problem, rx(a) � cx(a) + �px(a)��t+1(ut+1) or essentially px(a)��t+1(ut+1), by a set of

hyperplanes. We call the smallest set of hyperplanes that completely determine a polyhedral

concave function the de�ning hyperplanes of that function. As illustrated in Figure 3 in the

two-dimensional case, �nding the de�ning hyperplanes is not a trivial task.

In Appendix C, we show how to transform this problem into an existing problem in

computational geometry by exploring the duality between hyperplanes and points. The dual

of a hyperplane f(u; �) : � = hu + dg, abbreviated as � = hu + d, is the point (h; d), and

vice versa. The problem of �nding the de�ning hyperplanes of px(a)�
�
t+1(ut+1) is equivalent

to the problem of �nding a convex hull in the dual space.
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At the end of this stage, for any given x and a, we can represent the objective function

in (26) by its de�ning hyperplanes:

rx(a)� cx(a) + �px(a)��t+1(ut+1) = min
i=1;��� ;Ix(a)

hix(a)ut+1 + d
i
x(a): (31)

Stage 2: Change of Variables. The SAO problem can be simpli�ed by the change of

variables wt;x = �cx(a) + �px(a)ut+1; x 2 X, or

wt = �c(a) + �P (a)ut+1 (32)

in the matrix form. The constraints (27) reduce to: ut;bx � ut;x � wt;bx � wt;x; bx 2 X.

Assume the transition matrices P (a), a 2 A, have full ranks and hence P (a)�1 exist (the

degenerate case is discussed in the appendix). For each action a 2 A, relation (32) de�nes

a one-to-one a¢ ne mapping between ut+1 and wt. Thus, the agent�s utility vector set

U t+1 = fut+1 : Aut+1 � bg is mapped to

W t(a) = fwt :
�
AP (a)�1

�
wt � �b�AP (a)�1c(a)g: (33)

Also, the de�ning hyperplanes of the objective function (31) is transformed from the (ut+1; �)-

space to the (wt; �)-space:

�0t;x(wtja) , min
i=1;��� ;Ix(a)

�
��1hix(a)P (a)

�1�wt +
�
��1hix(a)P (a)

�1c(a) + dix(a)
�
: (34)

As a result, the SAO problem (26)-(27) can be simpli�ed to:

��t;x(utja) = max
wt2W t(a)

f�0t;x(wtja) : ut;bx � ut;x � wt;bx � wt;x; bx 2 Xg;
or ��t;x(utja) = max

wt2W t(a)
f�0t;x(wtja) : ut � wtg (35)

using the relative forms of ut and wt with respect to state x.

Stage 3: Solving (35) by Projection. The state-action-option problem (26)-(27) boils

down to (35), which describes a simple relationship: call a vector (wd
t ; 0) in the (wt; �)-space

a feasible direction if wd
t � 0 and kwd

t k = 1; if we translate �0t;x(wtja) along all feasible direc-

tions, the outer contour of the traces forms ��t;x(utja) (renamingwt to ut). Figure 4 illustrates



Zhang and Zenios 27

)o( tt urw

)|(*
2, auttφ

tw *
tw

tw

Feasible
direction

)|(2, awttφ′

Figure 4: From �0t;x(wtja) to ��t;x(utja) by projection along the wt;x-axes.

a two-dimensional example in state 2, where ��t;2(utja) = maxwt2[wt;wt]
�
�0t;2(wtja) : ut � wt

	
,

ut = ut;1� ut;2 and wt = wt;1�wt;2. An algorithm to solve problem (35) can be found in the

appendix.

Finally, a few remarks about the time complexity of our algorithm are in order. It

crucially depends on the time complexity of solving each standard computational geometry

problem, which varies according to the techniques chosen. Some standard algorithms such as

the various convex hull algorithms do not have polynomial-time complexity though they work

very well for small-dimensional problems. Based on that, we expect the algorithm developed

in this paper to be practical for small-sized problems� with small state and action sets,

but to become computationally intractable for large scale problems. The development of

computationally e¢ cient algorithms that would apply to large scale problems is a fruitful

avenue for future research.

5 Two-State Case and Numerical Examples

The special case with two states is the simplest case yet it still preserves the main features

of the general model. Many insights obtained from the two-state case can be generalized to

the general case. Furthermore, it is easy to implement and illustrate. In this section, we

�rst present the two-state problem and then discuss two numerical examples. The main goal
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is to illustrate some of the complex trade-o¤s underlying the design of an optimal contract.

The examples are necessarily arti�cial because a full exploration of a more realistic example

would be beyond the scope of this paper and is left as a topic for future research.

The Two-State Problem. Using relative utilities and de�ning ut = ut;1 � ut;2, ut+1 =

ut+1;1� ut+1;2, we can rewrite the state-action-option problem (26)-(27) as follows: for state

1,

��t;1(utja) = max
ut+12Ut+1

r1(a)� c1(a) + �p1(a)��t+1(ut+1) (36)

s.t. ut � c2(a)� c1(a) + � [p11(a)� p21(a)]ut+1; (37)

and for state 2,

��t;2(utja) = max
ut+12Ut+1

r2(a)� c2(a) + �p2(a)��t+1(ut+1) (38)

s.t. ut � c2(a)� c1(a) + � [p11(a)� p21(a)]ut+1: (39)

Note that we use the same de�nition ut = ut;1 � ut;2 in both problems so that the functions

��t;1(utja), ��t;2(utja), ��t;1(ut) and ��t;2(ut) can be depicted in the same chart.

The computational geometry implementation discussed in the last section can be signif-

icantly simpli�ed in the two-state case. The main stages have been illustrated in previous

�gures: Figure 3 illustrates how to obtain px(a)�
�
t+1(ut+1) from ��t+1(ut+1); Figure 4 shows

how to compute ��t;x(utja) from �0t;x(wtja); and Figure 2(b) shows how to obtain ��t;x(ut) from

��t;x(utja)�s. The principal�s one-shot optimization problem at time 1 can be transformed into

a single-variable optimization problem as well. In the two-state case, one can also focus on

the breakpoints rather than the de�ning hyperplanes of the utility functions (a breakpoint

is where the slope of a piecewise-linear function changes).

Numerical Examples. We present two numerical examples, assuming two states, two

actions, and two periods. The parameters for the examples and the optimal contracts are

summarized in Figure 5. The upper left table in the �gure provides the model parameters, the

upper right table presents the optimal action strategies and optimal social welfare functions

for the �rst-best case with no hidden information (these provide a useful benchmark for our



Zhang and Zenios 29

discussion of the results), and the two trees at the bottom summarize the optimal long-term

contracts for the two examples when states are hidden.

First, let�s describe the convention used in the trees. Round nodes denote state reports

while diamond nodes denote actions prescribed by the contract. Randomization over actions

is indicated by multiple branches spreading out of a diamond node, and the italicized numbers

next to the branches provide the probabilities. The numbers in circles represent reported

states, while the numbers in square brackets represent single-period payments made by the

principal.
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Figure 5: Parameters and Results for Two-State Examples. The triple in each cell of the
parameter table gives (rx(a) � cx(a); cx(a); px1(a)). Each quadruple in a tree provides the
continuation social welfare vector and agent�s utility vector at the beginning of a period, i.e.,
(��t;1; �

�
t;2; ut;1; ut;2).
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Example I. In this example, if all information is public, the �rst-best contract is to

enforce action 1 in all circumstances, which creates the highest social welfare vector �1 =

(5:5; 7:3) at time 1 (recall the formula (25) for the �rst-best case). But if the states are

hidden, to enforce the �rst-best action plan, the principal must pay the agent a premium

to ensure his incentive compatibility and participation. It turns out the principal has to

o¤er the agent a continuation utility vector u1 = (0; 1:2) at time-1. As a result, her own

time-1 continuation utility vector is reduced to �1 = (5:5; 6:1). The agent�s surplus beyond

his reservation utility (due to his information advantage) is called the agent�s information

rent, which represents a monetary transfer from the principal to the agent and reduces the

principal�s utility. Thus, although the �rst-best action plan maximizes the social welfare,

it also leaves signi�cant information rent for the agent when states are hidden. Lowering

the agent�s information rent by a more sophisticated contract will no doubt result in social

welfare losses. To maximize the principal�s utility under hidden states, an optimal contract

must strike a balance between these opposite forces.

In our example, the optimal contract operates as follows: In period 1, the agent reports

the state. If the report is 1, he must take action 1 and receive a payment 0:5, followed by

further di¤erentiation in period 2; If the report is 2, he should also take action 1 but will be

paid 0:6 and face no further di¤erentiation in period 2. This optimal contract is not unique

(it is derived by adding ex-post participation constraints at time 2). Only the agent�s relative

utility at time 2 really matters, due to the redundancy in his utility space.

Notice that the agent�s time-1-state-2 information rent is reduced from 1:2 to 0:8. The

positive information rent for state 2 at time 1 suggests that the main incentive issue in

the �rst period is the agent�s temptation to misreport state 2 as state 1. The decline

of the information rent implies that this incentive problem has been alleviated. This is

achieved by the design of the time-2 continuation contracts. The transition probabilities

p11(1) = 0:5 < p21(1) = 0:9 implies that in the �rst period, the time-2 relative utility

u2;1 � u2;2 is more valuable to the agent in state 2 than in state 1. Thus, in order to

discourage the agent from misreporting the �rst period state x1, the time-2 continuation
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contract following x1 = 2 should provide higher u2;1�u2;2 (which is �2 in the example) than

the one following x1 = 1 (which is �3). But on the other hand, the continuation contract

following state x1 = 1 deviates from the �rst-best action plan and causes a social welfare loss.

The resulting principal�s continuation utility vector at time 1 is �1 = (4:5; 6:5), as opposed

to (5:5; 6:1) if the �rst-best action plan is enforced. The assumption of a small �1 (0:15 in

the example) is useful now, which downplays the social welfare loss in state x1 = 1. One can

see that when 4:5�1 + 6:5(1 � �1) < 5:5�1 + 6:1(1 � �1), or �1 > 0:286, the social welfare

loss will dominate the bene�t of information rent reduction and the �rst-best action plan

will become optimal even when states are hidden.

This example demonstrates how the principal can use her commitment to future payments

together with a judicially designed revelation mechanism to extract some information rent

from the agent and achieve outcomes close to �rst-best. Notice that the state report in the

�rst period is necessary. As the agent is asked to take the same action in period 1, if the

contract were solely based on the action history, the principal could not have acquired any

useful information about the �rst period.

Example II. This example demonstrates an instance where randomization is needed. In

this example, the optimal contract requires state revelation in period 1, followed by di¤erent

randomizations among �rst period actions, and the action in period 2 depends on the public

information realized in the �rst period. Notice that in the �gure, we specify the �rst period

payments before actions, because there is a degree of freedom in the payments and only the

expectation of the �rst period payments matters.

Again, the contract uses the revelation mechanism to extract the agent�s surplus. This

reduces the overall social welfare but maximizes the principal�s utility. Further, contrasting

the welfare losses in example II to those in example I, one notices that the losses in the second

example are more substantial and extend to most of the periods and states. This result is

driven by the underlying cost and probability structure of the system. There is a signi�cant

misalignment between the two parties�interests in example II: the agent prefers action 1 in

state 1 and action 2 in state 2 due to the cost di¤erences, which is exactly opposite to the
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�rst-best action plan.

The two examples highlight some features of the optimal long-term contracts: they strike

a balance between social welfare maximization (increasing the size of the pie) and information

rent minimization (decreasing the agent�s share of the pie); revelation contracts o¤er the

principal the right degree of �exibility as opposed to simpler contracts in which the payments

are based solely on the agent�s actions; and randomization may be necessary to achieve

optimality.

6 Conclusion

In this paper, we have proposed a general framework for a large class of dynamic principal-

agent problems with hidden information. We have developed a dynamic programming al-

gorithm to derive optimal long-term contracts for the principal. The principal indirectly

controls the underlying system by choosing the agent�s continuation utility vectors along

public information paths. It induces truthful state revelation and results in actions that

maximize the principal�s expected payo¤. This problem is signi�cant to the Operations

Research community and has many applications of interest.

Due to space limitation, the paper only discusses a general solution of the model. Lack

of structure in the parameters in the general case results in optimal contracts with complex

characteristics, which may be hard to implement. Problems in reality often possess strong

properties which can be successfully exploited to arrive at implementable optimal contracts.

For instance, in the manufacturer-retailer application discussed in Section 3, a higher inven-

tory level in one period should result in (weakly) higher initial inventory in the next period,

and it should cost the manufacturer more to produce more products. An important topic is

therefore to identify conditions under which the optimal long-term contracts admit simple

structures. A useful tool is the theory of supermodularity and complementarity, as developed

in Topkis (1998). Indeed, the existing contract theory literature has focused on problems

with various special structures. It is left for future research to examine whether the general
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solution developed in this paper can shed new light on the known special cases and help the

investigation of new ones.

A related topic is to study special contracts with simple formats, such as linear con-

tracts. These contracts are sub-optimal in general but may perform quite well in certain

circumstances and, more importantly, they are closer to the contracts used in reality.

The analysis in the paper assumes that the principal can commit to future payment plans.

The solution does not apply when the principal cannot make full commitment to a long-term

contract and thus the contract is prone to renegotiation. An interesting extension of this

paper is to study situations where renegotiation is permitted or only short-term contracts

are possible.

The dynamic programming algorithm suggests that the in�nite horizon problem is also

solvable and the existence of an optimal solution can be established by contraction mappings

on the space of continuation utilities. The in�nite horizon problem can be of considerable

theoretical and practical interest if the solution is less cumbersome than the �nite horizon

problem.

In conclusion, there are signi�cant research opportunities for the operations research

community in the area of dynamic principal-agent problems and contract theory in general.

As discussed above, this study suggests several important extensions. We postulate that

under suitable circumstances, the general framework and approach developed in this paper

can provide a useful benchmark for future research works.

Appendix A: Road Map of the Paper
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Theorem 1: It is sufficient to consider
randomized revelation contracts.

General formulation of the
principal’s problem (3)­(5)

Def. 1&2: General long­term/
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Example 3: Randomized
revelation contracts

Reformulation of Principal’s problem under
revelation contracts. (10)­(13)

Lemma 1: Sequential IR constraints can
be reduced to first­period IR constraints.

Lemma 2: If two contracts generate the same
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tt uπ  and )(*
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*
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Randomized state­menu problem: find
)(*

, txtφ u  for each x. (22)­(24)

(Simplified notation: yax ,,  for 1,, +ttt xax )

State­action­option (SAO) problem: find
)|(*

, aφ txt u  for each x and a. (26)­(27)
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utility set tU  from the solution of (35) by
convex hull and intersection operations.
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Example I
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Example II

Figure 6: Road Map of the Paper.
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Appendix B: Proofs of Lemmas and Theorems

Proof of Theorem 1. The proof is by construction. Consider a long-term contract �

coupled with the agent�s best response strategy ��. Since �� is well-de�ned, the (�; ��) pair in-

duces a cumulative distribution function F (�) of the random stream (x1; a1; s1; x2 � � � ; aT ; sT ; xT+1).

Notice that sinceX and A are �nite sets, dF (xt) and dF (at) represent the probability masses

at xt 2 X and at 2 A respectively. Further, the underlying system requires dF (x1) = �x1

for x1 2 X.

We construct the desired truthful revelation contract �� below, in three steps:

1. Constructing a feasible ��. For any period t, de�ne:

��t (xt; atjxt�1;at�1) , dF (atjxt�1;at�1; xt);

s�t (xt; atjxt�1;at�1) ,
Z
R
stdF (stjxt�1;at�1; xt; at):

Since
R
A
dF (atjxt�1;at�1; xt) = 1, the resulting contract �� = f��1(x1; a1); s�1(x1; a1); � � � ;

��T (xT ; aT jxT�1;aT�1); s�T (xT ; aT jxT�1;aT�1)gxT2XT ;aT2AT is a legitimate revelation contract.

If the agent reports truthfully under ��, it will induce the same marginal distribution of

(xT+1;aT ) and the same marginal distribution of sT conditional on (xT+1;aT ) as those

induced by (�; ��).

2. Comparing �� with �. We show that if �� is truthful, it will generate the same

expected future utilities for the two parties as � does. If the agent reports truthfully, his

time-t continuation utility, as given in (7), should satisfy:

ut(xtjxt�1;at�1) =

Z
R
stdF (stjxt�1;at�1; xt)�

Z
A

cxt(at)dF (atjxt�1;at�1; xt) +

�

Z
A�X

ut+1(xt+1jxt�1;at�1; xt; at)dF (at; xt+1jxt�1;at�1; xt);

where we have used the fact that pxt;xt+1(at)dF (atjxt�1;at�1; xt) = dF (at; xt+1jxt�1;at�1; xt),

as required by the underlying system. On the other hand, the agent�s expected future utility
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under the original contract � following history (xt�1;at�1; xt) is given by:

E

 
TX
�=t

���t(s� � cx� (a� )) + �T+1�tuxT+1jxt�1;at�1; xt

!
= E

�
stjxt�1;at�1; xt

�
� E

�
cxt(at)jxt�1;at�1; xt

�
+

�E

 
E

 
TX

�=t+1

���t�1(s� � cx� (a� )) + �T�tuxT+1jxt;at; xt+1

!
jxt�1;at�1; xt

!
;

which is equal to ut(xtjxt�1;at�1). That is, if the agent reports truthfully under ��, his

expected future utility following history (xt�1;at�1; xt) will be the same as that under the

original contract �. The same can be shown for the principal�s expected future utilities.

3. Showing �� truthful. This is done by backward induction. Express �� in its

recursive form as a collection of continuation contracts. Suppose the continuation contracts

��t+1(x
t;at) are truthful for all (xt;at). Consider the continuation contract ��t (x

t�1;at�1) =�
��t (xt; atjxt�1;at�1); s�t (xt; atjxt�1;at�1); ��t+1(xt;at)

	
xt2X;at2A

for a given (xt�1;at�1). If

the true state is xt but the agent reports bxt (and truth-telling after time t+ 1, since ��t+1(�)
are truthful), his time-t expected future utility, as computed in (9), should satisfy:

but(xt; bxtjxt�1;at�1) = Z
R
stdF (stjxt�1;at�1; bxt)� Z

A

cxt(at)dF (atjxt�1;at�1; bxt)+
�

Z
A

X
xt+12X

pxt;xt+1(at)ut+1(xt+1jxt�1;at�1; bxt; at)dF (atjxt�1;at�1; bxt):
If ��t (x

t�1;at�1) is not truthful, there must exist states xt and bxt such that ut(xtjxt�1;at�1) <but(xt; bxtjxt�1;at�1). We show that this is inconsistent with the original contract. To that
end, it su¢ ces to show that the above expected utility but(xt; bxtjxt�1;at�1) can be achieved
by the agent under the original contract � as well.

Call the full information history !t under contract � compatible with the partial history

(xt�1;at�1; xt) if it includes (xt�1;at�1; xt). For any such !t, there exists a corresponding full

information history b!t which is the same as !t except that its last component is bxt instead
of xt. There is a one-to-one correspondence between !t and b!t. Consider a modi�ed strategyb� of the agent which is the same as �� except that after each compatible !t, following the
part of �� that originally follows the corresponding b!t. In other words, after a compatible
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history !t, the agent pretends that the history is b!t. Then, under the modi�ed strategy b�,
the distribution of the essential information after the partial history (xt�1;at�1; xt) satis�es:

(1) The conditional joint distribution of at and st is given by F (at; stjxt�1;at�1; bxt), because
the time-t continuation contracts are executed as if the partial history is (xt�1;at�1; bxt); (2)
The conditional joint distribution of at and xt+1 is given by pxt;xt+1(at)dF (atjxt�1;at�1; bxt),
not dF (at; xt+1jxt�1;at�1; bxt), because the actual state transition originates from the true

state xt, not bxt; (3) The joint distribution of (at+1; st+1; xt+2; � � � ; aT ; sT ; xT+1) conditional
on (xt�1;at�1; xt; at; xt+1) is given by F (�jxt�1;at�1; bxt; at; xt+1), because the time-(t + 1)
continuation contracts are executed as if the partial history is (xt�1;at�1; bxt; at; xt+1) and
the state transitions after time t+ 1 originate from xt+1.

We can see that under the modi�ed strategy b�, the agent�s expected future utility after the
partial history (xt�1;at�1; xt) will be exactly but(xt; bxtjxt�1;at�1). Thus, ut(xtjxt�1;at�1) <but(xt; bxtjxt�1;at�1) implies that the agent�s original strategy �� can be improved by b�, which
contradicts the assumption that �� is his best response strategy. Therefore, the continuation

revelation contract ��t (x
t�1;at�1) must be truthful.

The above argument also applies to period T (noticing uT+1(xT+1jxT�1;aT�1; bxT ; aT ) =
uxT+1 and there is no further (aT+1; sT+1; xT+2; � � � )). This forms the basic step of the induc-

tion and thus completes the proof of the theorem.

Proof of Lemma 1. For simplicity, we only prove the result for the two-period

case, but the argument can be easily extended to the general case. Suppose a revela-

tion contract f�1(x1; a1); s1(x1; a1); �2(x2; a2jx1; a1); s2(x2; a2jx1; a1)gx22X2;a22A2 satis�es the

IR constraints in period 1 but violates the ones in period 2. Construct another contract

f�1(x1; a1); sy1(x1; a1); �2(x2; a2jx1; a1); s
y
2(x2; a2jx1; a1)gx22X2;a22A2 by postponing a part of

the period-1 payments to period 2 as follows:

sy1(x1; a1) = s1(x1; a1)� �dx1 ; x1 2 X; a1 2 A

sy2(x2; a2jx1; a1) = s2(x2; a2jx1; a1) + dx1 ; x2 2 X2;a2 2 A2

for a set of constants dx1. Straightforward algebra shows that the time-1 utility vectors stay
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the same, so the IR and IC constraints still hold in the �rst period under the new contract.

By choosing dx1 large enough we can satisfy the period-2 IR constraints as well. Incentive

compatibility in period 2 is intact because the agent�s utility is elevated by a constant dx1

in all state x2. Therefore, without changing the continuation utilities for the two parties at

time 1, we can always transform a truthful revelation contract that satis�es the �rst period

IR constraints into a truthful revelation contract that satis�es the SIR constraints.

Proof of Theorem 2. The proof is by contradiction. Suppose that for some period

� > t and history h� , the continuation contract �� is ine¢ cient. By Lemma 2 and the

de�nition of e¢ ciency, there exists an e¢ cient truthful revelation contract ��� such that

u(��� ) = u(�� ) and �(��� ) � �(�� ) with �>�for at least one state. The principal will be

better o¤ by replacing �� with ��� . This does not a¤ect the agent�s incentives in any period

but improves the principal�s time-t continuation utilities. It contradicts the e¢ ciency of �t.

Proof of Theorem 3. The proof is by induction. Suppose the theorem holds for

period t + 1. Speci�cally, suppose the time-(t + 1) e¢ cient social welfare frontier satis�es:

U t+1 = fut+1 : Aut+1 � bg for some matrix A and vector b; for every y 2 X (y stands

for xt+1), �
�
t+1;y(ut+1) = mini=1;��� ;Iy

�
hiyut+1 + d

i
y

�
for some vectors hiy and scalars d

i
y. The

hypograph of ��t;x(utja) is given by H�
t;x(a) = f(ut; �t) : �t � ��t;x(utja)g and de�ne the

augmented hypograph of ��t;x(utja) as

eH�
t;x(a) =

8><>:
(ut;ut+1; �t;�t+1) : �t � rx(a)� cx(a) + �px(a)�t+1;
ut;bx � ut;x � cx(a)� cbx(a) + � [pbx(a)� px(a)]ut+1; bx 2 X;
�t+1;y � hiyut+1 + diy; i = 1; � � � ; Iy; y 2 X; Aut+1 � b

9>=>; :
Clearly, H�

t;x(a) = f(ut; �t) : 9(ut;ut+1; �t;�t+1) 2 eH�
t;x(a)g and hence H�

t;x(a) is the projec-

tion of eH�
t;x(a) to the (ut; �t)-space. Since eH�

t;x(a) is a polyhedral convex set, its projection is

also polyhedral convex. Thus, part (a) of the theorem follows: U t;x(a) is polyhedral convex

and ��t;x(utja) is polyhedral concave in ut.

Part (b) follows from equation (28), which implies that U t;x = conv ([a2AU t;x(a)) and

hypo(��t;x(ut)) = conv([a2Ahypo(��t;x(utja))). Convexi�cation preserves polyhedral convex-
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ity/concavity, and hence the desired properties are passed on to U t;x and �
�
t;x(ut). Part

(c) follows from the following fact: when constraints (23)-(24) for all x 2 X are combined

together, they constitute a partition of the constraint set for a truthful revelation contract,

and therefore the set of agent�s utility vectors U t = \x2XU t;x.

This completes the induction step. The basic step, to show that UT is polyhedral convex

and ��T;x(uT ) is polyhedral concave, follows from the fact that uT+1 and �T+1 in the de�nition

of eH�
T;x(a) are exogenously �xed and thus eH�

T;x(a) is a polyhedral convex set. Therefore, the

theorem is proved.

Appendix C: Supplement to Computational Geometry

Implementation

In this appendix, we provide supplementary materials for Subsection 4.5. For more dis-

cussions on computational geometry and polytopes, see Berg et al (2000), Boissonnat and

Yvinec (1998), and Fukuda and Weibel (2005).

Introduction to Polytopes. A polytope can be represented in two equivalent ways: it is

the convex hull of a �nite number of points in Rd, i.e., P = convfv1; � � � ;vng = f
Pn

i=1 �ivi :Pn
i=1 �i = 1; �i � 0; i = 1; � � � ; ng, which can be generalized to P = f

Pn
i=1 �ivi :

Pk
i=1 �i =

1; �i � 0; i = 1; � � � ; ng for some k � n; and it is the intersection of a �nite number of closed

half-spaces, i.e., P = fv 2 Rd : Av � bg.

A subset F is a face of P if there is a vector a and scalar b such that av � b for all v 2 P

and F = P \ fv 2 Rd : av = bg. A d-dimensional polytope has d types of (proper) faces,

with dimensions d� 1, d� 2, � � � , and 0 respectively. A (d� 1)-dimensional face is called a

facet and a 0-dimensional face is called a vertex. (Hyperplanes and points correspond to the

facets and vertices of a polytope.) Every k-face is the intersection of some (k + 1)-faces, for

k � d � 2. A k-face and a (k + 1)-face are incident if the former lies on the latter. A data

structure to represent a polytope completely is an incidence graph, which has d levels and
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records the pairwise incidence relationships. Each node of the graph represent a face and

an arc links two incident nodes. The upper bound theorem states that if a d-polytope has n

vertices (or facets), the total number of faces is at most O(nbd=2c), as well as the size of the

incidence graph.

The two representations of a polytope are dual to each other, but conversions between

them are non-trivial problems, namely the facet-enumeration (or convex hull) problem and

the vertex-enumeration problem, respectively. A generic convex hull algorithm for n points

takes O(nbd=2c) time. (From one of the two representations plus the adjacency information,

we can construct the complete incidence graph in O(nbd=2c) time.) There are algorithms

available on the Internet, such as Qhull and Fukuda�s cdd program. On a 600 MHz Pentium

3 computer, Qhull can compute a typical 5-d convex hull of 6,000 points in 12 seconds and

a typical 8-d convex hull of 120 points in 15 seconds. Many real-world problems are often

very di¤erent from the worst output cases and some can be solved with high dimensions well

above ten, some even over sixty.

Stage 1 of the Implementation. It is known that (see for example Berg et al (2000))

the lower envelope of hyperplanes f� = hiu + digi=1;��� ;I corresponds to the lower convex

hull of the points f(hi; di)gi=1;��� ;I , as illustrated in Figure 7. More precisely, a hyperplane

� = hiku + dik de�nes a facet of the lower envelope of f� = hiu + digi=1;��� ;I if and only if

the point (hik ; dik) de�nes a vertex of the lower convex hull of f(hi; di)gi=1;��� ;I . Note that a

standard de�nition of the dual of � = hu+ d is the point (h;�d); we drop the negative sign

to make it more natural without changing any essential result.

Any polyhedral concave function can be represented by the lower envelope of a set of

hyperplanes, the de�ning hyperplanes. De�ne the sum of two point sets f(hi1;di1)gi=1;��� ;I1
and f(hi2;di2)gi=1;��� ;I2 as f(hi11 + hi22 ; di11 + di22 )gi1=1;��� ;I1;i2=1;��� ;I2. The following result shows

that �nding the de�ning hyperplanes of px(a)�
�
t+1(ut+1) is equivalent to �nding a convex

hull in the dual space:

Lemma 4 (Transformation) Suppose ��t+1;y(ut+1) = mini=1;��� ;Iy
�
hiyut+1 + d

i
y

�
, y 2 X.
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•
•

•

•

•
•

(a) (b)
u h

dφ

Figure 7: Duality between hyperplanes and points. (a) The lower envelope of hyperplanes;
(b) The lower convex hull of points.

The lower envelope de�ning the function ���t+1(ut+1), with � � 0, corresponds to the lower

convex hull of the sum of f(�yhiy; �ydiy)gi=1;��� ;Iy , y 2 X.

Proof. By de�nition of ��t+1;y(ut+1) and because � � 0, we have

���t+1(ut+1) =
X
y2X

�y min
i=1;��� ;Iy

fhiyut+1 + diyg

= min
iy=1;��� ;Iy ;y2X

f(
X
y2X

�yh
iy
y )ut+1 +

X
y2X

�yd
iy
y g:

Hence, ���t+1(ut+1) is the lower envelope of f� = (
P

y2X �yh
iy
y )ut+1+

P
y2X �yd

iy
y giy=1;��� ;Iy ;y2X .

These hyperplanes are dual to the points f(
P

y2X �yh
iy
y ;
P

y2X �yd
iy
y )giy=1;��� ;Iy ;y2X . The rest

follows from the result of Berg et al.

Although �nding the convex hull of a set of points is a standard problem, it may be

ine¢ cient when there are too many points� we have
Q
y2X Iy dual points here. A more

e¢ cient way to �nd the convex hull of the sum of f(�yhiy; �ydiy)gi=1;��� ;Iy , y 2 X, is to treat

each point set f(�yhiy; �ydiy)gi=1;��� ;Iy as a polytope vertex set and compute the Minkowski

sum of the set of polytopes. The Minkowski sum of polytopes is still a polytope, and is

de�ned as P1 + P2 = fv 2 Rn : v = v1 + v2;v1 2 P1;v2 2 P2g for polytopes P1 and P2.

Fukuda (2004) proposes an algorithm to �nd the Minkowski sum of polytopes in time linear
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to the number of vertices of the resulting polytope.2

Stage 2 of the Implementation. If we have a degenerate case with rank(P (a)) = r <

jXj for some action a, we can assume without loss of generality that P (a) admits the form 
B

DB

!
where B is a r�jXj matrix with full rank andD is a (jXj�r)�(jXj�r) matrix.

Correspondingly, the cost vector can be split as c(a) =

 
cB(a)

cD(a)

!
. Then, the vector wt

takes the form

 
wB
t

wD
t

!
where wB

t = �cB(a) + �But+1 (a degenerate version of (32)) and

wD
t = Dw

B
t + (DcB(a)� cD(a)). The objective function (31) can be represented in terms

of wB
t by projecting its de�ning polytope from the (ut+1; �)-space to the (wB

t ; �)-space,

using an algorithm similar to the one presented in stage 3 below. Similarly, the polytope

Aut+1 � b can be projected from the ut+1-space to the wB
t -space to form the degenerate

version ofW t(a).

To help understand the formulation (35) better, we verify that the transformed agent�s

utility sets W t(a) and the de�ning hyperplanes of �
0
t;x(wtja), as in (33) and (34), preserve

the one-degree redundancy implied by Lemma 3. According to the lemma, the set U t+1 =

fut+1 : Aut+1 � bg must satisfy A(ut+1 + �1) � b, for any � 2 R and ut+1 2 U t+1.

It follows that A1 = 0. The transition matrices P (a) have row sums equal to 1, and

hence P (a)�11 =P (a)�1P (a)1 = 1. Thus, [AP (a)�1]1 = 0 and the set W t(a) does have

the desired redundancy. Similarly, the lemma also implies that each de�ning hyperplane

� = hix(a)ut+1 + d
i
x(a) in (31) satis�es h

i
x(a)1 = 0. It follows that

�
hix(a)P (a)

�1�1 = 0 and
hence the de�ning hyperplanes of �0t;x(wtja) also have the desired redundancy.

Stage 3 of the Implementation. Berg et al (2000) provides an algorithm to augment

an existing convex hull when a new vertex is added. It can be modi�ed to solve the problem

(35) by projection of the de�ning polytope P 0 of �0t;x(wtja): Color a facet of P 0 red if it can

be �seen�along all feasible directions (i.e., the normal vector of the facet is strictly positive)

and blue otherwise. Since any face of P 0 is the intersection of the facets which contain it, a

2Hao Zhang would like to thank Thomas McCormick for suggesting this paper.
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face with a lower dimension can be colored accordingly: it is red if it is the intersection of

red facets only, blue of blue facets only, or purple of red and blue facets. Then the de�ning

polytope P of ��t;x(utja) is an unbounded polytope consisting of all the red faces of P 0 and

unbounded faces formed by projecting all purple faces of P 0 along proper wt;x-axes.

Time Complexity. In this last part, we brie�y discuss the time complexity of the

various stages. For each state x and action a, stage 1 involves computing a Minkowski sum

of jXj polytopes in the dual space. The number of vertices of the resulting polytope in

the dual space equals the number of facets in the primal space, which is given by Ix(a) in

expression (31). This stage requires solving O(Ix(a)) linear programs of the same size and

thus takes time linear in Ix(a), according to Fukuda (2004). In stage 2, transforming the

Ix(a) hyperplanes requires time linear in Ix(a) as well. The projection in stage 3 can be

done in O(Ix(a)bjXj=2c) time, which is the time to generate the complete incidence graph

from the Ix(a) hyperplanes. Suppose the output polytope of this stage has nvx(a) vertices.

In stage 4, for each state x, we compute the convex hull of jAj polytopes, which can be done

in O((
P

a2A n
v
x(a))

bjXj=2c) time. In stage 5, we �nd the intersection of jXj polytopes. If the

polytopes are expressed by half-spaces, this problem is equivalent to removing redundant

members of a set of linear inequalities. If the input polytopes have nhx facets, x 2 X, the

intersection can be found by solving
P

x2X n
h
x linear programs. Finally, we would like to

mention that the worst-case bound of an algorithm may not be a good measure for its actual

performance� the simplex algorithm in linear programming is a famous example.
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