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Abstract

In many services, for example website or landscape design, the value or quality derived by a

customer depends upon the service time and this valuation differs across customers. Customers

procure the service based on the expected value to be delivered, prices charged and the timeliness

of service. We investigate the performance of the optimal pricing scheme as well as two commonly

used pricing schemes (fixed fee and time-based pricing) for such services on important dimensions

such as revenue, demand served, and utilization. We propose a novel model that captures the

above features and wherein both service rate and demand are endogenous and functions of the

pricing scheme. In particular, service time is an outcome of the pricing scheme adopted and

the heterogeneous valuations of customers, unlike in the queueing-based pricing literature. We

find that the service system may benefit from a greater variance in consumer valuations, and

the performance of pricing schemes is impacted by the shape of the distribution of customers’

valuation of service time and the responsiveness desired by customers. Both the fixed fee and

time-based schemes do well relative to the optimal pricing scheme in terms of revenue in many

plausible scenarios, but there are substantial differences between the pricing schemes in some

important operational metrics. For instance, the fixed fee scheme serves more customers and

has higher utilization than the time-based scheme. We also explore variants of the fixed and

time-based schemes that have better revenue performance and show that the two-part tariff

which is a combination of fixed and time-based pricing can do as well as the optimal scheme in

terms of revenue.
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1 Introduction

In many service systems, the time that a service provider devotes to a customer is a key determi-

nant of service value. Usually, the value (or quality) obtained from this type of service increases

with service time and completion of the service process may be subjective. This is in contrast

to traditional manufacturing systems and routine service work where value may depend solely

on whether or not the work has been completed, as indicated in Hopp et al. (2007) who provide

several examples of such service tasks referred to as “discretionary” tasks. Examples of such

services, which we refer to henceforth as “discretionary services” include website design, land-

scape design, and several white-collar, information-based services (Karmarkar and Apte (2007),

Wang et al. (2010)). Such services may be termed as “discretionary” because the service time

is not exogenous but is at the discretion of the service provider and/or customer.

Management of such discretionary services poses interesting challenges because while cus-

tomers value additional service time, longer service times can degrade service responsiveness

and result in fewer customers being served and lower revenues. An important lever available

to the firm in managing such services is the pricing scheme adopted and prices charged. So,

a revenue-maximizing firm has to balance three important factors: the service value provided,

the pricing scheme used and corresponding fees charged, and responsiveness. The traditional

queuing theory-based pricing literature provides methodologies to study the trade-off between

the latter two dimensions: the customers’ payment and responsiveness (see Hassin and Haviv

(2003) for a comprehensive review). However, this literature assumes that service time and its

variation are exogenous and do not impact the value derived from the service. We explicitly

consider the nature of the relationship between service time and value in making pricing de-

cisions to address this important gap in the literature. So, unlike in traditional queue-based

pricing literature, service times are not exogenous but an outcome of heterogenous consumer

valuations of service time and the pricing schemes adopted. The focus here is on identifying

the set of prices and service times that optimize the performance of such discretionary service

systems and evaluating two commonly used pricing schemes.

We consider a service system with a monopolistic service provider and a stream of rational

customers with varying service expectations who arrive stochastically. Customers share their

heterogeneous needs and expectations with the firm and the service outcome (i.e. service time

and value) and payment made depend on the pricing scheme. Two key features of discretionary

services are captured in our model of the relationship between service time and value: 1) Service

value increases with service time, but the incremental value gained from additional service

time diminishes. 2) The value derived may vary across customers due to differences in service

expectations. We first study the optimal or first-best pricing scheme under which the firm

charges different prices and provides varying service time (value) to different customers. It

serves as a useful benchmark to compare and evaluate some commonly used pricing schemes. In

1



particular, we investigate two ubiquitous pricing schemes used in such services – fixed fee and

time-based billing. Lowenhahl (2005), based on an extensive survey, suggests that these are the

two most commonly used pricing schemes in professional services. In the fixed fee scheme all

customers pay the same fee and get a consistent outcome. This is implicitly the pricing scheme

widely studied in the queuing theory-based pricing literature but this literature does not consider

the relationship between service value and service time. Some website design services charge

flat fees and so do some legal consulting firms preparing wills and trusts. Another commonly

used pricing scheme is the time-based scheme wherein the firm posts a certain fee or rate per

unit time and consumers “consume” some service time based on their own needs. In fact, an

important difference between products and services is that services can be sold based on the

service time consumed. Several website design firms, legal firms preparing will and trusts and

home-cleaning services charge based on time. Managers of website and graphic design services

usually struggle with the choice of whether to charge a fixed or time-based fee.1

We also investigate how pricing schemes impact system performance in such discretionary

services. To this end, we build a model wherein both the service rate and demand served are

endogenous and in particular, they are functions of the pricing scheme. This novel feature of

our model allows us to explore how the choice of pricing scheme impacts service system perfor-

mance along various dimensions, including revenue, demand served, utilization, value delivered,

congestion, etc. We consider a service setting wherein the service outcome is observable and

verifiable, and the firm and customer can have an influence on the service time in each service

encounter, as in the examples discussed earlier.

Several key insights emerge from our analysis, some of which are summarized here. Using

the optimal pricing scheme, counter to conventional wisdom in the queuing literature that

greater variance in service times degrades system performance, the firm can benefit from a more

heterogenous valuation among customers. Both fixed fee and time-based schemes do well relative

to the optimal pricing scheme in terms of revenue and they can exhibit better performance than

the optimal pricing scheme on some important system metrics. Relative to the optimal scheme,

the time-based scheme over-serves customers by providing a higher service value and charging

customers more while the fixed scheme under-serves customers by providing a lower service value

and charging customers less. Among the three pricing schemes, the optimal scheme serves the

largest number of customers while the time-based scheme serves the fewest. Higher utilization

is not always accompanied by greater congestion; the optimal and fixed-fee schemes have higher

utilization than the time-based scheme but typically have less congestion. The choice of fixed

or time-based fee depends critically on the shape of the distribution of customers’ valuation of

1See http://rosmarin-search-marketing.com/blog/2010/07/07/the-hourly-rate-vs-flat-fee-debate/ and
http://www.claytowne.com/beats-digging-ditches/flat-fee-versus-hourly-rates-how-to-charge-for-your-web-or-
graphic-design-services/ for funny and colorful comparisons of fixed versus hourly pricing for website design
and some related services.
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service time and the responsiveness desired by consumers. Overall, this work provides some

valuable guidance about the relative merits of fixed and time-based pricing schemes.

The remainder of this paper is organized as follows: Section 2 provides a literature review

and in Section 3, we propose a model for discretionary services. In Section 4, we derive the

optimal prices and service times for the three pricing schemes mentioned earlier, and compare

them in terms of revenue performance. We analytically compare the three pricing schemes on

some important metrics of operational performance in Section 5. We provide extensions of

fixed and time-based pricing schemes in Section 6. Key insights derived from our analysis are

discussed in Section 7.

2 Literature Review

There are two broad streams of literature related to our paper: (i) work on the interaction be-

tween the value from a service and service time, which has a recent and limited history and (ii)

work on pricing in services which has a long history. Starting with (i), Chase (1981) referred to

services where service time may be discretionary as having high customer contact. Karmarkar

and Pitbladdo (1995) provide a framework for analyzing service processes and describe key char-

acteristics of such services that are intangible. This type of service is termed as a “discretionary

task” in Hopp et al. (2007) and as a “customer intensive service” in Anand et al. (2011). Per-

haps the first formal model-based analysis of the first stream is the work by Hopp et al. (2007).

Their focus is on the firm’s dynamic control over the workload to maximize the value derived

from a service but not the firm’s pricing scheme which is our focus. They identify quality as an

additional buffer to conventionally viewed buffers of time and capacity in service systems. Debo

et al. (2008) study the “demand or service inducement” effect in “expert” or “credence” services

where there is information asymmetry between the firm and the customers about the quality of

the service, under a given time-based fee structure and provide insights on how to limit “service

inducement”. Both of the above papers focus on dynamic control of the workload by the service

provider who adjusts the service time as a function of the system load. Also, both papers treat

demand as exogenous while we treat customer demand as endogenously determined by the firm’s

choice of payment scheme and the prices therein. Further, the focus of Debo et al. (2008) is not

on the service time-value relationship or pricing issues unlike in our work and their focus is on

“expert” services where the service provider has an informational advantage over the customer

and effectively determines the service time; examples are surgery, computer or appliance repair.

Pinker and Shumsky (2000) explore the efficiency-quality trade-off in a stochastic service system

with exogenous demand.

Anand et al. (2011) explore the firm’s trade-off between quality and speed under an en-

dogenous demand model. While they consider a fixed fee structure and assume that customers
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have a homogenous service time-value relationship, we allow for customers to be heterogenous

in their service time-value relationship and explore the impact of different pricing schemes on

service performance. Also, variation in service time is exogenous and has no impact on service

value in their model. The dynamic aspect of the quality-speed trade-off is analyzed in Kostami

and Rajagopalan (2013). Akan et al. (2011) consider the speed-quality trade-off in a healthcare

setting and relate service quality (or value) to the time spent by the physician (an “expert”) in

an endogenous demand model and consider asymmetry in information about physician skills.

While we do not model information asymmetry issues, they assume that customers have a ho-

mogenous service time-value relationship and the firm commits to an expected service time.

Also they do not consider pricing schemes such as time-based pricing. In earlier work, Lovejoy

and Sethuraman (2000) pointed out that time and quality are substitutes and that there are

speed-quality trade-offs in a manufacturing setting.

The literature on pricing in services is long and belongs to two broad categories: those that

consider congestion and responsiveness as we do and those that do not. There is a long history

of studies on congestion control in service queues in the presence of rational customers. To

keep the literature review concise, readers are referred to Hassin and Haviv (2003) for a recent

comprehensive review; a few recent examples are Chen and Frank (2004), Ata and Shneorson

(2006), Randhawa and Kumar (2008), Bitran et al. (2008) and Cachon and Feldman (2011), Li

et al. (2012). Ha (1998) and Ha (2001) are the first works to analyze incentive-compatible pricing

schemes and admission control in settings wherein customers can choose their service time. In

his models, customers trade off between their service time in the system (and the corresponding

cost paid) and the effort put into the service, a tradeoff that is absent in our model. See Hsu et al.

(2009) and the references therein for more studies on incentive-compatible pricing and optimal

scheduling in service systems. Cachon and Feldman (2011) point out the value of comparing

two commonly used pricing schemes, in their case per-use pricing and subscription pricing.

The performance comparison among different pricing schemes (static or dynamic pricing) in a

queueing framework with different customer classes is investigated in Hall et al. (2009). Ata

and Shneorson (2006) is similar to our work in allowing both demand or price and service rates

to be endogenous. In all the above works, service value is not a function of service time, a key

element of discretionary services.

There is a literature on pricing of services that does allow for customers to obtain het-

erogenous utility from usage of a service. Representative examples of this usage-based pricing

literature in both monopoly and competitive settings are Essengaier et al. (2002), Sundararajan

(2004), and Bala and Carr (2010), but these works do not consider congestion effects, a key

aspect of our model. Roels et al. (2010) compare the performance of contracting schemes such

as fixed-fee, time and materials and performance-based contracts when managing collaborative

services wherein the output is dependent on both the vendor’s and clients’ efforts which are
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not verifiable. Unlike them, we do not consider moral hazard issues; on the other hand, Roels

et al. (2010) do not consider the service time-value relationship, congestion effects, etc. Ren and

Zhou (2008) study the choice of contractual forms in call center outsourcing under a queueing

framework but they do not incorporate a service time-value relationship and assume exogenous

demand.

The trade-offs between fixed versus time-based payment schemes have been explored in some

industry domains. In the legal world, fixed fee was very common for legal services but gradually

gave way to hourly billing. Polinsky and Rubinfeld (2003) and Shepherd and Cloud (1999) focus

on the moral hazard or “agency” issue in legal services that arises because the law firm has an

incentive to spend too much (too little) time in an hourly billing (fixed fee) scheme. But, unlike in

our work, these works do not capture the service time-value relationship or congestion effects and

demand is assumed to be exogenous. Welton and Dismuke (2008) provide persuasive evidence

that nursing care time (also called nursing “intensity”) varies significantly across patients and

point to the need for variable billing based on service time rather than charging a fixed fee for

nursing services but do not present an analytical model.

Overall, a key contribution of our work is investigating the impact of a widely used set of

pricing schemes on system performance in discretionary services, which to the best of our knowl-

edge is the first effort in this topic. Also, we contribute to the queue-based pricing literature by

endogenizing both service rate and demand as functions of the pricing scheme.

3 Model

We start with an example to motivate the model – consider a firm that specializes in designing

websites with similar content and scope. Customers arrive randomly to avail of this service. Each

service encounter typically comprises of two phases. The first phase comprises of consultations

during which the firm understands the customer’s service needs and both the firm and customer

learn about the time required to achieve a desired set of features and quality level, and/or some

other preparatory tasks performed by the firm to create a barebones website. These tasks are

necessary to the second phase of the service process and are common to all customers. In the

second phase, the designer creates the website incorporating features desired by a customer such

as a more colorful website, more animation or a more flexible site that can handle a variety of

browsers, etc. So, the first phase represents the non-discretionary part of the service process and

in the second phase, the firm performs discretionary tasks based on the customer’s expectations

discussed in the first phase. Additional features and enhancements to the website require more

time but they add more value from the customer’s perspective. The amount of incremental value

derived is likely to be concave in the service time and the value will vary across customers. Let

τ0 > 0 denote the time required for the initial phase which represents the minimum and non-
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discretionary part of total service time (similar to the minimum service duration τmin in Hopp

et al. (2007)), which is common to all customers and is not customer-dependent. Since τ0 is a

non-discretionary part of the service encounter and provides a common value to all customers,

we normalize the value derived from the first phase to be zero and refer to the initial phase

(0, τ0) as a diagnosis phase henceforth for ease of exposition.2 Let τ ≥ τ0 be the total service

time for each service encounter and so the service time for the second phase is (τ − τ0).

A website design firm could use a variety of pricing schemes but many typically charge fixed

fees (see www.123triad.com) or hourly fees (http://buildinternet.com/2009/12/a-discussion-on-

hourly-rates-in-web-design/). A website designer may be busy at times and customers may have

to wait for service, incurring a waiting cost. So, the full price paid by a customer consists of

both the nominal price charged by the firm plus the congestion cost, as in the congestion pricing

literature (Hassin and Haviv (2003)). The waiting time here does not necessarily refer to a

customer’s physical waiting experience. Rather, it is meant to capture the responsiveness of the

service even in contexts where services may be scheduled based on appointments. For example,

a customer who has to wait for several weeks for a website design because the firm is busy does

not represent “physical waiting” but captures the level of responsiveness. Robinson and Chen

(2011) refer to this type of waiting as “the second type of waiting costs (compared to the direct

waiting cost)”.

We propose a queueing model for this problem setting that captures the key elements de-

scribed above and in which both demand rate and service rate are endogenous – we describe

this model next3. A monopolistic firm serves customers who arrive according to a Poisson pro-

cess. The market potential is assumed to be ample and the arrival rate (or demand served)

is denoted by λ which is determined endogenously as a function of customers’ net utilities as

described next. Customers derive a net utility from the service which depends on the value

they derive from the service, the amount they have to pay for the service and the time they

have to wait to receive service. Each customer arriving for service is characterized by his type

α (to be specified shortly) which is a random variable with a known density function f(.), with

mean α̂ = E(α) and α ∈ [α, ᾱ](ᾱ > α > 0). α is unknown to both the customer and the firm

before the customer goes through the diagnostic phase. During the diagnosis phase, the firm

understands the customer’s expectations and the customer understands the time it will take to

achieve a certain service value and so α becomes known to both. At the risk of some abuse of

notation but to simplify the exposition, we do not distinguish between the random variable α

and its realization. Differences in α values represent variation in expectations and willingness

to pay for quality and features. The gross value derived by a customer of type α from a service

2We can easily let the duration of the first phase τ0 be a random variable without changing the following analysis
and insights.

3This description of the model is partially based upon a summary of our model prepared (and graciously shared)
by Professor Refael Hassin for a forthcoming survey on ”Rational Queueing”.
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of total length τ is given by:

v(α, τ) =

√
τ − τ0

α
, if τ ≥ τ0,

v(α, τ) = 0, if τ ∈ [0, τ0) (1)

The value function (1) captures the two key properties described earlier: (i) service value

is increasing and concave with service time4; (ii) the value placed on service time varies across

customers due to differences in service expectations, captured by the parameter α. While service

value increases with service time in a concave fashion in the above model as in Hopp et al. (2007)

and Anand et al. (2011), it is different along some important dimensions. First, we allow the

value derived to differ across customers. Second, unlike in Anand et al. (2011), the maximum

value derived is not assumed to be the same across all customers. We could allow for a more

general service value versus service time function that is increasing and concave. For example,

our main results and insights hold if the value function is generalized to (
√

τ−τ0
α + b2− b) where

b is an additional parameter that can capture a finite slope at τ0 for the value-time curve (1).

But to keep the model parsimonious, we use (1) henceforth without loss of generality.

The firm charges a price p(α) for a customer of type α. We primarily consider three pricing

schemes in our analysis but consider some extensions of these schemes in Section 6. First, we

characterize the optimal pricing scheme wherein the firm charges a price p(α) and provides a

service time τ(α) with a corresponding value v(α, τ) to customer type α. Then, we explore two

commonly used pricing schemes in services: fixed fee and time-based fee (Lowenhahl (2005)).

In the fixed fee structure, the firm charges every customer the same fee f and provides the same

committed value vf . This is the de facto pricing scheme studied in the queuing-based pricing

literature: all customers get the same service value and pay the same price but with varying

service times. But, unlike in traditional queue-based pricing literature where service time is

exogenous, service time here is an outcome of heterogenous consumer valuations of service time

and the pricing schemes adopted. If the firm uses a time-based fee structure, it charges the

same rate rt per unit of service time to all customers but each customer chooses the service

value they desire and the corresponding service time. For instance, a website design firm may

charge a certain rate per hour and customers choose the features they desire and equivalently

the service time, based on the consultations in the initial diagnosis phase. We assume that the

characteristics of the pricing scheme used are posted and known to the customer before they

arrive for service, as is typical in the literature. The focus of this paper is on the impact of static

pricing schemes on system performance and so we do not consider dynamic pricing policies. Also,

the payment and service time for each customer does not depend on the system state. Each

4In fact, we can model the value-time relationship as a concave function (that need not be nondecreasing). Since
both the firm and customers will not choose a service time that has negative marginal value of additional time, we
can restrict ourselves to the part of the value-time curve that has a non-negative slope.
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customer incurs a waiting cost upon arriving for service and it is linear in the wait time. The

waiting cost is homogenous and is equal to β′W (λ, g(τ)) where β′ ≥ 0 is the fixed waiting cost

per unit waiting time and W (λ, g(τ)) is the expected waiting time which is a function of the

demand rate λ and the distribution of service times g(τ) that arises from the heterogeneity in

consumer valuations. The monopolistic firm works as a M/G/1 queueing system operated on a

First-Come-First-Serve (FCFS) basis.

A customer joins the unobservable queue if his net utility (service value minus price minus

expected waiting cost) is nonnegative and we assume a mixed joining strategy on the part of the

customers (as in Chapter 3, Hassin and Haviv (2003)). We note that customers are symmetric

a priori when deciding to procure the service because their valuation of service time, i.e. α is

realized only after the initial diagnosis. Also, consistent with many queuing models, customers

do not leave the system once they join the queue.

The firm wishes to maximize its long run average rate of revenues under the constraint that

the expected net utility of any joining customer is nonnegative. In our context, working faster

or slower does not have an impact on the cost associated with service provision. So revenue-

maximization is an appropriate objective for the firm. Its decision variables are the posted

functions of price p(α) and service duration, τ(α). All customers and the firm are assumed to

be risk-neutral. The net value or utility obtained by a customer of type α who pays price, p(α),

and receives service for a total duration τ(α) is:

v(α)− p(α)− β′W (λ, g(τ))

Let E(τ) denote the expected service time, µ = 1/E(τ) the average service rate and CV (τ) the

coefficient of variation in service times. So, the net utility for a customer of type α is given by5:

v(α)− p(α)− β′W (λ, g(τ)) =

√
τ(α)− τ0

α
− p(α)− β′ λ

(µ− λ)µ

(1 + CV 2(τ))

2
.

We note that both the average service rate µ and coefficient of variation in service times

CV (τ) are functions of the distribution of α values. In the ensuing analysis, we replace

β′ (1+CV (τ)2)
2 with β where β incorporates the effect of (1 + CV (τ)2) but does not vary with

the pricing decision. This approximation is formally justified in Appendix B but an intuitive

and simplified justification for the approximation is as follows. Even if there is a small variation

in service times induced by different pricing schemes (and Appendix B shows that it is indeed

very small), its impact on the coefficient of variation of the total system, including the Poisson

arrival process and the initial service time τ0, tends to be negligible. It is worth noting that we

are not ignoring the variation in α and its impact on system performance and in fact, it plays

a significant role in the choice of the pricing scheme.

5Note that we have taken customers’ waiting time using Pollaczek-Khinchin (PK) formula, not sojourn time, as
our measure of congestion because customers get negative utility primarily from waiting, not from the service time.
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4 Comparison of pricing schemes

The key decision studied in this work is the fee structure chosen by the firm, which endogenously

determines both the demand rate and service rate. Next, we explore the optimal prices and

service times that will maximize revenue in each of the three pricing schemes mentioned above.

We first analyze the optimal pricing scheme and then study two commonly used pricing schemes:

the fixed and time-based schemes. For each pricing scheme, we first provide a formulation of

the revenue maximization problem together with the market clearing or equilibrium conditions.

We then provide a transformation of the revenue maximization problem that facilitates analysis

and derivation of the optimal service times and prices. After characterizing each pricing scheme

in Sections 4.1 to 4.3, we investigate the sub-optimality of the fixed and time-based schemes in

terms of revenue relative to the optimal scheme. In the rest of the paper, we use subscripts “f”

and “t”, respectively, to represent parameters and variables associated with fixed and time-based

payment schemes.

4.1 The Optimal Pricing Scheme

Based on our discussion in Section 3, under the optimal pricing, the monopolistic firm charges

different prices p(α) and provides varying service times τ(α) (and values) to different customer

types such that the expected net utility is zero, i.e.

E[v(α)− p(α)− β
λ

(µ− λ)µ
] = 0. (2)

Under the optimal pricing scheme, the firm can extract all the consumer surplus (Naor

(1969)) because the queue is unobservable. The firm’s objective is to determine the optimal

prices and service times while satisfying the constraint (2) so as to maximize expected revenue,

that is,

max
{p(·),τ(·)≥τ0}

R =

∫
λp(α)f(α)dα = λE(p), (3)

s.t. (2)

where E(p) is the expected price.

Denote r := E(p)
E(τ) , where E(τ) = 1/µ denotes the average total service time. r can be

viewed as a proxy rate that measures the average amount charged per unit service time across

all customers. Then using (2) and noting that E(v) is the expected value, we have:

E(p) = E(v)− β λ
(µ−λ)µ = rE(τ) = r

µ .

After some algebraic manipulation using the above equation, the market clearing or equilib-

rium demand rate is given by:
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λ = µ 1
1+ β

µE(v)−r

.

So, the firm’s revenue maximization problem can be written as:

max
{r,τ(·)≥τ0}

R = λE(p) = λ
r

µ
= r

1

1 + β
µE(v)−r

. (4)

Note that E(v) and µ are functions of τ(α) but we suppress this for ease of exposition.

Therefore, the firm’s problem is to choose a value for r and the service times τ(·). Define

γ := 1
α̂E( 1

α )
. Since 1

x is a convex function, we have γ ∈ (0, 1) due to Jensen’s theorem. Note

that γ is a function of the distributional shape of α. In particular, it becomes smaller when the

variation of α is larger. More interestingly, it becomes smaller (bigger) when the distribution

is right-(left-) skewed, i.e. with a longer right (left) tail.6 Using the superscript ∗ for all the

optimal quantities hereafter, we then have the following characterization of the optimal policy.

Proposition 1. In the optimal scheme:

i) The optimal service time for customer type α is τ∗(α) = τ0 + τ0
γα̂
α and µ∗ = 1

2τ0
; the

service value for customer type α is v∗(α) =
√
τ0γα̂
α and E(v∗) =

√
1
γ

√
τ0
α̂ ;

ii) Define B := µ∗E(v)∗ = 1
2
√
τ0α̂γ

, the optimal effective rate per unit of time is r∗ =

B + β −
√
(B + β)β, and the optimal expected revenue is R∗ = β(

√
B+β
β − 1)2. Further, E(p)∗

decreases in β and increases in τ0;

iii) The optimal revenue R∗ decreases in γ, and convexly decreases in β and τ0.

Note that the optimal revenue is derived based on the effective rate per unit of time r∗.

The corresponding price for each customer type can be implemented in a variety of ways, given

the optimal expected price E(p)∗. In particular, a plausible condition is one under which each

customer gets zero utility ex-post. The following Corollary states without proof the optimal

price for each customer type under this condition.

Corollary 1. Suppose v(α)− p(α)− β λ
(µ−λ)µ = 0 for any α, then the optimal price charged to

customer type α is p∗(α) =
√
τ0γα̂
α − 2τ0[

√
(B + β)β − β].

In the optimal scheme, the firm charges a lower price and provides less service time to

customers with higher α, i.e. to customers who derive lower incremental value from a given

amount of service time. Note that the marginal value of service time decreases for all customers

as additional service time is provided but this value is lower for customers with higher α. Hence,

customers with higher α receive less service time and correspondingly less value; so, they are

charged a lower price. Using the website design example, customers that have higher α will get

less service time and will get fewer enhancements or a less flexible website. Interestingly, the

6Suppose α is a Beta distribution Beta(a, b) with domain (0,1), where a > 2, b > 2 and both are integers, it can be

verified that α̂ = a
a+b

, the square of the coefficient of variation is b
a(a+b+1)

, and E( 1
α
) = a+b−1

a−1
. Thus γ = (a+b)(a−1)

(a+b−1)a
.

Fixing a, we can see that γ becomes smaller when b increases, i.e distribution becomes more right-skewed and has
higher variation.
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service time and value in the optimal scheme are closely linked to τ0. Since the initial service

time τ0 is similar to a minimum service time, higher values of τ0 prevent the firm from serving

more customers to avoid higher congestion costs. Furthermore, a larger value of τ0 results in

a longer service time for each service encounter so as to use capacity more effectively. This is

similar in spirit to having larger batch sizes when the setup time increases in production lot

sizing models. In Proposition 1, the optimal average service time is 2τ0 due to our specific

choice of value-time curve (1). Adding a parameter to the value-time curve (for instance, letting

v(τ) = κ
√

τ−τ0
α , where κ > 0) can be used to change the ratio of service time to τ0 so as to

adapt the model to a variety of business settings without changing the underlying rationale. In

the website design example, an implication of the Proposition is that a designer that spends

more time with customers in the initial consultation phase will tend to spend more time and

provide greater value on average during the second phase, i.e. the discretionary part of the

service that provides additional features and quality enhancements. This will in turn mean that

she will have to charge a higher price and serve fewer customers.

It is interesting that the optimal revenue increases as γ decreases; as noted earlier, γ becomes

smaller when the service time valuation distribution, captured by α, is more heterogenous or

right-skewed. So, given a mean value of α, a more heterogenous set of value-time curves creates

more opportunity for the firm to differentiate among customers in terms of service values and

prices and achieve higher revenues. Thus, unlike in a traditional queuing model where greater

variation in service times deteriorates system performance, greater variance in customer valu-

ations (which translates into higher variance in service times) generates higher revenues here.

Furthermore, skewness of the distribution matters too; if there are many customers with low α

values but a few with very high α values (i.e. a right-skewed distribution), this will result in

higher revenues too.

4.2 Fixed-fee scheme

In the fixed-fee scheme, the firm charges the same price f and provides the same value vf ,

i.e. a consistent level of satisfaction to all customers. Given any (f, vf ), the service time is

τf (α) = τ0 + αv2f for customers of type α. Expected service time E(τf ) and expected service

rate µf are given by:

E(τf ) = τ0 + α̂v2f , µf = 1
τ0+α̂v2

f
.

As in § 4.1, the market-clearing condition is obtained by setting the expected net utility

equal to 0:

vf − f − β
λef

(µf − λef )µf
= 0 (5)

which can be solved to obtain the equilibrium demand rate λef as:

11



λef =
(vf−f)µ2

f

µf (vf−f)+β .

Similar to the approach used in Section 4.1, we make the following transformation: Let

rf := f
E(τf )

. Then we have the following problem formulation that maximizes revenue, after

some algebra and rearrangement of terms as in section 4.1:

max
{rf ,τf (.)≥τ0}

Rf = λefrfE(τf ) = λefrf/µf = rf
1

1 + β
vfµf−rf

(6)

where vf and µf are both functions of τf (.).

Proposition 2. In the fixed-fee scheme:

i) the service time for a customer of type α is τ0(1 +
α
α̂ ), µ

∗
f = 1

2τ0
, v∗f =

√
τ0
α̂ ;

ii) the optimal fee charged is f∗ = 2τ0(b + β −
√
(b+ β)β), with the effective rate per unit

time r∗f = b+ β −
√

(b+ β)β, where b = 1
2
√
τ0α̂

. f∗ decreases in β and increases in τ0;

iii) the optimal revenue is R∗
f = β(

√
b+β
β − 1)2 which is independent of γ and convexly

decreases in β and τ0.

Some interesting observations emerge when we compare the fixed fee scheme with the optimal

pricing scheme. While the average service time is the same in both schemes, the service time

is higher for low valuation customers (with higher α) in the fixed fee pricing scheme, while it

is lower in the optimal scheme. For instance, in the fixed fee scheme, the website design firm

will spend more time with higher α customers to achieve the same level of satisfaction with

their website. This is in sharp contrast to the optimal pricing scheme which spends less time

with the high α customers. Thus, the fixed fee scheme effectively charges a lower rate per

unit time to low valuation customers and subsidizes these customers at the expense of the high

valuation customers. Of course, from the customer’s point of view, since they all receive the

same value and are charged the same fee, the fixed fee scheme may appear to be more equitable.

An increase in the congestion penalty β results in a lower price charged to all consumers but does

not impact average service time. Thus, the higher congestion penalty is absorbed completely

by lowering the price and does not impact service times. However, an increase in β (or τ0)

does impact the revenue performance of the fixed fee scheme relative to the optimal scheme,

as will be discussed later. Interestingly, unlike the optimal scheme, the optimal revenue in the

fixed fee scheme does not depend on γ and this suggests the limitation of the fixed fee scheme

in not effectively exploiting the heterogeneity and skewness in customer valuations of service

time. From Propositions 1 and 2, the average service time in the optimal and fixed fee schemes

are identical while E(v∗)
v∗
f

=
√

1
γ . So, γ represents the extent to which the optimal scheme can

extract additional service value while having the same average service time as the fixed scheme.
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4.3 Time-based scheme

In the time-based scheme, the firm charges a rate rt per unit time. Customers, after going

through the initial service phase τ0, make the optimal choice of the service time τt depending on

the rate rt charged by the firm. Note that unlike in the optimal pricing scheme and the fixed fee

scheme, the customer decides the service time. In fact, if the firm were to decide the rate and

the service time for the customers, this is equivalent to the optimal pricing scheme based on our

formulation of the maximization problem (4) in Section 4.1 (in this case, the proxy rate r∗ can

be treated as a real rate). In other words, when a website design firm posts a rate per hour and

determines the time required to design a customer’s website, this is equivalent to the optimal

pricing scheme. So, here we model commonly observed real-world scenarios where the firm posts

a rate but the customers have a say about the consumption of service time depending on their

needs. For instance, a website design firm may let the customer decide the design features and

enhancements, wherein the customer is fully aware of the time required for such enhancements

and so the customer effectively makes the service time decision. In some service contexts, the

control over service time consumption may be exercised by the firm or customers depending on

the pricing scheme adopted. A recent example of such an approach, in a different setting than

ours, can be found in Cachon and Feldman (2011), wherein a subscription scheme loses direct

control over customers’ visit frequency to a service facility while a per-use pricing scheme keeps

this control. The optimal τt is the solution to:

τt = argmax {τt≥τ0}(v(τt)− rt(τt − τ0)) = τ0 +
1

4r2tα
.

Thus, the service time is higher for customers with a smaller α, as in the optimal pricing

scheme and unlike in the fixed fee scheme. The net value (value less price) for a customer of

type α is then 1
4rtα

− rtτ0. The expected service time E(τt), expected service rate µt and the

expected service value E(vt) are given by:

E(τt) = τ0 +
1

4r2t α̂γ
, µt =

1
E(τt)

, E(vt) =
1

2rtγα̂
.

As before, we use the market clearing condition to get the equilibrium demand rate λet.

Then, after some algebra, the firm’s revenue maximization problem is given by:

max
{rt}

Rt = rt
λet

µt
= rt

1

1 + β
µtE(vt)−rt

. (7)

Proposition 3. The revenue function Rt(rt) is a concave function, and the optimal r∗t ∈

(r1, r2), where r21 =
√
2−1
k , r22 = 1

k , k := 4τ0γα̂. Also, r∗t decreases in γ, β as well as in τ0.

Thus, an increase in the initial diagnosis time τ0 results in a lower rate charged and cor-

respondingly, the average service time increases. In turn, this results in higher value provided

and a higher price charged to customers. In response to an increase in the congestion penalty
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β, the firm lowers the rate and correspondingly the service time increases. Thus, unlike in the

fixed fee and the optimal pricing schemes, an increase in the congestion penalty does impact

service times and interestingly results in higher rather than lower service times. The decrease

in the optimal rate with γ suggests another interesting phenomenon – recall that a decrease in

γ implies a more heterogenous or right-skewed distribution of the customer valuation of service

time. Thus, the optimal rate in the time-based scheme is higher when customer valuations are

more heterogenous or more right-skewed. This is because the firm has the flexibility to discour-

age the low valuation (high α) customers from consuming more service time without deterring

too many high valuation customers by raising the rate per unit time.

While a closed-form solution for the optimal rate cannot be obtained unlike in the optimal

and fixed fee schemes, we can use the range (r1, r2) within which r∗t lies to assess how the optimal

rate in the time-based scheme compares with that in the fixed fee and optimal pricing schemes.

A comparison among these three rates, while interesting in itself, has a significant impact on

system performance, as discussed in the next Section.

Proposition 4. r∗t ≥ r∗ ≥ r∗f .

Thus, the rate charged in the time-based scheme is always greater than the effective average

rate charged in the optimal pricing scheme which in turn is greater than that in the fixed fee

scheme. From Propositions 1 and 2, the structure of r∗ and r∗f are identical except that B in r∗

is replaced by b in r∗f , where B = 1√
γ b. So the difference in these two rates is determined solely

by γ, which in turn is determined by the distribution of α and the concavity of the service value-

time curve. As variation in α increases, smaller is the value of γ and greater is the gap between

the rates. Why is the rate in the time-based scheme never smaller than the effective rate in the

optimal scheme? If the average rate were lower in the time-based scheme, then customers would

consume too much service time since they optimize their own net value, ignoring the effect on

waiting time and the potential for greater value and revenue that can be elicited from other

customers by the firm. Hence, the firm charges a higher effective rate.

4.4 Comparison of revenues among the pricing schemes

Now we compare the revenue performance of the pricing schemes. As discussed in section 4.2, the

optimal scheme is more effective in terms of value and capacity allocation by better exploiting

the concavity of the value-time curve and the heterogeneity in customer valuations of service

time. In addition, the effective rate per unit time r∗ in the optimal scheme is greater than

that in the fixed scheme r∗f as indicated in Proposition 4. These differences are accentuated

depending on the shape of and variability in the distribution of α. Recall that R∗ decreases in γ

while R∗
f is independent of γ, so γ or equivalently the distribution of α is a key factor that drives

the ability of the optimal scheme to achieve higher value and translate this into higher revenues.
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The parameters β and τ0 also impact the relative revenues as shown in the next result.

Proposition 5. For any given τ0, the relative revenue difference R∗

R∗
f
increases in β. For any

given β, R∗

R∗
f
increases in τ0.

As seen from Propositions 1 and 2, both R∗ and R∗
f decrease in β and τ0. However, compared

to the fixed fee scheme, the revenue of the optimal scheme diminishes at a relatively slower rate

as β becomes greater. This is because the optimal scheme provides a higher service value

so that customers are more tolerant of congestion, as compared to the fixed scheme. So the

relative disadvantage of the fixed scheme is exacerbated in the presence of stronger sensitivity

to congestion. The same phenomenon occurs at higher values of τ0 for similar reasons.

While the fixed scheme is inferior to the optimal scheme, both of these schemes possess two

levers – controlling service time and price. In contrast, the time-based scheme possesses just one

lever: the rate charged per unit time. However, compared with the fixed scheme, the time-based

scheme does exploit the heterogeneity in α and the concavity of the value-time curve. This is

because low valuation customers (with higher α) will refrain from consuming more service time.

Notice that service times in the time-based scheme decrease with α as in the optimal scheme,

unlike the fixed fee scheme wherein higher service time is allocated to customers with higher α.

The following result compares the revenue between the fixed and time-based schemes.

Proposition 6. There exist a set of thresholds for γ, β and τ0 which determine whether the

time-based or fixed fee scheme has higher revenue. That is, there exist γ̄(β, τ0), β̄(γ, τ0) and

τ̄0(γ, β) such that when γ < γ̄(β, τ0), or β < β̄(γ, τ0), or τ0 < τ̄0(γ, β), we have R∗
t > R∗

f .

Otherwise, we have R∗
f ≥ R∗

t .

Whether the time-based or fixed fee scheme dominates in terms of revenue depends on

which of two forces prevail – the direct control over two levers (rather than one) in the fixed fee

scheme versus the ability of the time-based scheme to exploit customers’ heterogenous value-time

relationships. For instance, greater variability in α implies a lower value of γ and in this case, the

advantage of the time-based scheme in terms of allocating service time more effectively among

customers is harnessed to a greater degree; the time-based scheme consequently can provide a

higher average service value for the same average service time. When this value-gaining effect in

the time-based scheme is strong, represented by a small γ, the disadvantage due to the inability

to control service times (unlike in the fixed-fee scheme) tends to be dominated. On the other

hand, when this value-gaining effect is weak, the absence of control over service time hurts

the time-based scheme. Taking the extreme case of deterministic α, where γ = 1, the fixed

scheme achieves the optimal solution and thus dominates the time based scheme. Thus, when

the distribution of α is more heterogenous or right-skewed, implying a smaller γ, the time-based

scheme dominates. For example, if there are a few website design customers who are willing to

pay very little for enhancements (i.e. with high α), then a time-based scheme may be a better
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choice.

The values of β and τ0 also influence the relative dominance of the time-based and fixed fee

schemes. As shown before, the average service time in the time-based scheme actually increases

in β because the rate r∗t decreases in β. So the congestion in the time-based scheme is aggravated

by a longer service time when the congestion penalty β is higher. In contrast, the average service

time in the fixed scheme is independent of β. Hence, when β becomes sufficiently large, although

the demand served decreases in both the time-based and fixed schemes, the service rate decreases

in the time-based scheme while it stays constant in the fixed-scheme. As a result, the revenue

in the time-based scheme begins to diminish at a faster rate than in the fixed fee scheme when

β becomes greater. So the time-based scheme becomes less attractive in the presence of a large

congestion penalty. Similarly, a smaller τ0 tends to speed up the service process which can

counter the tendency of the time-based scheme to have longer service times and mitigate the

higher congestion.

Table 1: Sub-optimality of the Fixed and the Time-based Pricing Schemes

Minimum Congestion α Uniform Distributed (0,1) α Triangular Distributed (0,1)
Service-time Penalty Fixed Time-based Fixed Time-based

τ0 β′ R−Rf

R
R−Rt

R
R−Rf

R
R−Rt

R

1 2.5% 0.4% 1.6% 0.3%
0.1 3 3.0% 1.1% 1.7% 1.1%

7 2.8% 2.4% 1.8% 2.4%

1 2.6% 0.6% 1.7% 0.6%
0.3 3 2.8% 1.8% 1.8% 1.8%

7 3.0% 4.1% 1.9% 4.2%

1 2.6% 0.9% 1.7% 0.9%
0.7 3 2.9% 2.8% 1.8% 2.8%

7 3.2% 5.9% 2.0% 4.5%
Note: Rf , Rt and R represent the optimal revenue obtained from the pure fixed and time-based scheme

and the optimal scheme, respectively.

We performed numerical experiments to compare the revenues of the fixed and time-based

pricing schemes with each other and with the optimal scheme as a function of the two parameters

β and τ0. We considered the following set of values {1, 3, 7} for β and {0.1, 0.3, 0.7} for τ0. Also,

we considered a discrete distribution for α with 20 different discrete values ranging from 1 to 2

and considered both the uniform and triangular distributions for α. The triangular distribution

was used as it is widely used in project management to represent task duration. The uniform

distribution was used because of its larger spread and variance which is valuable in checking

the robustness of the approach. The results (see Table 1) suggest that the fixed fee and time-

based pricing schemes perform quite well relative to the optimal pricing scheme. The maximum

optimality gap in revenue for the time-based pricing scheme is 5.9% while the maximum gap

is 3.2% for the fixed fee scheme. Note that both of the maximum gaps occur when α has
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a uniform distribution, which is less likely in reality. The optimality gap for the time-based

scheme is greater at higher β and τ0 values while it does not appear to show any systematic

relationship with β and τ0 for the fixed fee scheme.

5 Operational Performance

While revenue is clearly an important measure for comparing the performance of the pricing

schemes, managers and policy makers routinely use other important performance measures such

as value provided to customers, utilization, demand served, congestion, etc. to evaluate and

manage service systems. In governmental and non-profit organizations, number of customers

served and congestion are important measures. Furthermore, although we have shown that the

gap in revenue between the fixed and time-based schemes and the optimal scheme is not large,

it is not clear if this is true for other measures of operational performance. For example, can

the demand served and gross service value, which are important dimensions for a system, be

substantially different across the three pricing schemes even if their revenues are similar? Next,

we compare the three pricing schemes in terms of commonly used operational performance

metrics.

In discretionary services, there is a speed-value trade-off because speeding up the process

allows the firm to serve more customers and/or reduce congestion but it reduces the gross value

v(τ) derived by the consumers. So, we explore the impact of pricing schemes on the gross value.

Proposition 7. We have: (i) E(v∗t ) ≥ E(v∗) ≥ v∗f ; and (ii) µ∗
t ≤ µ∗

f = µ∗.

The optimal scheme does not provide the highest gross value but is clearly the best at

balancing the trade-off between speed (service rate) and value. The time-based scheme provides

the longest service time and correspondingly the highest average service value. As shown earlier,

the time-based scheme can sometimes have higher revenues than a fixed fee scheme and so both

the firm and customers are better off in some scenarios. The time-based scheme “errs” on the

side of providing too much value. The fixed fee scheme provides less average value than the

optimal scheme (even though average service times are the same in both schemes) because the

fixed fee scheme allocates too much service time to low-valuation (high α) customers and so

the low α customers end up “subsidizing” the high α ones, dragging down the average value

provided. As shown in the proof of Proposition 7 (see Appendix A), the relative disadvantage

of the fixed scheme in terms of a lower service value increases when γ is smaller, i.e. when the

distribution of α is more variable and/or right-skewed.

The next result sheds light on the relative dominance of the payment schemes in terms of

several key metrics. Let RC denote revenue per customer (RC) – this metric is used by the sales

function and is especially useful in discretionary services as all customers are not alike and some

customers value the service more and may consume more and thus provide greater revenue.
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Proposition 8. We have: (i) RC∗
t ≥ RC∗ ≥ RC∗

f ; (ii) ρ∗ ≥ ρ∗f ≥ ρ∗t ; (iii) λ∗ ≥ λ∗
f ≥ λ∗

t ; and

(iv) Both utilization rate (ρ) and demand served (λ) in all three pricing schemes decrease in β

and τ0.

Recall that the time-based scheme has the highest rate charged per unit time. The higher

rate charged together with the longer service time results in a higher RC for the time-based

scheme. While the fixed fee scheme has the same average service time as the optimal scheme,

the effective average rate charged is lower in the fixed fee scheme and so it ends up having lower

RC. Despite the higher RC, the time-based scheme does not always have higher total revenue

than the fixed fee scheme because it has lower demand served.

In the optimal pricing scheme, the optimal choice of price and service time allows the firm

to achieve the highest utilization (ρ) while achieving the maximum revenue. Interestingly, the

fixed fee scheme always achieves higher utilization than the time-based scheme despite having

lower average service time. The impact of β on utilization is as expected – a higher β will result

in lower congestion at the optimum and this can be achieved only by reducing the utilization.

An increase in τ0 also decreases utilization levels and the rationale is interesting. Recall that the

firm has no control over τ0, the initial service time, and from our results, optimal total service

time τ to each customer is proportional to τ0. Hence, the firm has to compensate for the longer

average service time (which will increase congestion) by lowering the utilization.

The number of customers served by the system (λ) is an important measure in scenarios

where the demand potential is high but the service system has limited capacity and cannot serve

everyone. Recall that the effective rate charged in the time-based scheme is highest followed

by the optimal scheme and the fixed fee scheme (Proposition 4). One would expect this to

have an inverse effect on the demand served. Interestingly, demand served is not lower in the

optimal scheme relative to the fixed fee scheme despite the higher effective rate charged per

customer. Demand served is lowest in the time-based scheme primarily because this scheme has

high average service times. The firm compensates for this by having lower utilization levels but

the lower utilization combined with a lower service rate implies that the demand served is lowest

for the time-based scheme. Thus, the time-based scheme “pays” for the longer service time by

having lower number of customers served which in turn negatively impacts its total revenue.

This negative impact is even more significant at higher β and τ0 values and the time-based

scheme does worse than the fixed fee scheme.

In scenarios where a decision-maker’s focus is on serving as many customers as possible

(without losing the focus on revenue), the optimal scheme comes out best. But the fixed fee

scheme does quite well in terms of revenue and demand served and may be a good compromise

if the optimal pricing scheme is difficult to implement in such environments. From the results

of the numerical experiments discussed in Section 4, we find that both demand served and

service rate can be over 10% lower in the time-based scheme as compared to the fixed scheme,
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even though revenues in both pricing schemes are close to each other (e.g., within 1.5% for

α ∼ U(1, 2), τ0 = 0.1, β = 1). This finding is valuable because it shows that a firm can focus

on performance metrics other than revenue, without sacrificing much revenue. The relatively

slight change in revenue, despite substantial differences in demand served or service rate, comes

from the discretionary nature of the service. For instance, in the time-based scheme, although

the demand served is smaller than in the fixed scheme, customers “consume” more service time,

get higher gross value or quality and pay more if the distribution of α is more variable and/or

right-skewed; so the combined effect is such that the revenues are not significantly different.

Next, we compare the congestion levels across the different pricing schemes.

Proposition 9. There exist thresholds for the waiting cost β and the diagnosis time τ0 which

determine the order of waiting times for the three pricing schemes. Specifically,

i) W ∗
t ≥ W ∗ ≥ W ∗

f when β ≤ β̄2 for any given τ0, or τ0 ≤ τ̄2 for any given β;

ii) W ∗ ≥ W ∗
f ≥ W ∗

t when γ ≥ 0.828427, β ≥ β̄1 , or τ0 ≤ τ̄1. Further, β̄1 ≥ β̄2 for any

given τ0, τ̄1 ≥ τ̄2 for any given β;

iii)W ∗ ≥ W ∗
t ≥ W ∗

f otherwise.

In most realistic scenarios under which β and/or τ0 are not too large, we have W ∗
t ≥ W ∗ ≥

W ∗
f . One might expect higher utilization levels to result in greater congestion in a single-server

system setting but interestingly we observe that this is not often the case. Recall that the

time-based scheme has the lowest utilization level. The fixed fee scheme generally has lower

congestion than the time-based scheme despite having higher utilization. The optimal pricing

scheme has the highest utilization but may have lower congestion than the time-based scheme,

although it always has higher congestion than the fixed fee scheme. We also used the numerical

tests described in section 4 to explore differences in congestion levels in the three pricing schemes

since the results in Proposition 9 are parameter dependent. For τ0 values between 0.1 and 0.7

and β values between 1 and 7, we find that congestion in the time-based scheme was highest

followed by the optimal scheme and fixed fee scheme in all instances. Thus, the time-based

scheme seems to have the highest congestion in most realistic scenarios.

Table 2 summarizes the operational performance of the three pricing schemes characterized

above.

Table 2: Comparison of Operational Performance

Operational Metric Optimal Scheme Fixed Scheme Time-based Scheme

Service Value medium lowest highest

Service Rate medium medium lowest

Revenue Per Customer medium lowest highest

Utilization highest medium lowest

Demand highest medium lowest

Waiting Time(in most cases) medium lowest highest
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6 Extensions

There exist several real-world pricing schemes that are variants of the fixed and time-based

schemes studied above and next, we discuss two variants. First, we consider a variant of the

fixed pricing scheme wherein the firm commits to a service value but restricts the maximum

service time provided. The fixed pricing scheme studied in Section 4.2 is a special case of this

scheme in the sense that customers’ service time is not restricted. Second, we consider adding a

fixed fee to the time-based pricing scheme. Given that the revenue of the fixed and time-based

pricing schemes studied earlier are found to be close to the optimal scheme in many plausible

settings, the improvement in revenue of these variants is likely to be modest. We use subscript

2 to denote any variables associated with the variant of fixed and time-based pricing schemes

in this Section.

6.1 Fixed fee with a maximum service time

When the firm restricts the maximum service time τ̄ in the fixed pricing scheme, the service

value is committed to all joining customers with a restriction that the service time will not go

beyond τ̄ . That is, the firm posts a set of (vf2, f2, τ̄), where vf2 represents the service value

committed to the customers only if their service time does not violate the maximum service

time τ̄ , and f2 denotes the price paid. Note that the fixed scheme studied in Section 4 is a

special case in the sense that τ̄ > τ0 + ᾱv2f2 based on our model of value-time curve.

For the sake of tractability, we assume there are two types of customers, i,e, α = αL with

probability q, and α = αH with probability 1− q, with the expectation α̂ = qαL+(1− q)αH .We

restrict ourselves to the case such that customers with type αL will get the committed service

value of vf2 and slow customers (of type αH) will get service value of
√

τ̄−τ0
αH

reflecting the

imposed maximum service time. Denoting τ1 = τ̄ −τ0, the expected service time E(τf2), service

rate µf2 and service value E(vf2) are given by,

E(τf2) = q(τ0 + αLv
2
f2) + (1− q)τ̄ = τ0 + qαLv

2
f2 + (1− q)τ1, µf2 = 1

E(τf2)
,

E(vf2) = qvf2 + (1− q)
√

τ1
αH

.

We use an approach similar to the one for fixed fee scheme in section 4.2 to derive the equi-

librium condition and the revenue maximization problem – the details can be found in Appendix

A. We then have the following result which compares this variant of the fixed fee scheme to the

original fixed fee and the optimal schemes on key measures of operational performance.

Proposition 10. Assuming a binary distribution for α, with a maximum service time imposed,

the committed service value v∗f2 ≥ v∗f . Further, the average service value E(vf2) = E(v∗) ≥ v∗f ,

and the utilization rate ρ∗ ≥ ρ∗f2 ≥ ρ∗f , and the demand served λ∗ ≥ λ∗
f2 ≥ λ∗

f .
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Recall that the fixed scheme (without a maximum service time imposed) studied in previ-

ous sections deviates from the optimal scheme by 1): providing lower gross service value, 2)

possessing a lower utilization rate, and 3) serving less demand. Proposition 10 shows that with

a maximum service time imposed, this underperformance will be mitigated and in particular,

the fixed scheme with a maximum service time imposed can achieve the same average service

value as the optimal scheme. This mitigating effect is driven by the fact that the fixed pricing

scheme by its nature lacks direct control over service times among customers but this weakness

is partially overcome by directly imposing a maximum service time.

6.2 Time-based fee plus a fixed fee

While many service providers charge a pure time-based fee, some of these firms often tack on

a fixed fee. For example, landscape design and website design firms may charge a fixed (or a

minimum) fee and then an hourly rate. Similarly, some law practices charge a flat fee plus an

hourly rate 7( Robertson and Calloway (2008)). Such pricing is also often referred to as a two-

part tariff in other contexts. We now analyze such a pricing scheme that comprises of a fixed fee

F2 for the initial phase (0, τ0) and a time-based rate r2 for the main phase. For conciseness, we

do not describe the model again since it is identical to the time-based model described earlier

(section 4.3) except for the addition of the fixed fee F2. As before, customers having decided

to procure the service and after going through the initial service phase τ0, make the optimal

choice of the additional service time depending on the rate r2 and it is equal to 1
4r2tα

. We then

have the following result on the optimal two-part tariff.

Proposition 11. The optimal two-part tariff (F ∗
2 , r

∗
2) is given by F ∗

2 = 2τ0[B+β−
√
(B + β)β]−

√
τ0

2
√
γα̂

≥ 0 and r∗2 = 1
2
√
τ0γα̂

. Further, this two-part tariff has the same optimal service time,

expected service rate and optimal revenue as the optimal scheme.

It is interesting to see that the two-part tariff achieves the same outcome as the optimal

scheme. This result is consistent with the literature in economics and operations management on

congestion-based pricing (Bitran et al. (2008) and the references therein) which has shown that

the two-part tariff is optimal in many scenarios. However, this literature does not incorporate

the relationship between service time and service value that is a key element of discretionary

services and so our result extends previous results in the literature to this important setting.

Thus, the two-part tariff which is essentially a combination of the fixed and time-based pricing

can achieve the same outcome as the optimal scheme and is indeed an appealing alternative.

7http://members.mobar.org/billablehours/Appendix D.htm
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7 Discussion and Conclusion

7.1 Discussion

The optimal scheme is clearly ideal in the sense that it maximizes revenue and utilization and

also serves the largest number of customers. Further, it generates only a moderate level of

congestion and provides a moderate level of value to consumers by appropriately trading off

service speed and value. However, even though they may yield lower revenues, the fixed fee and

time-based schemes are frequently used in practice. This may be because they are: (a) simpler

to implement or (b) perceived more positively by the consumer as the fixed fee scheme commits

to a certain value and the time-based scheme cedes control over service time to the customer.

Our analysis has identified the limitation of these simpler schemes: the fixed scheme does not

allocate the service time among heterogenous customers effectively; the time-based scheme is

more effective at allocating time among different customers, but the firm only has a single lever,

the rate per hour. Our study indicates that the relative merit/drawback of these pricing schemes

is strongly influenced by the shape of the distribution of customers’ valuation of service time

and the responsiveness desired by customers. We have also shown that a two-part tariff pricing

structure can achieve the same outcome as the optimal scheme. However, Cachon and Feldman

(2011) point out in their comparison of subscription and per use pricing for shared facilities,

which shares some similarity to fixed fee and time based pricing in our context, that a two-part

tariff may not always be desirable and this is perhaps why simple schemes such as fixed fees

and hourly billing are used in practice. Furthermore, our numerical study suggests that the

loss in revenue from using a simple fixed or time-based pricing schemes is likely to be small

in many scenarios due to the inherent speed-value trade-off in discretionary services. Further,

the fixed fee and time-based schemes exhibit superior performance along some other important

operational metrics. For instance, the time-based scheme can provide higher service value than

the optimal scheme for a slight sacrifice in revenue. Thus, our study can be seen as providing

some justification for the widespread use of fixed fee and time-based schemes in practice despite

their revenue-suboptimality.

Our study also provides some insights to help a firm choose between the fixed fee and time-

based schemes. When the initial consultation/diagnosis time is likely to be short relative to

the total service time (for example, a home cleaning service), then a time-based scheme is

better. On the other hand, when initial consultation phase is long relative to total service

time as may be the case for website designs with signficant user interaction, then a fixed fee

scheme may be better. When congestion penalties are low, the time-based scheme is better. For

instance, customers may not mind waiting for a while for some less urgent services (implying

lower congestion penalty) and in such cases, a time-based scheme is better.

While the above conclusions are based solely on a revenue comparison, the firm may consider
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other service performance measures too. A social planner may want a service system to serve

more customers even at the expense of service value and revenues. In such scenarios, a fixed fee

may be better even if it means lower revenues relative to a time-based scheme since it always

serves more customers and also has lower congestion. This may be true for instance for services

provided by government agencies or non-profits. Also, a website design firm may charge fixed

fees even if there may be significant variation in the time required for different projects. Even if

a time-based scheme may result in higher revenues, the firm may charge fixed fees because this

results in more customers being served and less congestion which may be important criteria in

the short run as it establishes its reputation in the marketplace. Also, a fixed fee is easier to

implement since service time does not have to be tracked for each customer. Overall, both the

fixed fee and time-based schemes do quite well in terms of revenue despite their simplicity and

they are superior on some metrics of service performance relative to the optimal scheme.

7.2 Conclusion

The management of discretionary services poses interesting challenges because customers value

additional time provided by the firm but longer service times can result in greater delays and

lower productivity. Our analysis indicates that the fee structure chosen by a firm is an important

lever in the management of such service systems. While the optimal pricing scheme dominates

along many dimensions such as revenue, demand served and utilization, the fixed fee and time-

based schemes do quite well in terms of revenue, are easier to implement and may be perceived

as fairer. Also, they have some distinct advantages along certain dimensions as discussed in

section 5. Our study also sheds light on when and why the fixed-fee scheme outperforms the

time-based scheme in terms of revenue as well as when both schemes do well relative to the

optimal pricing scheme.

There are several interesting avenues for future work and we mention a couple of them here.

First, we could consider the agency issues associated with either payment scheme identified in

the law and economics literature (Shepherd and Cloud (1999)): fixed fee may induce shorter

service times while time-based payment may induce longer service times. Note that this is rel-

evant only when customers have no influence on the service time. Second, we could consider a

competitive scenario where two or more firms decide on the pricing scheme. In a competitive

setting, the time-based scheme might be more attractive to high valuation customers and the

fixed fee scheme might be more attractive to customers with low valuation customers. It is not

clear which scheme will dominate or whether both schemes may coexist.
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Appendix A: Proofs

Proof of Proposition 1. In the optimal pricing scheme, the firm chooses a set of service time

τ(α) and price p(α) for each customer type α to maximize the revenue, i.e.

max
{(τ(·)≥τ0,p(·)}

λE(p) ⇔ max
{r,τ(·)≥τ0}

r
1

1 + β
µE(v)−r

,

based on the transformation illustrated in Section 4.1. Note that µE(v) is only a function of

τ(α) for α ∈ (α, ᾱ) and the decisions on the service times and the effective rate are decoupled.

Hence, we first maximize µE(v) for a given r and then find the optimal r.

(i) Denoting τ1(α) = τ(α) − τ0 as the service time for customers of type α after the first

phase which lasts τ0 time units, it follows that µ = 1
τ0+E(τ1)

. We have:

µE(v) =

∫ ᾱ

α

√
τ1(α)
α f(α)dα

τ0 + E(τ1)
=

∫ ᾱ

α

√
τ1(α)
α f(α)dα

τ0 +
∫ ᾱ

α
τ1(α)f(α)dα

, (8)

where f(.) is the probability density function of α.

Let us fix t := E(τ1) =
∫ ᾱ

α
τ1(α)f(α)dα, the optimal scheme has to be the one such that∫ ᾱ

α

√
τ1(α)
α f(α)dα is maximized. That is,

max
{τ1(·)≥0}

∫ ᾱ

α

√
τ1(α)

α
f(α)dα

s.t.

∫ ᾱ

α

τ1(α)f(α)dα = t

The Lagrangian function associated with this optimization problem is L :=
∫ ᾱ

α

√
τ1(α)
α f(α)dα+

ω(t−
∫ ᾱ

α
τ1(α)f(α)dα) =

∫ ᾱ

α
l(α)dα, where ω is the Lagrangian multiplier and l(α) =

√
τ1(α)
α f(α)−

ωtf(α)− ωτ1(α)f(α).

We get τ∗1 (α) = 1
4ω2α based on the first order condition and t = 1

4ω2E( 1
α ), since

∂l(α)
∂τ1(α)

=

f(α) 1√
α

1

2
√

τ1(α)
−ωf(α), and ∂2l(α)

∂τ1(α)2
= − 1

4f(α)
1√
α
τ1(α)

− 3
2 < 0. It follows that τ∗1 (α) =

t
αE( 1

α )
.

Plugging τ1(α)
∗ back into equation (8), we get µE(v) =

√
E( 1

α )
√
t

τ0+t =

√
E( 1

α )
τ0√
t
+
√
t
. So the optimal

t∗ that maximizes µE(v) is the one such that τ0√
t
+

√
t is minimized. It is easy to verify that

the unique solution is t∗ = τ0 and τ∗1 (α) = τ0
αE( 1

α )
. Using γ := 1

α̂E( 1
α )

, we get τ∗1 (α) = τ0γα̂
α ,

τ∗(α) = τ0 + τ0γα̂
α and v∗(α) =

√
τ0γα̂
α . Further, E(τ∗) = τ0 + E(τ1) = 2τ0, µ

∗ = 1
2τ0

and

E(v∗) =
√
τ0γα̂E( 1

α ) =
√

1
γ

√
τ0
α̂ .

(ii) Now we find the optimal r. Using B = µ∗E(v∗) = 1√
4τ0γα̂

, the optimal revenue is

derived by solving max{r} R(r) = r 1
1+ β

B−r

. Note we require the condition r ∈ [0, B) to main-

tain a stable queueing system( otherwise, the traffic intensity would be more than 1). Since

∂R(r)
∂r = r2−2(B+β)r+B(B+β)

(B+β−r)2 , and ∂2R(r)
∂2r = −2β(B+β)

(B+β−r)2 < 0, the optimal r∗ satisfies the first order
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condition: r2−2(B+β)r+B(B+β) = 0, with solutions for this quadratic equation being r∗ =

B+β±
√
(B + β)β. Since r∗ = B+β+

√
(B + β)β violates the conditions required for stability

of queueing, the unique solution is then r∗ = B+β−
√
(B + β)β, and the optimal revenue R∗ =

[B+β−
√
(B + β)β]

√
(B+β)β−β√
(B+β)β

= β(
√

B+β
β −1)2 after some algebra. Based on the equilibrium

condition (see Section 4.1) λ = µ 1
1+ β

µE(v)−r

, the utilization rate in the optimal pricing scheme is

ρ∗ = λ
µ =

√
(B+β)β−β√
(B+β)β

. Therefore the waiting cost is WC∗ = β 1

(µ∗
λ∗ −1)µ∗ = 2τ0(

√
(B + β)β−β).

As a result, E[p∗(α)] =
√
τ0γα̂E( 1

α ) − 2τ0(
√
(B + β)β − β) =

√
τ0
α̂γ − 2τ0(

√
(B + β)β − β)

by the definition of γ. Also τ0 = 1
4B2α̂γ by the definition of B, we can rewrite E(p∗(α)) as

E[p∗(α)] = 2Bτ0 − 2τ0(
√
(B + β)β− β) = 2τ0[B+ β−

√
(B + β)β] = 1

2γα̂

B+β−
√

(B+β)β

B2 . Now,

B+β−
√

(B+β)β

B2 = 1

B(1+
√

β
B+β )

decreases in B, which decreases in τ0. So E[p∗(α)] increases in τ0.

(iii) Since R∗ = β(
√

B+β
β −1)2, R∗ decreases in γ because R∗ increases in B and B decreases

in γ. Further, we have ∂R∗

∂β = 2− B+2β√
Bβ+β2

< 0, and ∂2R∗

∂β2 = B2

2(Bβ+β2)
3
2
> 0 after some algebra.

Thus, R∗ convexly decreases in β.

Proof of Proposition 2. In the fixed pricing scheme, the firm chooses the committed service

value vf and the fixed fee f to maximize the revenue, i.e.

max
{vf ,f}

λff ⇔ max
{rf ,vf}

rf
1

1 + β
µfvf−rf

,

based on the transformation discussed in Section 4.2. As in proof of Proposition 1, we optimize

vf and rf separately since µfvf and rf are decoupled.

(i)For any given rf , the optimal committed value v∗f is chosen such that vfµf = vf
1

τ0+α̂v2
f
=

1
τ0
vf

+α̂vf
is maximized, which directly leads to v∗f =

√
τ0
α̂ . Thus the service time for customer

type α is τ0 + τ0
α
α̂ , the average service time is E(τ∗f ) = τ0 + α̂(v∗f )

2 = 2τ0, and the service rate

µ∗
f = 1

2τ0
.

(ii) Using b = v∗fµ
∗
f = 1

2
√
α̂τ0

, the revenue function Rf (rf ) in (6) can be expressed as

Rf (rf ) = rf
b−rf

b−rf+β . Note that it is required that b > rf to maintain a stable queueing system.

The first order condition is:

∂Rf

∂rf
=

(b− rf )
2 + β(b− 2rf )

(b− rf + β)2
, (9)

and the second order condition is:

∂2Rf

∂2rf
= − 2β(b+ β)

(b− rf + β)3
< 0.

Hence, the revenue function given the optimal committed value is a concave function of rf .

The first order condition (9) gives rise to (b − rf )
2 + β(b − 2rf ) = 0. Solving this quadratic
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equation in rf and deleting the solution that violates the queueing stability condition, we get

the optimal r∗f = b+ β −
√

(b+ β)β and the optimal fee f∗ = r∗f
1
µf

= 2τ0(b+ β −
√
(b+ β)β).

It is straightforward to show that f∗ increases in τ0 and decreases in β.

(iii) Plugging r∗f into Rf (rf ), the optimal revenue can be written as R∗
f = β(

√
b+β
β − 1)2

after some algebra. Note that b is independent of γ so R∗
f is independent of γ. Further, R∗

f

convexly decreases in β because
∂R∗

f

∂β = 2− b+2β√
bβ+β2

< 0, and
∂2R∗

f

∂β2 = b2

2(bβ+β2)
3
2
> 0

Proof of Proposition 3. Based on the illustration in Section 4.3, the firm chooses the rate rt to

maximize the revenue in the time-based pricing scheme, i.e.

max
{rt}

rt
λt

µt
= rtρt = rt

1

1 + β
µtE(vt)−rt

,

In the following, we first show that the revenue function is concave in rt, and then characterize

some properties regarding the optimal r∗t .

Denoting k := 4τ0γα̂, we have µt = 1
τ0+

τ0
t2t k

=
kr2t

τ0(1+kr2t )
, and E(vt) = 1

2rt
k

4τ0

= 2τ0
krt

(see

Section 4.3). Defining ϕ(rt) := µtE(vt)− rt =
rt(1−kr2t )

1+kr2t
, the revenue of the time-based scheme

can be expressed as Rt = rt
1

1+ β
ϕ(rt)

. To maintain a stable queueing system, it is required that

ϕ(rt) > 0, which is equivalent to 1 > kr2t . So we have that r∗t < r2 where r2 =
√

1
k . We next

show that ϕ(rt) is concave for rt ∈ (0, r2): The first derivative of ϕ(rt) is ϕ
′(rt) =

1−4kr2t−k2r4t
(1+kr2t )

2 ,

and the second derivative is ϕ′′(rt) =
4krt(kr

2
t−3)

(1+kr2t )
3 . Thus, we have ϕ′′(rt) < 0 for rt ∈ (0, r2)

because kr2t < 1 < 3.

Recall that the revenue function is Rt = rt
1

1+ β
ϕ(rt)

, so the optimal rate r∗t can only be

located in the range within which ϕ(rt) decreases in rt, which implies that ϕ′(r∗t ) < 0. That is,

1− 4k(r∗t )
2 − k2(r∗t )

4 < 0. Solving this quadratic inequality we get r∗t > r0, where r20 =
√
5−2
k .

Summarizing the above, we have that ϕ(rt) concavely decreases for rt ∈ (r0, r2). As a result,

the revenue function Rt(rt) = rt
ϕ(rt)

ϕ(rt)+β is concave because

∂2Rt

∂r2t
=

βϕ′(rt)ϕ(rt) + rβϕ′′(rt)ϕ(rt) + β2ϕ′(rt) + rβ2ϕ′′(rt)− 2rβ[ϕ′(rt)]
2

(ϕ(rt) + β)3
< 0.

Therefore, the unique optimal rate r∗t satisfies the first order condition of R′
t(rt) = 0, i.e.,

ϕ(r∗t )
2 + β[ϕ(r∗t ) + r∗t ϕ

′(r∗t )] = 0 ⇔ r∗t (1− k(r∗t )
2)2 + 2β[2− (1 + k(r∗t )

2)2)] = 0. (10)

Thus, the optimal rate r∗t satisfies 2− (1 + k(r∗t )
2)2 < 0. Solving this inequality we get that

r∗t > r1, where r21 =
√
2−1
k . Putting these together, we get that r∗t ∈ (r1, r2). In the rest of our

proof, we restrict ourselves to the support of (r1, r2).

Now we show r∗t decreases in k, which also implies that r∗t decreases in γ as well as τ0 because
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k was defined as k = 4τ0γα̂. Recall that both ϕ(rt) and ϕ′(rt) decrease in rt, and ϕ′(rt) < 0 for

rt ∈ (r1, r2). Also note that (10) can be re-expressed as:

r∗t =
ϕ(r∗t )

2 + βϕ(r∗t )

−βϕ′(r∗t )
.

Now we prove by contradiction. Suppose r∗t increases as k increases. Then the right hand

side of above equation
ϕ(r∗t )

2+βϕ(r∗t )
−βϕ′(r∗t )

decreases in k because the numerator decreases and the

denominator increases in k (note ϕ(rt) concavely decreases in rt ∈ (r1, r2)). Contradiction

occurs because the left hand side of above equation was assumed to be increasing in k.

The equation (10) can also be rewritten as β = ϕ(rt)
2

−(ϕ(rt)+rtϕ′(rt))
. Based on the fact that ϕ(·)

concavely decreases, we know that ϕ(rt) + rtϕ
′(rt) decreases in rt. So when β increases, r∗t has

to be decreasing.

Proof of Proposition 4. r∗ ≥ r∗f is obvious by viewing the expressions for r∗ and r∗f in Proposi-

tions 1 and 2 ( note that B ≥ b).

Now we show that r∗t ≥ r∗. Define δ = β
B , and c = 1 + δ −

√
(1 + δ)δ, where δ ∈ (0,∞).

Alternatively, δ = (1−c)2

2c−1 . So, r∗ = B + β −
√

(B + β)β = Bc (note that c ∈ ( 12 , 1) ).

To show r∗t ≥ r∗, it suffices to show that ∂Rt

∂rt
|rt=r∗ ≥ 0, which is equivalent to having

[ϕ(rt)
2 + β(ϕ(rt) + rϕ′(rt))]|rt=r∗=Bc = rt(1 − kr2t )

2 + 2β[2 − (1 + kr2t )
2] ≥ 0 (see the proof of

Proposition 3).

Based on the fact that 1) β = δB; 2) δ = (1−c)2

2c−1 ; 3)kB2 = 1 (by the definitions of k and B),

and plugging rt = r∗ = Bc into the inequality above, we get r∗t ≥ r∗ if and only if:

Bc(1− kB2c2)2 + 2
(1− c)2

2c− 1
B[2− (1 + kB2c2)2] = Bc(1− c2)2 + 2

(1− c)2

2c− 1
B[2− (1 + c2)2]

=
B(1− c)2

2c− 1
(3c3 − 4c2 − c+ 2) ≥ 0

Denoting L(c) := 3c3 − 4c2 − c + 2 ≥ 0, we know that r∗t ≥ r∗ if and only if L(c) ≥ 0 for

c ∈ ( 12 , 1). Since L(c = 1) = 0, and L′(c) = 9(c+ 1
9 )(c− 1) ≤ 0 for c ∈ ( 12 , 1), we have L(c) ≥ 0

for c ∈ ( 12 , 1). This concludes the proof that r∗t ≥ r∗.

Proof of Proposition 5. Based on Propositions 1 and 2, the relative difference is R∗

R∗
f
= (

√
1+B

β −1√
1+ b

β−1
)2.

Denote g(β) :=

√
1+B

β −1√
1+ b

β−1
. Since g′(β) = 1

(
√

b
β+1−1)2

1
2β2 (

√
B+β√
b+β

−
√
b+β√
B+β

+ B
√
β√

B+β
− b

√
β√

b+β
) and

B ≥ b, we have g′(β) ≥ 0. So R∗

R∗
f
increases in β.

The relative revenue difference R∗

R∗
f
increasing in τ0 for a given β can be proved in a similar

way as above, details are skipped.
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Proof of Proposition 6. The proof proceeds as follows: we first show the structure of the revenue

function in the fixed as well as the time-based scheme. We then investigate how the revenue

dominance changes with γ by fixing β and τ0 , with τ0 by fixing β and γ, with β by fixing τ0

and γ, respectively.

Let M(r) := µE(v)|rt=r = 2r
1+kr2 . Note that we require M(r) > r to maintain a stable

queueing system by viewing equation (6) and (7).

Based on Propositions 2 and 3, we have

R∗
t = r∗t

1

1 + β
M(r∗t )−r∗t

,

R∗
f = r∗f

1

1 + β
b−r∗f

.

For any given β and τ0, we know from Proposition 3 that R∗
t monotonically decreases in γ

while R∗
f is independent of γ. In addition, when γ, and thus k approaches zero, R∗

t obviously

is greater than R∗
f . So, R∗

t ≥ (<)R∗
f when γ is smaller (greater) than some threshold γ̄(β, τ0),

respectively.

For any given β and γ, we next show that the revenue of the time-based scheme dominates

that of the fixed scheme if and only if τ0 is less than some threshold. By viewing the expressions

for the optimal revenue of time-based and fixed schemes listed above, we know that R∗
t ≥ R∗

f if

and only if M(r∗t ) ≥ M̂ , where M̂ solves r∗t
1

1+ β

M̂−r∗t

= r∗f
1

1+ β
b−r∗

f

. It can be easily verified that

the first derivative of M(r∗t ) with respect to k is M ′(k) =
(1−k(r∗t )

2)
∂r∗t
∂k −(r∗t )

3

(1+k(r∗t )
2)2 < 0, based on the

results of Proposition 3. Since M(r∗t ) decreases in k and k linearly increases in τ0, we conclude

that the revenue of the time-based scheme dominates that of the fixed scheme if τ0 is less than

some threshold τ̄0(β, γ). Otherwise, the fixed scheme dominates the time-based scheme in terms

of revenue.

For any given τ0 and γ, we show that the revenue of the time-based scheme dominates that

of the fixed scheme if and only if β is less than some threshold. As M(r∗t ) increases in r∗t for

any given k, and r∗t is shown to be decreasing in β as proved in Proposition 3, analogously we

have that the revenue of the time-based scheme dominates that of the fixed scheme if β is less

than some threshold β̄(τ0, γ). Otherwise, the fixed scheme dominates the time-based scheme in

terms of revenue.

Proof of Proposition 7. (i) Based on Propositions 1, 2 and 3, we know that E(v∗) =
√

1
γ

√
τ0
α̂ ,

v∗f =
√

τ0
α̂ , and E(v∗t ) = E( 1

2r∗t α
) = 1

2r∗t γα̂
, respectively. Since r∗t ≤ 1√

k
, and k = 4τ0γα̂, we have

that

E(v∗t ) ≥
1

2 1
2
√
τ0γα̂

γα̂
=

√
τ0
γα̂

= E(v∗) ≥ v∗f .
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(ii) Also, µ∗
t = 1

τ0+
1

4(r∗t )2α̂γ

≤ 1
τ0+

k
4α̂γ

= 1
2τ0

, we conclude that µ∗
t ≤ µ∗

f = µ∗ using Proposi-

tions 1 and 2.

Proof of Proposition 8. We prove parts (i), (ii) and (iii) of the Proposition sequentially and the

proof of part (iv) relating to utilization is included in the proof of part (ii) and the proof of part

(iv) relating to demand rate is included in the proof of part (iii).

(i) From Propositions 4 and 7, we know that r∗t ≥ r∗ ≥ r∗f , µ
∗
t ≤ µ∗

f = µ∗, and RC = r/µ

for the three schemes. So, we have RC∗
t ≥ RC∗ ≥ RC∗

f .

(ii) We first show that ρ∗ ≥ ρ∗f and characterize the conditions under which ρ∗f ≥ ρ∗t . We

then show that these conditions are satisfied in our setting.

From Proposition 1, we have r∗ = B + β −
√
(B + β)β. From (4), the utilization rate is

ρ∗ = 1
1+ β

B−r∗
= 1 −

√
β

B+β . Analogously, ρ∗f = 1 −
√

β
b+β . Since B ≥ b, we have ρ∗ ≥ ρ∗f .

Also, it is obvious that both ρ∗ and ρ∗f decrease in β and τ0 given the definitions of B and b,

respectively.

Following the proof of Proposition 3, the utilization rate in the time-based scheme is ρt =
ϕ(r∗t )

ϕ(r∗t )+β , where ϕ(.) is defined in the proof of Proposition 3 and r∗t satisfies the first order

condition

ϕ(r∗t )
2 + β[ϕ(r∗t ) + rϕ′(r∗t )] = 0 ⇔ rt(1− kr2t )

2 + 2β[2− (1 + kr2t )
2)] = 0.

It follows that
ϕ(r∗t )

β = −ϕ(r∗t )+r∗t ϕ
′(r∗t )

ϕ(r∗t )
=

2[[1+k(r∗t )
2]2−2]

1−k2(r∗t )
4 . As shown in Proposition 3, r∗t decreases

in β, so
ϕ(r∗t )

β decreases in β. Therefore, we know that ρt decreases in β.

We now show k(r∗t )
2 decreases in k. We prove by contradiction as above: suppose k(r∗t )

2

increases in k, then r∗t [1 − (kr∗t )
2] decreases in k as r∗t has been shown to be decreasing in k.

But this contradicts the relation (10): r∗t [1− (kr∗t )
2] = 2β[(1+ (kr∗t )

2 − 2]. So, k(r∗t )
2 decreases

in k. As a result, we have that
ϕ(r∗t )

β decreases in k. So ρ∗t also decreases in τ0 since k = 4γτ0α̂.

Now we show ρ∗f ≥ ρ∗t . From (6) and (7), we have the expressions for ρ∗f and ρ∗t , respectively.

After some algebra, we have that:

ρ∗f ≥ ρ∗t if-and-only-if
r∗t (1− k(r∗t )

2)

(1 + k(r∗t )
2)

≤ 1

2
(

√
1

α̂τ0
− 2r∗f ), i.e.

r∗t (1− k(r∗t )
2)

(1 + k(r∗t )
2)

≤
√

(b+ β)β − β.

(11)

For expositional ease, we denote k(r∗t )
2 = θ, where θ ∈ (

√
2 − 1, 1) based on Proposition 3.

So the relation (10) can be re-expressed as β = r(1−θ)2

2[(1+θ)2−2] . Plugging this into equation (11), we

get the following after some algebra:

ρ∗f ≥ ρ∗t if and only if h(θ) :=
r
√
γ

2

(1− θ)2

(1 + θ)2[(1 + θ)2 − 2]
[(1 + θ)2 − 4

√
γ
θ
√
θ] ≥ 0. (12)

Now we verify that a(θ) := (1 + θ)2 − 4√
γ θ

√
θ decreases on (

√
2 − 1, 1). For this purpose,
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we check that its first derivative a′(θ) = 2(1 + θ) − 6√
γ

√
θ < 0 for θ ∈ (

√
2 − 1, 1). Solving

the quadratic inequality of a′(θ) = 2(1 + θ)− 6√
γ

√
θ < 0, we get

√
θ ∈ ( 2

3√
γ +

√
9
γ −4

,
3√
γ +

√
9
γ −4

2 ).

Since 3√
γ +

√
9
γ − 4 decreases in γ, the tightest range of

√
θ would be the ones such that γ = 1,

which is ( 2
3+

√
5
, 3+

√
5

2 ). It is easy to verify that (
√√

2− 1, 1) ⊂ ( 2
3+

√
5
, 3+

√
5

2 ). So we have

that (1 + θ)2 − 4√
γ θ

√
θ decreases in θ ∈ (

√
2− 1, 1). As a result, we get that h(θ) decreases in

θ ∈ (
√
2− 1, 1).

Since h(θ = 1) = 0, we get h(θ) ≥ 0 for θ ∈ (
√
2 − 1, 1). Thus ρ∗f ≥ ρ∗t . This concludes the

proof that ρ∗ ≥ ρ∗f ≥ ρ∗t .

(iii) Finally, we show λ∗ ≥ λ∗
f ≥ λ∗

t .

As shown in Proposition 7, µ∗ = µ∗
f > µ∗

t . Since ρ∗ ≥ ρ∗f ≥ ρ∗t as proved above and

λ∗ = ρ∗µ∗, we have λ∗ ≥ λ∗
f ≥ λ∗

t . Since both ρ∗ and µ∗ decrease in τ0 and β, so does λ∗.

Similarly, it is easy to show that λ∗
f decreases in both β and τ0.

As shown in Proposition 3, E(τt) = τ0 +
1

4γα̂(r∗t )
2 and r∗t decreases in β, we have that the

average service time E(τt) increases in β. Also as shown earlier, the utilization rate ρ∗t decreases

in β and τ0. So the demand λ∗
t = ρ∗tµ

∗
t decreases in β as well as τ0.

Proof of Proposition 9. In the following, we will first show W ∗ ≥ W ∗
f , and then characterize

the conditions under which W ∗ ≥ W ∗
t and W ∗

f ≥ W ∗
t .

Recall that the waiting time W (λ, µ) = λ
(µ−λ)µ = 1

(µ
λ−1)µ . Because µ∗ = µ∗

f , and λ∗ ≥ λ∗
f as

shown in Propositions 7 and 8, we have that W ∗ ≥ W ∗
f .

From Propositions 1, 2 and 3 and using the equilibrium demands and the service rates, we

get W ∗ = 2τ0(
√
(B + β)β − β); W ∗

t = 1
4r∗t γα̂

− r∗t τ0 = τ0
k − r∗t τ0, where k = 4τ0γα̂, and r∗t

satisfies (10); and W ∗
f =

√
τ0
α̂ − 2r∗fτ0.

After some algebra, we have that:

W ∗
t ≥ W ∗

f if-and-only-if

√
1

α̂τ0
− 2r∗f ≤ 1− k(rt∗)2

kr∗t
, i.e.

√
(b+ β)β − β ≤ 1− k(r∗t )

2

2kr∗t
;(13)

W ∗
t ≥ W ∗ if-and-only-if

√
1

α̂τ0
− 2r∗ ≤ 1− k(r∗t )

2

kr∗t
, i.e.

√
(B + β)β − β ≤ 1− k(r∗t )

2

2kr∗t
.(14)

For expositional ease, we let k(r∗t )
2 = θ, where θ ∈ (

√
2 − 1, 1) as shown in the proof of

Proposition 8. Recall that (10) can be re-expressed as β =
r∗t (1−θ)2

2[(1+θ)2−2] . Plugging this into

equation (13) and (14), we get the following after some algebra:

W ∗
t ≥ W ∗

f if and only if g1(θ) :=
(1− θ)2

4kθ[(1 + θ)2 − 2]
(θ2 − 4θ + 1 + 2θ

√
θγ) ≤ 0; (15)

W ∗
t ≥ W ∗ if and only if g2(θ) :=

(1− θ)2

4kθ[(1 + θ)2 − 2]
(θ2 − 4θ + 1 + 2θ

√
θ) ≤ 0. (16)

Now, denote q1(θ) := θ2 − 4θ + 1 + 2θ
√
θγ, and q2(θ) := θ2 − 4θ + 1 + 2θ

√
θ. It is easy to
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check that both q1(θ) and q2(θ) are convex functions. Also q1(1) = 2
√
γ − 2 ≤ 0 as γ ∈ (0, 1],

q2(1) = 0 and q2(
√
2− 1) = 0.0479 > 0. Plugging θ =

√
2− 1 into q1(θ), it is easy to verify that

when γ ≤ 0.828427, q1(θ) ≤ 0 for all θ ∈ (
√
2− 1, 1).

Based on the convexity of q1(.) and q2(.), we denote θ̄1 as the unique solution, if any, of

q1(θ) = 0 for θ ∈ (
√
2 − 1, 1), θ̄2 as the unique solution of q2(θ) = 0 for θ ∈ (

√
2 − 1, 1). We

know θ̄1 ≤ θ̄2 because q2(θ) ≥ q1(θ). Now, we have the following possible cases (we do not

differentiate between > and ≥ for expositional ease in the following)

case 1): When γ < 0.828427, and θ ∈ (
√
2 − 1, θ̄2), we have q1(θ) < 0 and q2(θ) > 0, thus

W ∗ > W ∗
t > W ∗

f ;

case 2): When γ < 0.828427, and θ ∈ (θ̄2, 1), we have , thus W ∗
t > W ∗ > W ∗

f ;

case 3): When γ > 0.828427, and θ ∈ (
√
2 − 1, θ̄1), we have q1(θ) > 0 and q2(θ) > 0,

thusW ∗ > W ∗
f > W ∗

t ;

case4): When γ > 0.828427, and θ ∈ (θ̄1, θ̄2), we have q1(θ) < 0 and q2(θ) > 0, thus

W ∗ > W ∗
t > W ∗

f ;

case 5): When γ > 0.828427, and θ ∈ (θ̄2, 1), we have q1(θ) < 0 and q2(θ) < 0, thus

W ∗
t > W ∗ > W ∗

f .

Summarizing the cases listed above, we have:

1)W ∗
t > W ∗ > W ∗

f , when θ ∈ (θ̄2, 1);

2)W ∗ > W ∗
f > W ∗

t , when γ > 0.828427 and θ ∈ (
√
2− 1, θ̄1);

3)W ∗ > W ∗
t > W ∗

f , otherwise.

As shown in Proposition 3, r∗t decreases in β , so does θ = k(r∗t )
2. Further, θ decreases in

k as also shown in Proposition 8, which implies θ decreases in τ0. So, when θ ∈ (θ̄2, 1) , which

represents the scenarios such that β is less than some threshold β̄2 given any τ0, and/or τ0 is

less than some threshold τ̄2 given any β, we have W ∗
t > W ∗ > W ∗

f . Similar rationales hold for

the rest of the conditions (note θ̄1 ≤ θ̄2 as shown above) and thus are skipped.

Proof of Proposition 10. Analogous to the analysis of the fixed fee scheme in Section 4.2, the

equilibrium condition would be such that customers’ expected net utility is zero, that is:

E(vf2)− f2 = β
λf2

(µf2 − λf2)µf2
. (17)

Defining rf2 = f2
E(τf2)

as before and manipulating the equilibrium condition to solve for λf2,

the revenue optimization problem is:

max
{rf2,vf2,τ̄}

Rf2 = f2 ∗ λf2 = rf2
1

1 + β
µf2E(vf2)−rf2

Compared with the revenue optimization problem in Section 4.2, it is easy to observe that the

optimization problem shares the same structure as the one in the fixed pricing scheme without a
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maximum service time τ̄ imposed, except that we need to maximize µf2E(vf2) over two decision

variables (vf2, τ̄), rather than just maximize µfvf over a single decision variable vf as in the

case of the fixed pricing scheme studied in Section 4. Specifically, the optimal committed service

value and the maximum service time (v∗f2, τ̄) are derived by solving:

max
(vf2,τ1)

µf2E(vf2) =
qvf2 + (1− q)

√
τ1
αH

(τ0 + qαLv2f2) + (1− q)τ1

s.t. (17).

Assuming that the parameters are such that the joint concavity conditions are satisfied

(we have used extensive numerical experiments to verify it), we have the following first order

conditions to characterize the optimal choice of (vf2, τ1):

∂[µf2E(vf2)]

∂vf2
= 0 ⇒ τ0 + (1− q)τ1 − 2(1− q)

√
τ1
αH

αLvf2 − qαLv
2
f2 = 0; (18)

∂[µf2E(vf2)]

∂τ1
= 0 ⇒ τ0 − (1− q)τ1 − 2

√
αHqvf2

√
τ1 + qαLv

2
f2 = 0. (19)

Adding (18) and (19) and simplifying it, we have:

τ0 −
qαH + (1− q)αL√

αH
vf2

√
τ1 = 0. (20)

For expositional ease, we define α2 = qαH + (1 − q)αL (note that α̂ = qαL + (1 − q)αH).

Plugging (20) into (18), we get the following:

(1− q)α2
2τ

2
1 − τ0(α

2
2 − 2qαHα2)τ1 − qαLαHτ20 = 0.

Solving this quadratic equation and discarding the negative root, we get τ∗1 = αL

α2
τ0. The optimal

committed service value is v∗f2 =
√
τ0

αH

αLα2
by plugging τ∗1 back into (20). Since

αH α̂ = αH [qαL + (1− q)αH ] ≥ αLα2 = αL[qαH + (1− q)αL],

we have that v∗f2 =
√

τ0
αH

αLα2
≥ v∗f =

√
τ0
α̂ and µ∗

f2 = 1
τ0+qαL

τ0αH
αLα2

+(1−q)
αL
α2

τ0
= 1

2τ0
= µ∗

f .

The average service across joining customers is E(v∗f2) = qv∗f2+(1−q)
√

τ∗
1

αH
=

√
τ0[q

√
αH

αLα2
+

(1 − q)
√

αL

αHα2
] =

√
τ0
√

α2

αLαH
after some algebra. To show E(v∗f2) ≥ v∗f =

√
τ0
α̂ , it suffices to

show that
√

α2

αLαH
≥

√
1
α̂ . Since

α2α̂ = [qαH + (1− q)αL][qαL + (1− q)αH ] = (1− q)q(α2
H + α2

L) + [q2 + (1− q)2]αHαL

≥ 2(1− q)qαHαL + [q2 + (1− q)2]αHαL = αHαL,
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we have that E(v∗f2) ≥ v∗f =
√

τ0
α̂ .

Define b2 = µ∗
f2E(v∗f2), it is easy to show that b2 = 1

2
√
τ0

√
αH

αLα2
≥ b = 1

2
√
2τ0α̂

(see the

proof of Proposition 2). Exactly as in the proofs of Propositions 2 and 8, we can show that the

utilization ρ∗f2 = 1−
√

β
b2+β ≥ ρ∗f = 1−

√
β

b+β .

Since λ∗
f2 = ρ∗f2µ

∗
f , and µ∗

f2 = µ∗
f , we conclude that λ∗

f2 ≥ λ∗
f .

As shown in Proposition 1, the utilization in the optimal scheme is ρ∗ = 1−
√

β
B+β , where

B is the upper bound of all µE(v), specifically B ≥ bf2, therefor ρ
∗ ≥ ρ∗f2. Based on the result

of µ∗
f2 = µ∗

f = µ∗, we see λ∗ ≥ λ∗
f2.

Now we show the average service value in the fixed scheme with a maximum service time can

render the same average service value as the optimal scheme: E(v∗f2) = E(v∗). As shown above,

E(v∗f2) =
√
τ0
√

α2

αLαH
, the average service time in the optimal scheme is E(v∗) =

√
1
γ

√
τ0
α̂ =

√
τ0

√
E( 1

α ). Now,

α2

αLαH
=

qαH + (1− q)αL

αHαL
= q

1

αL
+ (1− q)

1

αH
= E(

1

α
),

which leads to E(v∗f2) = E(v∗).

Proof of Proposition 11. After the first phase of diagnosis (0, τ0), a customer of type α would

choose an additional service time 1
4α(r∗2 )

2 = τ0
γα̂
α , and pay an amount 1

4αr∗2
=

√
τ0γα̂
2α in addition

to the fixed payment of F ∗
2 , given the rate r∗2 = 1

2
√
τ0γα̂

per unit of service time. This chosen

service time exactly mimics the optimal allocation of service time among heterogenous customers

as shown in Proposition 1, so does the service value delivered, and service rate.

The expected payment from each customer is F ∗
2 + E(

√
τ0γα̂
2α ) = F ∗

2 +
√
τ0

2
√
γα̂

= 2τ0[B + β −√
(B + β)β], which is equal to the expected payment in the optimal scheme E[P ∗(α)] (see the

proof of Proposition 1).

Since B + β −
√
(B + β)β = B

1+
√

β
B+β

∈ (B2 , B), we get that

F ∗
2 = 2τ0[B + β −

√
(B + β)β]−

√
τ0

2
√
γα̂

≥ τ0B −
√
τ0

2
√
γα̂

= 0.

So, in this two-part tariff scheme, customers are charged the same expected payment, obtain

the same service value and have the same service time as the optimal scheme. This concludes

the proof.
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Appendix B: The Approximation Approach

The analysis of various pricing schemes discussed in the paper made the assumption that

the term (1 + CV 2(τ)) varies very little with the pricing decision. We now show that this

assumption is justifiable in many reasonable scenarios using both analytical and numerical

results. Specifically, the next result provides upper and lower bounds on the potential value

of (1 +CV 2(τ)) in the fixed fee and time-based schemes and shows that the gap between these

bounds is typically very small.

Lemma 1.

In the fixed fee scheme:
2 + 2√

ξ

1 + 1
ξ + 2√

ξ

≤ (1 + CV 2
f ) ≤

3 + ξ

4
, where ξ :=

E(α2)

α̂2
≥ 1

In the time-based scheme:
3 + ξ′

4
≤ (1 + CV 2

t ) ≤
1 + ξ′

2
, where ξ′ :=

E( 1
α2 )

[E( 1
α )]

2
≥ 1

Proof. In the full model of the fixed-scheme, τf = τ0 + αv2f , where vf is the service value to

which SP commits. The revenue function is:

Rf = rf
1

1 +
β′
2 (1+CV 2

f )

µfvf−rf

where 1 + CV 2
f =

τ2
0+2τ0α̂v

2
f+v4

fE(α2)

τ2
0+2τ0α̂v2

f+v4
f α̂

2 .

For any given vf , we define β = β′

2 (1 + CV 2
f ); b = µfvf =

vf

τ0+αv2
f
. The revenue function is

re-written as:

Rf = rf
1

1 + β
b−rf

.

For any given vf , thus β and b, it can be verified that the optimal r∗f = b+ β −
√
(b+ β)β

to maintain the stability of the queueing system.

Plugging r∗f into the revenue function, we have:

Rf = (
√

(b+ β)−
√
β)2 =

( 1√
1
b + β

b2 +
√

β
b2

)2
.

Now the upper bound of vf , denoted as UB(vf ) is the one such that UB2(vf ) = τ0
α̂ . This

is so because UB(vf ) maximizes b, and for any vf ≥ UB(vf ), β(vf ) ≥ β(UB(vf )) (note β

monotonically increases in vf ).

Now we identify the lower bound of vf , denoted as LB(vf ). Since

β

b2
=

β′

2 E(τ̃)2µ2
f

µ2
fv

2
f

=
β′

2

E[τ20 + 2τ0α̂v
2
f + v4f α̂

2]

v2f
=

β′

2
(
τ20
v2f

+ v2f α̂
2ξ + 2τ0α̂)
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where ξ := E(α2)
α̂2 ≥ 1

LB(vf ) is the one such that LB2(vf ) = τ0
α̂
√
ξ
. This is so because: for any vf ≤ LB(Vf ),

β
b2 (vf ) ≥

β
b2 (LB(vf )), and

1
b (vf ) ≥

1
b (LB(vf )).

So, the optimal v∗f for the full model is located between LB(vf ), UB(vf ).

Plugging LB(vf ) and UB(vf ) into the expression of 1 + CV 2
f , we have:

2 + 2√
ξ

1 + 1
ξ + 2√

ξ

≤ (1 + CV 2
f ) ≤

3 + ξ

4

Now we show the bounds for (1 + CV 2
t ) for the time-based scheme:

Following the proof of Proposition 3 shown in Appendix A, we show in the following that

the range of r∗t in the full model is (r1, r2), where r1, r2 is also defined in Proposition 3..

In the time-based scheme, the service time for customers of type α, when charged a rate

rt, is τt = τ0 +
1

4r2tα
. Now in the full model, the first order condition is changed to ϕ(r∗t )

2 +

β(rt)[ϕ(r
∗
t ) + rϕ′(r∗t )] = rtϕ(rt)β

′(rt).

Since β decreases in rt by viewing:

1 + CV 2
t =

E(τt)
2

[E(τt)]2
=

τ20 + 2τ0
4r2t

E( 1
α ) +

1
16r4t

E[ 1α ]
2

τ20 + 2τ0
4r2t

E( 1
α ) +

1
16r4t

[E( 1
α )]

2
(21)

we need ϕ(r∗t ) + rϕ′(r∗t ) < 0 at optimality, which derives the lower bound of rt as r1. The

upper bound is still r2 to maintain the system stability, see the proof of Proposition 3 for more

details.

Plugging r1 and r2 into the (21), also using the fact that γ = 1
α̂E( 1

α )
to simplify expressions,

we have that: 1 + CV 2
t ∈ (lt, ut), where,

lt =
1 + 2γα̂E( 1

α ) + γ2α̂2E[( 1
α )]

2

1 + 2γα̂E( 1
α̃ ) + γ2α̂2[E( 1

α )]
2
=

3 + ξ′

4

ut =
1 + 2√

2−1
γα̂E( 1

α ) +
1

(
√
2−1)2

γ2α̂2E[( 1
α )]

2

1 + 2√
2−1

γα̂E( 1
α ) +

1
(
√
2−1)2

γ2α̂2[E( 1
α )]

2
=

1 + ξ′

2

where ξ′ =
E( 1

α )2

[E( 1
α )]2

≥ 1.

Note that the bounds depend only on the distribution of α and are independent of any

other model parameters. Taking the example of α ∼ U(1, 3), where U(1, 3) indicates that

the value-adding service time for the slowest customers is 3 times as much as that for the

quickest customers for any given service value, it can be verified that ξ := 1.083 and ξ′ = 1.102.

Correspondingly, (1 + CV 2
f ) ∈ (1.019, 1.0208) and (1 + CV 2

t ) ∈ (1.025, 1.051). This illustrates

the negligible impact of the pricing decisions on (1 + CV 2(τ)) in the fixed fee and time-based

schemes. For those distributions that have less spread and variability, the accuracy will be even

38



greater. While the bounds in the above result are tight for the fixed fee scheme, the bounds for

the time-based scheme are not. This suggests that the term (1 + CV 2
t ) will actually vary over

an even tighter range as a function of the potential rates charged in the time-based scheme.

For the optimal scheme, we are unable to obtain reasonably tight bounds analytically due

to the complex nature of the optimal prices and service times. So, we use a numerical study

to show that the approximation used earlier is reasonable. This numerical study was also used

to establish that the bounds established in Lemma 1 are indeed very tight. As shown in Table

3, the variability of the total system changes negligibly with the pricing schemes adopted: the

deviations in (1 + CV 2) across pricing schemes are within 1% for a variety of parameters. We

also compared the revenues from the full and approximate model for the optimal pricing scheme,

as well as for the time-based and fixed fee schemes. These results can be found in Table 3, which

shows that the optimal revenues in the approximate or simplified model are very close to those

in the full or original model in all three pricing schemes. In the case of the optimal pricing

scheme, the revenues in the approximate model are within 0.7% of the full model and the gaps

are even smaller for the other two pricing schemes. Thus, both the analytical and numerical

results confirm the robustness of the approximation.
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Table 3: Relative change of system variability

Minimum Congestion Uniform (1,2) Triangular (1,2)
Service-time Penalty Fixed Time-based Approx Fixed Time-based Approx

τ0 β′ Yf/Y
∗ Yt/Y

∗ Yapprox/Y
∗ Yf/Y

∗ Yt/Y
∗ Yapprox/Y

∗

1 1.001767 1.004955 1.003081 1.0011 1.00331 1.002051
0.1 3 1.004828 1.00776 1.00446 1.001996 1.004986 1.002955

7 1.004259 1.009462 1.005632 1.002745 1.006875 1.003718

1 1.002402 1.006274 1.003739 1.001526 1.00414 1.002483
0.3 3 1.003855 1.00947 1.005217 1.002481 1.006217 1.003448

7 1.004985 1.010444 1.006379 1.003219 1.004201 1.004201

1 1.002946 1.007399 1.004290 1.001884 1.004874 1.002844
0.7 3 1.004427 1.0109111 1.005806 1.002845 1.006881 1.003830

7 1.005509 1.010994 1.006921 1.003567 1.009162 1.004551
Note: Yf , Yt, Y

∗ represent the system variability in the fixed scheme, time-based scheme and the
optimal scheme for the full model, respectively. Yapprox represents the system variability in the

approximation model of the optimal scheme. Specifically, Yf = 1 + CV 2
f ,

Yt = 1 + CV 2
t ,Yapprox = 1 + CV 2

approx, and Y ∗ = 1 + CV 2
∗ .

Table 4: Optimality Using the Approximation Approach

Minimum Congestion α Uniform Distributed (0,1) α Triangular Distributed (0,1)
Service-time Penalty Fixed Time-based Optimal Scheme Fixed Time-based Optimal Scheme

τ0 β′ R∗
f−Rf

R∗
f

R∗
t−Rt

R∗
t

R∗−R
R∗

R∗
f−Rf

R∗
f

R∗
t−Rt

R∗
t

R∗−R
R∗

1 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
0.1 3 0.2% 0.1% 0.2% 0.1% 0.1% 0.1%

7 0.2% 0.2% 0.4% 0.1% 0.1% 0.3%

1 0.1% 0.1% 0.2% 0.1% 0.1% 0.1%
0.3 3 0.2% 0.2% 0.3% 0.1% 0.1% 0.3%

7 0.3% 0.2% 0.6% 0.2% 0.1% 0.4%

1 0.1% 0.1% 0.2% 0.09% 0.08% 0.11%
0.7 3 0.2% 0.2% 0.4% 0.16% 0.13% 0.27%

7 0.4% 0.3% 0.7% 0.2% 0.15% 0.6%
Note: R, Rf and Rt represent the optimal revenue of the optimal pricing scheme, the fixed pricing scheme

and the time-based scheme using the approximation approach; the subscript ∗ represents the optimal

revenue obtained from the full model
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