
 1

PRACTICE AND PROCESS: THE SOCIALIZATION
OF SOFTWARE DEVELOPMENT

Paul S. Adler
Marshall School of Business
University of Southern California
Los Angeles CA 90089-0808
Email: padler@usc.edu

Version: June23, 2003

DRAFT — DO NOT QUOTE OR CIRCULATE

Acknowledgements:
Cris Gibson, Sandy Green, Ann Majchrzak, Yrjo Engestrom, Kirsten Foot, Tom Cummings, Steve
Barley, Andy Van de Ven, and numerous people at CSC, who were all so generous with their help..

 2

 PRACTICE AND PROCESS: THE SOCIALIZATION
OF SOFTWARE DEVELOPMENT

ABSTRACT

This paper contributes to an ongoing debate on the scope for bureaucratic organization in

relatively non-routine activities. I focus on the case of the Software Engineering Institute’s Capability
Maturity Model for software development. Under a more “mature” process, developers lose much of
their traditional autonomy in deciding the methods of work since these methods are largely
standardized and formalized. Paralleling broader concerns about bureaucracy, some observers fear
that process maturity will be experienced by developers as coercive and burdensome, with negative
consequences for staff motivation and development effectiveness. To explore whether these fears are
well founded, I studied four relatively mature units of a large software consulting firm. I find that the
fears are largely misplaced. It is true that process maturity replaced autonomy with a broad, tight web
of interdependencies, and that sometimes these interdependencies were experienced as oppressive
dependence. However, for many interviewees, interdependence took a more collaborative form. Many
developers expressed a professional concern for the effectiveness of development, and embraced
process maturity as an efficacious collective discipline. Compared to the traditional, individualistic,
“hacker” mode of software production, process maturity made for a more “socialized” production
process. The organization form associated with high maturity fit the “enabling bureaucracy” model
(Adler and Borys, 1996). The subjective experience of work took the form of more interdependent
self-construals and more directly socialized identities. These trends coexisted were simultaneously
stimulated, distorted, and retarded by profitability pressures.

 3

PRACTICE AND PROCESS: THE SOCIALIZATION OF
SOFTWARE DEVELOPMENT

KNOWLEDGE-WORK VERSUS BUREAUCRACY

Knowledge-workers constitute a growing proportion of our work force — and a deepening
puzzle for organizational research. One of the enduring propositions of contingency theory is that the
organization of non-routine tasks — such as those that more frequently confront knowledge-workers
— should be shielded from the bureaucratic drive for standardization and formalization, lest creativity
be stifled (Burns and Stalker, 1961). It is therefore not surprising that much of the research on
innovation focuses of the “soft” aspects of organization characteristic of the “organic” organizational
form — leadership, culture, collaboration, improvisation (Eisenhardt and Tabrizzi, 1995). In such a
form, control is assured by prior socialization, professional ties, and shared values (Mintzberg, 1979).
The “process control” characteristic of bureaucracy is seen as antithetical to creativity.

However, in reality, many firms are under increasing pressure to improve not only the
creativity but also and simultaneously the quality, timeliness, and efficiency of their innovation
processes. How do they respond? How should they respond? Empirical research shows that many are
responding by standardization and formalization — and attempting to find ways of doing so that do
not stifle creativity (Griffin and Hauser, 1992; Craig, 1995; Adler, 1999; Wheelwright and Clark,
1992; Jelinek and Schoonhoven, 1993; Bart, 1999). Researchers continue to debate whether such
efforts are futile or promising (Damanpour, 1991; Brown and Eisenhardt, 1995: 373; Lillkrank,
2003).

The “structural” aspect of this debate has been addressed by Adler and Borys (1996; see also
Adler, 1999), who argue that bureaucracy can support both control and innovation when it takes an
“enabling” as opposed to “coercive” form. This enabling bureaucracy concept builds on Gouldner’s
(1954) “representative bureaucracy” and Blau’s (1955) “dynamic bureaucracy.” More recently, Adler
(2001) proposed that its distinguishing feature is the combination of high levels of bureaucratic
structuring with high levels of community cohesiveness and trust. The structural aspect has also been
elucidated by research on professional organizations that has identified important mutations as new
syntheses of professional, bureaucratic, and market forms emerge (Freidson 2001; Cooper et al, 1996;
Pinnington and Morris, 2003; Adler, Kwon, and Singer, 2003).

These formulations, however, offer little insight into the “subjective” aspect of the debate. To
many observers, bureaucracy of any kind — with its prescribed procedures that eliminate autonomy,
and its fine-grained vertical and horizontal division of labor that destroy task variety and integrity —
seems incompatible with the subjective experience of work required to elicit commitment and
creativity. In an effort to move this debate forward, the present paper analyzes the subjective
experience of work in organizations that have high levels of bureaucracy but perform relatively non-
routine, innovative, knowledge-work tasks. My focus is on software development.

The innovation-bureaucracy debate has been prominent in the software development domain.
As software systems have grown larger, so too has the proportion of projects that fail to meet their
goals or fail entirely (Gibbs, 1994; Lieberman and Fry, 2001). The effort to tame this “chaos” in
software development (Standish, 1994) has led to an increasing focus on “process,” understood as the
standardization, formalization, and management control of work processes. One popular vehicle for
attaining greater process discipline is the Capability Maturity Model (CMM) developed by the
Software Engineering Institute (described in more detail below). At high levels of “maturity,”
software development should, its proponents argue, resemble a factory process in its disciplined
operations and predictable results, and continuous improvement.

 4

On the one hand, this approach promises considerably greater efficiency, timeliness, and
quality (Harter, Krishnan, Slaughter, 2000: Clark, 1999; Cusumano, 2000). On the other hand,
concerns have been voiced about the CMM’s bureaucratic nature. (In this ambiguity, CMM resembles
the broader family of “software factory” concepts of which it is a part: on the concept of software
factory and the associated debates, see Cusumano, 1991; Swanson et al, 1991; Griss, 1993: Weber,
1997; Friedman and Cornford, 1989.) In particular, concern is often expressed that the discipline
recommended by the CMM will reduce the autonomy of developers and will therefore be experienced
by them as burdensome and coercive constraint. This would stifle the commitment and creativity that
are, over the longer run, required for high-quality and innovative software development (e.g. Crocca,
1992; Bach, 1994, 1995; Conradi and Fuggetta, 2002; Lynn, 1991; Ngwenyama and Nielson, 2003).
Typical of opposition to standardized and formalized methodologies is this assessment by two well-
respected software management experts:

“Of course, if your people aren’t smart enough to think their way through their work, the work
will fail. No Methodology will help. Worse still, Methodologies can do grievous damage to
efforts in which people are fully competent. They do this by trying to force the work into a fixed
mold that guarantees a morass of paperwork, a paucity of methods, an absence of responsibility,
and a general loss of motivation.” (DeMarco and Lister, 1987: 116)

One software development manager interviewed in the present study expressed the concern this way:
“Programming has always been seen as more of an art form than a factory process. Programmers
are supposed to be creative, free spirits, able to figure things out themselves. So the software
factory idea was very alien to the culture of programmers.” (Interviewee A-6)

The debate about the effects of bureaucratization on non-routine work hinges crucially on our
expectations of how knowledge-workers interpret and respond to these changes. The research
reported here therefore seeks to understand the subjective experience of software development work
under more disciplined, factory-like, bureaucratic conditions created by the implementation of the
CMM. The following section provides some background on the CMM. I then discuss the theoretical
framing of my research, its organizational context and its methods. The core of the paper is an
analysis of the experience of software developers in four, relatively highly bureaucratized software
development organizations. My main findings are threefold: (a) under the influence of the CMM, the
software development process had been “socialized” – in the sense used by Marx (1973; 1977) and
Engels (1978); (b) as a result, the subjective identity of developers shifted from the individualistic
“hacker” form towards a more directly social, interdependent identity as members of large-scale,
complex, collaborative undertaking; and (c) these trends were simultaneously stimulated, distorted,
and retarded by profitability pressures.

THE CMM
In the 1980s, the U.S. Air Force studied 17 major software systems contracts and found that

every project was late (by an average of 75%) and over budget (Humphrey, 2002). The chaos in
large-scale commercial sector projects was (and still is) in general even worse (Jones, 2002). In 1984,
frustrated with such chaos, the Department of Defense (DoD) funded the Software Engineering
Institute (SEI), based at Carnegie-Mellon University, to develop a model of a more reliable software
development process. With the assistance of the MITRE Corporation, SEI developed a process
maturity framework, releasing a preliminary description in 1987 and the first official version (version
1.1) in 1991.

A broad community of industry people helped shape the CMM. Paulk (1995, p.11) writes:
“Nearly 1000 external reviewers who were part of a ‘CMM Correspondence Group’ had the
opportunity to comment on the various drafts leading to CMM version 1.1. A CMM Advisory Board
helped the SEI review and reconcile conflicting requests.” The software CMM was subsequently
complemented by CMM tools for systems engineering, people management, software acquisition, and
engineering. In 2000, several of these were integrated into a broader tool called CMM-Integration.

 5

This study focuses on the software CMM. This CMM distinguishes five successively more
“mature” levels of process capability, each characterized by mastery of a number of Key Process
Areas (KPAs) — see Exhibit 1. The CMM belongs to a class of improvement approaches that focus
on “process” rather than “people.” It does not recommend any particular approach to organizational
and behavioral issues: it focuses on the “whats” and not the “hows,” leaving CMM users to determine
their own implementation approach. Level 1 represents an ad hoc approach. Level 2 represents the
rationalization of the management of individual projects. Level 3 characterizes the way the
organization manages its portfolio of projects. Levels 4 addresses the quantification of the
development process. Level 5 addresses the continuous improvement of that process. The underlying
philosophy of this hierarchy was inspired by Crosby’s (1979) five stages of TQM maturity —
uncertainty, awakening, enlightenment, wisdom, certainty (see Humphrey, 2002; a bibliography on
the CMM is available at http://www.sei.cmu.edu/docs/biblio.pdf).

[put Exhibit 1 about here]
Early CMM assessments revealed a startlingly backward state of software process: 80.3% of

the 132 organizations assessed during 1987-1991 were found to be at the “ad hoc” Level 1, 12.1% at
Level 2, with only 6.8% at Level 3, 1.4% at Level 4 and 0.8% at Level 5. Over the subsequent years,
there appears to have been significant shift (although it is difficult to tell given the changing and
unrepresentative nature of the sample). Of the 1124 organizations assessed between 1998 and August
2002, 19.3% were at Level 1, 43.2% at Level 2, 23.4% at Level 3, 7.3% at Level 4 and 6.8% at Level
5 (Software Engineering Institute, 2002). This shift was assisted by the fact that the DoD and other
government and private sector organizations began using Software Capability Evaluations (SCEs)
based on the CMM as part of their source selection process. The first evaluations pressed suppliers to
reach Level 2, but before long the bar was raised to Level 3. Not surprising, the CMM has become the
basis for numerous software service organizations’ improvement efforts in both the government and
commercial sectors. (The CMM is much less frequently used among firms developing pre-packaged
software products: see Software Engineering Institute, 2002, p.8.)

Evidence is slowly accumulating that moving up the CMM hierarchy leads to improvements in
product cost, quality, and timeliness. The SEI website lists several case studies of high-maturity
organizations and the benefits they have achieved. According to one multi-organization statistical
study (Clark, 1999), total development costs decreased by 5 to 10% for every further level attained.
Another study (Harter, Krishnan, Slaughter, 2000) examined 30 software projects in the systems
integration division of a large IT firm over the period 1984-96, and estimated the effects of moving
from Level 1 to 3 to be an increase of 578% in the lines of code per error, a reduction of 30% in cycle
time, and a reduction of 17% in person-months of effort. (Other multi-organization studies include
Krishnan, Kriebel, Kekre, Mukhopadhyay, 2000; Herbsleb, Zubrow, Goldenson, Hayes, Paulk, 1997.)

Skeptics remain unconvinced. Critics of process approaches argue that these gains may be
specific to the sampled organizations. More fundamentally, they may be earned at the expense of
developer morale and commitment, and given the importance of developers’ attitudes to performance,
any performance gains may therefore be ephemeral. However, we currently lack any reliable evidence
on how developers actually respond to the discipline of CMM.

THE THEORETICAL CHALLENGE
 Given that the objective of this research is to understand the impact of bureaucratization on

software development subjective experience of work, what theoretical framework affords us the
greatest potential insight? In this section, I set aside several alternatives and motivate my use of
cultural-historical activity theory.
Some possible frames

One possible starting point is the social psychology of autonomy and control. Autonomy is
often presented as a key motivating characteristic of jobs (Hackman and Oldham, 1980). A similar

 6

assumption underlies Ajzen’s (1991) theory of planned behavior, with its focus on “perceived
behavioral control.” (In labor process theory and the broader field of sociology of work too,
autonomy is one of the two defining dimensions of skilled work, alongside complexity — see
Braverman, 1974; Spenner, 1983.) In the Information Systems field, a considerable body of research
has focused on the role of perceived control and autonomy as determinants of the use of, and
satisfaction with, new techniques and technologies (see for example Baronas, 1988; Mathieson, 1991;
Taylor and Todd, 1995; Henderson, 1992; Green and Hevner, 1999). This emphasis on autonomy
seems particularly appropriate for programmers, who typically manifest low need for social
interaction (Couger and O’Callaghan, 1994). As will be shown below, process maturity clearly
implies a loss of autonomy for the individual developer; much organizational behavior theory would
therefore expect strongly negative attitudinal effects.

On reflection, however, it would beg the question to take autonomy as a key variable. It is
surely insufficient to characterize the bureaucratization of software work only by what is lost: we also
need to understand what replaces that lost autonomy. Abstractly speaking, autonomy is replaced by
greater task interdependence. Autonomy/control theories assume that this interdependence typically
takes an asymmetrical form, in other words, that autonomy is replaced by dependence and
domination. But this assumption needs to be tested against reality, since it is possible that autonomy
is replaced by a more symmetrical, and collaborative form of interdependence — one that might be
experienced very differently by employees.

An alternative starting point, one more likely to capture the range of possible effects of a more
interdependent process, is offered by role stress theory (Kahn et al, 1964; Goldstein and Rockart,
1984; Rasch and Tosi, 1992.) According to Kahn et al., the sources of stress are located in role
conflict, ambiguity, and overload. These variables tap at least some aspects of the individual’s
experience of task interdependence. Research has shown that formalization of work procedures often
reduces stress and increases commitment, even for relatively professional occupations (Rizzo, House
and Lirtzman, 1970; Jackson and Schuler, 1985; Organ and Greene, 1981; Podsakoff, Williams and
Todor, 1986).

Role stress theory, however, resembles autonomy/control theories in an important feature that
undermines the value of both for the present task: they belong to a long tradition in social psychology
that has sought to identify universal individual needs — here, the need for autonomy/control or stress
reduction — and analyze the individual’s responses to organizational context as a function of this
context’s effects on such needs. The critique advanced by Fiske et al. (1998: 918; see also Erez and
Early, 1993: 10 ff.; Hernandez and Iyengar, 2001) applies to both these theories:

“Most contemporary social psychological theorizing begins with an autonomous individual
whose relationships are a means to certain asocial ends. [...] Consequently, social psychological
theorizing often reflects a Western concern that the social group will somehow overwhelm or
disempower the autonomous, agentic self.”

Such an individualistic starting point would beg the question, since context can often shape needs.
Cultural psychologists have found that in some other (macro) cultures, notably some Asian ones,
people’s “self-construals” often value interdependence over independence (Markus & Kitayama,
1991; also Triandis et al., 1985, on allocentric versus idiocentric orientations). Moreover, research
suggests that workplace experience can also affect self-construals (Fiske et al., 1998; Triandis and
Suh, 2002; Kohn and Schooler, 1983).
The social self

To account for how developers respond to task interdependence, we need to understand their
self-construals — their variants and how they are shaped by both the broader culture and work
experience. This theoretical challenge is usefully addressed by the literature on the “social self.”
Wertsch, Tulviste, and Hagstrom (1993) contrast the Lockean, individualist self with supra-individual
social self — a collective and mediated form of agency that goes “beyond the skin” (see also Taylor,

 7

1989; Burkitt, 1991). Bakhurst and Sypnowich (1995) similarly contrast the “Cartesian” self (“a
profoundly asocial phenomenon. Each self inhabits its own subjective realm and its mental life has an
integrity prior to and independently of its interaction with other people” p. 3) with the social self. A
weak form of the social-self thesis allows that our identities are shaped by social and cultural
influences (as in mainstream social-psychology’s study of social identity and social information
processing), while a strong form argues that “our very capacities to think and act are themselves
socially constituted” (Bakhurst and Sypnowich, 1995, p. 5). Vygotsky (1962; 1978) and Dewey (e.g.
1930; 1939: 405-433) both exemplify the strong form. In Marx, we find it in the assertion that human
nature is nothing but “the ensemble of the social relations” (Marx, 1975: 423). This weak- versus
strong-form contrast parallels that between weak and strong forms of “situated learning” theory
(Engestrom, 1999, elaborating Lave and Wenger, 1991, p. 34-5). It also parallels the contrast between
weak versions of organizational socialization, such as we see in King and Sethi (1998), where only
relatively superficial attributes are affected, and strong versions, such as in Triandis and Suh (2002)
and Dannefer (1984), where deeper features of personality are at stake.

The social-self perspective, however, provides only a theoretical context within which our
research question might fruitfully be posed: we still need a way of apprehending the factors that shape
the contours and contents of this social self. Three possible approaches present themselves.

The first approach is offered by symbolic-interactionism (e.g. Strauss et al. 1985; Kunda, 1992)
and ethnomethodological analysis (e.g. Suchman, 1987). By showing how people make sense of and
act in their world, these lenses help us see how subjective identities are shaped by intersubjective
networks. However, while they allow us to see more clearly the interconnection of subject and
context, and while they point heuristically in the direction of the network of relations that make up
this context, these lenses give the notion of context no internal theoretical structure — the salient
features of context are themselves entirely emergent and context-dependent (Lave, 1993; Nardi,
1996). Moreover, by focusing on the network of immediate, concrete relations, these approaches
downplay the role played by actors’ cultural-historical heritage in language, concepts, and tools, as
part of the context that shapes interactions. While these may not be big handicaps for micro studies of
individual behavior and small groups, research on the activity of larger collectivities and on
organizations needs a more theoretically elaborated notion of context.

The second approach is structuration theory (Giddens, 1979; see applications by Barley, 1986;
1997; Yates and Orlikowski, 1992). Structuration theory’s strength is to pose very clearly the problem
of the mutual constitution of structure (context) and agency (subject). It is less useful, however, in
helping us trace how that mutual constitution is accomplished in a given work activity. It teases apart
actor and structure, and teases apart too the dimensions (domination, legitimation, signification) of
each, without a theory of how they come together. The weakness is arguably due to the fact that
structuration theory has no determinate unit of analysis (unless we read structuration as a meta-theory
whose unit of analysis is sociological theory itself).

The third approach is better suited to our needs: cultural-historical activity theory (CHAT). As
explained in more detail in the following subsection, CHAT offers us a more elaborated notion of
context than symbolic-interactionism or ethnomethodology, and a more appropriate unit of analysis
— the activity. CHAT thereby enables us to turn structuration theory “inside out,” by beginning with
the assumption that structure and agency are given together in the world, in practical activity (Lave,
2001, p. 3).
CHAT

As developed primarily by Engestrom (1987; 1990) and Cole (1996), CHAT is based largely
on the work of Vygotsky (1962; 1978), Luria (1976), and Leont’ev (1978) (useful overviews of
CHAT and its variants include: Engestrom et al., 1999; Chaiklin, et al., 1999; Wertsch, 1979;
Blackler, 1993; Holt and Morris, 1993.) CHAT is distinctive first, in its unit of analysis, positing that
the most appropriate unit of analysis for the study of work situations is the activity, understood as the

 8

system of relations established when a collectivity pursues a common object. Leont’ev (1978) argues
that in the study of work, the activity is the “molar” unit of analysis, preferred over discrete
psychological operations (quasi-automatic responses to stimuli) because work involves higher-order
cognitive functions, and preferred over actions (discrete goal-directed behaviors) because work is best
understood as a collective endeavor that unfolds over historical time.

In Engestrom’s development of CHAT, summarized in the chart presented in Exhibit 2, the
structure of an activity system can be understood as an interrelated set of functional nodes:
* Subject: The subject of activity can be an individual or a collective actor.
* Object: The object of an activity is not merely the behaviorist’s stimulus, but (consistent with
common usage, American Pragmatism, and Marx of the 1844 Manuscripts) both (a) something given
to the mind or senses, and (b) a purpose.
* Tools: Human activity is distinctive in its extensive reliance on tools (including concepts and
language) as culturally transmitted artifacts that partly mediate the subject’s relation to the object of
activity.
* Community: The subject’s activity is embedded in that of the community — the collectivity of
people who share the same object. At the community node, CHAT captures the contours of the
subject’s reference group.
* Division of labor: The division of labor node captures a key aspect of internal structure of the
community — the differentiated roles played by its different parts.
* Rules: The rules node captures a second key aspect of the internal structure of the community —
the norms and conventions governing the behavior of individuals in the collectivity.
* Outcome: The result of the system’s activity is an outcome, a product. This result that will, in some
cases, become an input to another activity system. Conversely, nodes of the focal system can
themselves be the outcome of other activity systems: tools, for example, are often procured from
specialized suppliers.
* More advanced model: In some circumstances, actors in the activity system are aware of a
potentially more advanced model of their activity, and the contradiction between this ideal and the
current form of the activity system — along with the other contradictions discussed below — can
drive the evolution of the system.

 [put Exhibit 2 about here]
In the portrait I offer below of four software development organizations, “process maturity”

appears in the software development activity system in various roles. By the time of my interviews in
late 1999, the CMM had been adopted as a more advanced model. It had transformed people’s
understanding of the object of their work, and had thereby had a profound effect on all the elements
of the activity system. The term “process” had thus come to signify sometimes a tool (when it guided
the subject’s relation to the object of work, for example, in specifying documentation requirements),
sometimes a rule (for example, when it specified who needed to play what roles in the development
process), and sometimes an object in itself (when people worked on defining or refining the process).
Process maturity had had a profound effect too on the activity system’s outcome (and thus its
relations with client organizations), and had reshaped key features of the division of labor and of
community. And through these effects on the “objective” elements of the activity system, process
maturity efforts had had a profound influence on the “subjective” element — the developers
themselves.

In CHAT, the evolution of an activity system is interpreted as resulting from the system’s
internal and external contradictions. Exhibit 2 is a model of what Marx calls “production in general”
— the generic structure of productive activity; as it stands, this is a trans-historical model that
abstracts from the specific forms that activity takes in different social settings (Marx, 1973: 85). It is
the associated contradictions that give a specific social form to production-in-general. (Following

 9

Marx, and prior to him, Hegel, CHAT takes contradictions as real — out there, in objective,
independent reality — rather than purely notional, in the mind of the observer. Contradiction here is a
relation between two real forces, not merely a logical relation between two propositions. As such,
contradictions are the source of change.) Following Engestrom, I distinguish four types of
contradiction, and in the analysis below, we will see examples of each:
* Each node is marked by a primary contradiction characteristic of all activities (but particularly
business activities) conducted in capitalist social settings — the contradiction between use-value and
exchange-value. In this, we follow Marx’s presentation of the commodity as the “germ cell” — the
core — of capitalist production, and that the commodity is a contradictory unity of use-value — the
practical use of the product for the purchaser — and exchange-value — its power for the seller to
command other commodities or money in exchange. In the analysis below, I find that use-value
considerations in the implementation of the CMM drive the software development activity system
towards greater interdependence and greater efforts to master that interdependence through more
collaborative forms of organization. Exchange-value considerations, on the other hand, sometimes
stimulate these forces and sometimes impede them as unprofitable, replacing collaboration with
competition.
* Secondary contradictions give rise to tensions between nodes. In the present paper, I focus mainly
on the contradictions between the subject node — specifically, the traditional “hacker” subjectivity of
developers — and the other, “objective” elements of the software development system as these latter
have been changed by process maturity efforts. I find that the resolution of this contradiction is the
proximate cause of the emergence of new, more interdependent self-construals among developers.
* Tertiary contradictions are those between the form of the current activity system and a more
advanced model of it. I find that the CMM functions in a manner akin to what activity-oriented
psychologists have called “scaffolding” (Wood, Bruner and Ross, 1976), guiding an organizational
learning process that seems on balance beneficial to all the stakeholders.
* Quaternary contradictions are those between the given activity system and surrounding activity
systems. On the outcome side, I find contradictions between the interests of development
organizations and those of their clients. On the input side, I find contradictions between the prior
socialization of developers and the subjective demands of more mature development processes.

We can read these four types of contradiction as specific facets of a more encompassing
contradiction between two contradictory aspects of the capitalist production process. Under capitalist
conditions, writes Marx, the basic use-value/exchange-value contradiction of capitalism is expressed
in the contradiction between the labor process in which workers, tools, and materials are combined to
create new use-values, and the valorization process in which these use-values appear in the form of
wages, fixed capital, and variable capital, and are combined to create a profit (Marx, 1977: Appendix;
Thompson, 1989; Bottomore, 1983: 267-270). Viewed from this angle, my findings point to a
complex interrelation between these two, where valorization pressures simultaneously encourage,
undermine, and distort a tendency towards what I will call below the “socialization” of the labor
process.

The body of this paper analyzes this process-mature software development activity system,
taking in turn each element, or node, in Exhibit 2. First, however, I describe my methods and the
context of the research.

METHODS AND CONTEXT
Research methods

The research was conducted in a large, U.S.-based professional service firm, which I will call
GCC. With the support of senior management, interviews were conducted with staff in four programs
in GCC’s Government Systems group. (“Programs” at GCC were organizational units devoted to
long-standing, multi-project client engagements.) The choice of these programs was guided by a

 10

research strategy that sought to understand how development staff experienced work at high CMM
Levels. At the time of my research, Program A was at CMM Level 5; Program A’s sister, Program B,
was Level 3; Program C was almost Level 5 (it was certified Level 5 shortly after my study); and
Program C’s sister, Program D, was at Level 3.

In late 1999, I interviewed between 15 and 22 people at various hierarchical levels and in
various functions in each of these four programs. (The interviewees’ job titles are listed in Appendix
1.) Interviews lasted approximately one hour. They were tape-recorded and interviewees were assured
anonymity. The recordings were transcribed, and edited versions were sent back to interviewees for
review and correction. I also consulted voluminous internal documentation from each of these
programs as well as documents from corporate entities supporting them.

My reliance on interviews rather than ethnographic techniques warrants discussion. As Nardi
(1996: 81) points out, intentionality and shared, explicit understandings play a key role in the life of
an activity system. Conditional on the researcher allowing diverse voices to be heard, interviews can
give us access to the relevant intentions and understandings, and interviewees can act as informants
rather than mere respondents. If the object of research were operations or actions rather than activities
(using Leont’ev’s distinction referred to above), such reliance on interviews would be inappropriate.

To bring some order to these materials, I moved back and forth between existing theories and
concepts derived inductively from the interview data. A draft report was circulated to interviewees
and other interested parties at GCC, and their comments and corrections were incorporated in
subsequent iterations. The present article distills the key arguments.
Building process at GCC

GCC is one of the largest software services firms in the world. Major players in this industry
include Accenture, IBM, EDS, and CSC. In 2000, GCC’s total sales exceeded $9 billion. It employed
around 58,000 people. GCC had experienced double-digit annual revenue growth over most of the
prior decade. (On the software industry and its components and major players, see Hoch et al, 2000,
and Mowery, 1996). Notwithstanding the growth of the personal computer market and the associated
mass-market pre-packaged “software products” industry, the bulk of the rapidly expanding software
industry resembles GCC and its competitors in delivering “software services” — creating fully or
partly customized, large-scale systems for specific clients. (In 2000, according to data provided by
IDC, software services in the U.S. accounted for revenues of $395B versus $171B for software
products. Steinmuller (1996) notes that both these industry segments are small relative to the software
developed for their own use by firms and public organizations.)

At GCC, as in other large organizations, the term “process” was used to refer to a whole
hierarchy of standard operating procedures, from “Policies” defining broad, corporate requirements
down to “Instructions” defining individual tasks. The “granularity” of process at its finest levels can
be gauged by the Instructions at one of the Level 5 programs, Program C. There were separate
Instructions that covered high-level design, two types of low-level design, two types of code reviews,
one for testing, as well as Instructions for filling out Change Request Implementation forms and Root
Cause Analysis forms. Each Instruction was several pages in length. They often included the specific
forms to be completed as well as flow-charts detailing the sequence of associated tasks. Overall, the
process documentation summed to some eight linear-feet of shelf space. A sketch of the hierarchy of
the Government Systems group’s process documentation is given in Exhibit 3. In recent years, almost
all of this documentation had been put on-line, along with a host of other management information
and communication tools. Prescribed work-flows were being built into automated document routing
systems. Exhibit 3 also describes this technology infrastructure.

[put Exhibit 3 about here]
If the documentation that developers were required to read was voluminous, so too was the

documentation that they were required to write. In the words of one interviewee (perhaps
exaggerating for dramatic effect):

 11

“I can write the code in two hours, but then I have spend two days documenting it! It can be very
frustrating. We have to document check-in and check-out, a detail design plan, a development
plan. We have to print out all the differences between the old and the new code. There’s
documentation for inspection and certification. There’s an internal software delivery form. A test
plan. And all these need to be signed. […] I used to be an independent developer for about three
years. I never even created a flow-chart of my work! The only documentation I needed was a ‘to
do’ list. So I had to change of lot of habits when I got here.” (B-2)

To some extent, this formalization was due to size. The projects in the programs under study
here were not huge (see details below), but were large enough to require a level of formalization and
standardization that was noticeably higher than some employees had experienced in prior positions in
smaller establishments. Moreover, government clients typically imposed more documentation
requirements than commercial sector clients. And in Programs A and C, formalization was due to the
life-threatening risks associated with the products that the software was supporting.
The four programs

For the main part, my analysis will abstract from the differences between the four programs.
But the programs differed in many ways, as did the departments within them. Some background is
therefore useful.

Program A: CMM Level 5. Program A had had a continuous contractual relationship with its
customer for 30 years. Many employees had been attracted to the program because of the high public
profile of the customer. Historically, Program A had 10 to 20 projects under way at any one time,
each building mid-sized subsystems composed of 100,000-400,000 lines of source-code. Recent
years, however, had seen a downsizing of the organization due to the changes in the customer’s
needs. Between 1995 and 1999, employment had shrunk from over 1600 to around 450.

Program A relied mainly on established technology and was responsible for a considerable
amount of software maintenance. Over time, however, the program’s tasks had become more
complex as the customer requirements and the associated technologies had evolved. The business
environment had also become more demanding, with considerable pressure for more code reuse and
tighter deadlines.

Discussing the history of process at Program A, one interviewee summarized the evolution in
these terms:

“The first phase, in the late 1980s, was conformance. We had developed our standard process —
a big fat set of requirements and standards — and most managers felt that it was just a matter of
ensuring that people were implementing it. The second phase, in the early 1990s, was
enlightenment. This phase coincided with our big TQM push. We started getting working level
people involved in improving things. The third phase, running between about 1994 and 1998, was
empowerment. The word might sound trite to some people, but we had the process framework,
and we had the involvement, so we were really ready to delegate more autonomy down to the
projects and the tasks.” (A-11)

Program A adopted the CMM in the early 1990s, and during the latter part of the decade used
both CMM and ISO-9001 to help guide their improvement efforts. While their customer did not
require CMM certification, external pressure played an important role in its adoption:

“We knew that other clients would require it and we felt it might be a good thing to do to help us
improve.” (B-13, formerly with Program A)

In 1991 the first formal, external Software Capability Evaluation (SCE) rated the organization
a Level 1. The organization subsequently undertook several internal self-assessments. In 1996, the
second evaluation rated them close to Level 3. In 1998, they were formally assessed as a Level 5
organization.

Program A was a “poster child” for aggressive process improvement efforts at GCC. Analyzing
some 30 projects over the 1994-2000 timeframe, Program A found that both productivity and quality

 12

improved on average by 10% per year. They also saw dramatic improvement in the accuracy and
speed with which they forecast costs and schedules for project proposals.

An internal survey of Program A personnel in 1999 asked whether they saw value in the effort
associated with CMM certification. There were 260 responses from 850 surveys distributed. Opinions
were largely positive, and more so among people who had personally participated in an audit. Of
those not audited for the CMM, 58% saw CMM as “well worth the effort” and another 30% as “of
some value.” Of those audited, 79% thought CMM was “well worth the effort” and another 18%
thought it was “of some value.” The proportion who thought it was of little or no value was 12%
among the non-audited and 3% among the audited.

Program B: CMM Level 3. Program B’s mission was to build information management tools
for its government client to use in operations around the world: internal accounting, management, IS
resource management, and so on. Program B’s staff developed new systems, maintained and
upgraded old ones, and operated a Help Desk.

GCC won the contract in 1998 by promising to leverage GCC’s experience in Program A to
help Program B reach CMM Level 3 within 18 months. GCC replaced nearly 30 contractor
organizations that had worked largely independently of each other. Program B functioned as a prime
contractor and system integrator, both developing systems themselves and coordinating a small
number of subcontractors.

Program B itself employed directly or indirectly about 275 people. The largest of its projects
employed about 90 people. The overall system was composed of 700 files, comprising about 1
million lines of source-code (MSLOC).

To help reach Level 3, several people were transferred from Program A. The two largest
projects were each led by former Program A people, and Program A veterans staffed several other
key management and staff positions. Program B’s process efforts were slowed down by a very
difficult Y2K project, which strained relations with the client. Once that project was completed,
relations improved. The program was officially assessed as Level 3 in early 2000.

Program C: CMM Level 5. This program, like Program A, had had a continuous contractual
relationship with its Department of Defense (DoD) end-customer for some 30 years. But the
relationship had always been mediated by other organizations serving as prime contractors. Program
C undertook two or three major projects at time, each representing about 2.5 MSLOC. These projects
created new versions of the weapons system control software they provided to the DoD. Program C
employed about 450 people. It was divided into four main units that developed and maintained the
main modules of the system, plus several support departments.

In recent years, there had been a swing towards greater bottom-up participation and a
corresponding effort to change management styles.

“I think it’s fair to say that our culture has not put a lot of weight on things like participation and
empowerment. When I first came on board, I found levels of secrecy, need to know, and cones of
silence. In part, that was due to the influence of customer we worked with, and to the high
proportion of senior people both there and here with military backgrounds. It was like, ‘Don’t ask
questions; just do it,’ and the ethos around here was more like ‘Just do your job.’ Even the TQM
program in the early 1990s didn’t make much of an impact. It was seen mainly as a passing fad.
But in the last 18 months, the change has been dramatic. We’ve started to free up resources for
symbolic and financial recognition. And we’ve emphasized communication more.” (C-14)

The key drivers of process maturity at Program C had historically been the succession of
Military Standards imposed by the end-customer (the government) in conjunction with the
intermittent pressure of their immediate customer (the prime contractor) (see Schulmeyer 1998 for an
overview of the evolution of the DoD software standards). Unlike Programs A and B, Programs C
and D did not have dedicated Process Engineering groups driving process improvement, but relied
instead on an expanded Quality Assurance staff and cross-functional management-level Software

 13

Engineering Process Groups (SEPGs). Nevertheless, by the middle of 1998, Program C was evaluated
at Level 4, with all but some minor elements of Level 5 in place as well. Shortly thereafter, it was
evaluated at Level 5. The quality of its products was widely recognized. The program had averaged
97% of award fees, which is an unusually high rate among DoD contractors.

Program D: CMM Level 3. Program D began operations in 1991, developing infrastructure
systems for the DoD. Program D was unusual within GCC because it covered the whole product
lifecycle, offering complete solutions including hardware, the integration of hardware and software,
warehousing, installation, and on-going support. It had developed 2 MSLOC over the 1993-1999
period. Program D was also unusual within GCC for its extensive use of commercial, off-the-shelf
(COTS) hardware and software. Its systems incorporated over 200 commercial products. The
program’s systems were being used in about 100 sites, of which about 50 were inter-linked. In 2000,
Program D employed some 350 people directly, plus a further 120 contractors.

Until recently, software process had received less attention in this program than in the others
studied. According to one interviewee:

“The Program D system was billed as based on a prototyping approach rather than the traditional
waterfall approach. At the time, this was pretty leading-edge stuff at GCC, and it attracted people
who don’t like the discipline associated with relatively routine projects of the kind GCC
Government Systems had traditionally done. But the initial team of 30 people has grown to nearly
600, and the business really has to deliver, so they realized they needed at least some Level 2
discipline. Even some of the die-hards have had a kind of religious conversion, and have become
quite committed to process now.” (D-14, also works with Program C)

Process had recently moved into the foreground. As part of a bid for a very large DoD contract,
Program D had to undergo an external process evaluation. In preparation for that evaluation, they
conducted their own assessment, and discovered that the program would likely be rated no higher
than a Level 1. The general manager chartered an Improvement Team and charged it with taking the
program to Level 3. QA was significantly strengthened — the staff grew from three to eight people
— and a broad effort at process documentation was undertaken throughout the organization by
department-level Action Teams. By the end of the 1999, the program was assessed as Level 3.

Differences across the programs. Contingency theory (Lawrence and Lorsch, 1967;
Galbraith, 1977) teaches us that the scope for process standardization and formalization such as
recommended by the CMM is closely related to the degree of routineness of the organization’s key
tasks. Task routineness varied across these GCC programs — that is, people encountered more or
fewer exceptions to established patterns of problem-solving, and these exceptions were more or less
difficult to resolve. And as predicted by contingency theory, the level of detail in the process varied
across programs with this routineness. For example, in comparison with Program C, its sister program
D dealt with a broader range of technologies and these technologies evolved more rapidly; so it is not
surprising that Program C was considerably more mature in its process than Program D and its
process was more controlled at finer degrees of granularity. Within programs too, the tasks of
different departments differed in their degree of uncertainty and degree of process discipline. For
example, at Program D, one department was responsible for defining site requirements, planning and
procuring hardware, getting it to the site, and installing it, and this department, unlike Development,
did specify Instructions.

Notwithstanding these differences, all the departments in all four programs — from the most
routine to the least — had come under great pressure to adopt a more mature process orientation.
Partly this was due to pressure to conform the expectations of key customers, and partly it was
because progress towards higher CMM Levels appeared to at least some influential insiders as a
valuable opportunity for technical process improvement — as a “more advanced model.” As a result
of these external and internal pressures, all four programs had considerably increased the degree of
standardization and formalization of all the aspects of the development process. The two high-

 14

maturity programs (A and C) had gone significantly further than B and D, with detailed Instructions
specifying the work of even the Development functions.

A common Human Resource Management challenge. Software development relies
primarily on relatively “professional” personnel. It is true that software developers’ claim to
professionalism is limited because they have not established an accreditation monopoly such as
accorded physicians and lawyers, and because their knowledge base is not as theoretical (although a
discipline of “software engineering” – of which CMM is a direct reflection -- has begun to change
this) (see Abbott, 1988). Nevertheless, two factors encouraged a professional status and outlook.
First, software development depends critically on the capabilities of the staff, and these capabilities
are more occupation-specific and less firm-specific than is the case with less-professionalized
occupations. As evidence, I would cite that fact that in the four focal units, two-thirds of the personnel
held a Bachelors, Masters, or PhD degree. And second, notwithstanding the discipline created by
process maturity, developers needed to exercise considerable discretion in their work to ensure
quality and efficiency. Developers thus had considerable power in their relations with management.
This excerpt illustrates:

“Buy-in is important in this kind of business. Take an example: programming languages. The
DoD was very enthusiastic a few years ago about Ada. It was a great language from a
management point of view, since it specified things in a way that gave management a lot of
control over the process. But the programmers preferred C because it was less constraining and
more open. They simply refused to get on board with Ada, and management lost the fight.” (A-
11)

Given this relatively professional character of the work, and given also the persistent imbalance
of supply and demand in the labor market for software personnel, staff retention had long been a high
priority for GCC and an important consideration in the management of process rationalization efforts.
As government contractors, GCC had little control over salary levels, and salaries tended to be lower
than in the commercial sector. Moreover, by policy, GCC offered only modest financial incentives to
staff below senior management levels; symbolic rewards were more common. So managers
understood that retaining talented employees depended above all on making GCC a good place to
work, with both good employment conditions and challenging tasks. Program A illustrates the
resulting climate:

“The turnover figures don’t show you how many people come back. We’ve had six or seven
people leave then return. They realized that we have a pretty good environment. You don’t get
crucified for mistakes, for one thing. The ‘blame game’ is pretty much non-existent. If someone
underperforms, we usually find another job for them that’s a better fit. They aren’t humiliated.”
(D-17)

In the programs studied, annual staff turnover in recent years had been significantly lower than the
industry average.

KEY FINDINGS
Overall, my interviews suggest that the standardization and formalization represented by

CMM-style process maturity had broadly positive effects, both technical and attitudinal. Technically,
the more routine tasks in software development were rendered more efficient by standardization and
formalization, leaving the non-routine tasks relatively unstructured to allow more creativity in their
performance. Moreover, non-routine tasks benefited from the guidance afforded by modest, well-
designed efforts at standardization and formalization, and from the elimination of “noise” and
overload created by unnecessary rework in routine tasks.

Attitudinally, in its effects on developers’ experience of work, process maturity was
experienced by many developers as enabling and empowering rather than coercive and alienating.
Process maturity did mean a loss of autonomy. Higher CMM Levels drew people into broader and
tighter webs of interdependence, both horizontally and vertically. The individualistic “hacker” model

 15

of software development was displaced by a new understanding of work as a collective endeavor. In
that collective endeavor, process discipline, even though a constraint on individual autonomy and a
burden on individual productivity, was often seen as a functional necessity in the pursuit of
individually- and collectively-valued goals relative to cost, quality, and schedule, and relative to the
improvement over time in all three of these dimensions.

The key to ensuring a positive response to process discipline was extensive participation: As
several interviews summarized it, “People support what they help create.” These organizations had
both formalized processes supporting participation and strong normative commitments to
participative rather than autocratic styles of leadership. The resulting organizational form resembled
what Adler and Borys (1996) termed an “enabling bureaucracy,” combining a dense web of rules and
a finely differentiated vertical and horizontal division of labor with high levels of trust and
community cohesion.

The key process at work in the transformation of software development was one I call
“socialization.” Socialization is usually construed as the process whereby people new to a culture
internalize its norms. Following Marx (e.g., 1973: 705) and Engels’ (1978) discussion of the
socialization of the forces of production (as distinct from their arguments in favor of the socialization
of the relations of production by nationalizing ownership of industry), I see such internalization as a
special case of a more general phenomenon: the objective elements of an activity system can also be
socialized insofar as they come to embody the capabilities developed in the broader context rather
than only those capabilities that emerge from the local context (see also van der Pijl, 1998, Sohn-
Rethel, 1978; Kenney and Florida, 1993:304; Engels, 1978). Engels (1978: 702) is eloquent:

“Before capitalist production. i.e. in the Middle Ages. […] the instruments of labor – land,
agricultural implements, the workshop, the tool – were the instruments of labor of single
individuals, adapted for the use of one worker [… The bourgeoisie transformed these productive
forces] from means of production of the individual into social means of production, workable
only by a collectivity of men. The spinning-wheel, the hand-loom, the blacksmith’s hammer were
replaced by the spinning-machine, the power-loom, the steam-hammer; the individual workshop,
by the factory, implying the cooperation of hundreds and thousands of workmen. In like manner,
production itself changed from a series of individual into a series of social acts.”

On the one hand, process maturity socialized the objective elements of the software
development activity system. The contradictions between these changes in the objective nodes and
the traditional, independent, “hacker” self-construal led to a shift at the subject node towards more
interdependent self-construal, and thereby towards a more directly socialized self.

On the other hand, however, the forces at work also embodied other contradictions that limited
this socialization tendency. Contradictions both at and between the nodes of the activity system
created counter-tendencies. Socialization appeared to be the dominant tendency, but the progress of
socialization was hesitant and uneven.

In the following subsections, I first elaborate on this general notion of socialization, then
summarize its effects on the subject node, and finally show how changes in the other nodes contribute
to these effects. Exhibit 4 uses the CHAT framework to summarize my findings. Under each heading,
and reflecting the structure of the following subsections, I first identify the dominant tendency and
then one or more accompanying tensions that reflect the various contradictions at work.

[put Exhibit 4 about here]
The activity system as a whole: A socialized development process.

Traditionally, at the lowest levels of process maturity, Level 1, developers enjoyed high levels
of autonomy, task variety, and task identity. Greenbaum (1979: 64-4) quotes a veteran programmer
thus:

“I remember that in the fifties and early sixties I was a ‘jack of all trades.’ As a programmer I got
to deal with the whole process. I would think through a problem, talk to the clients, write my own

 16

code, and operate the machine. I loved it — particularly the chance to see something through
from beginning to end.”

The activity systems within which developers worked were largely local. Kraft (1977: 56)
writes of this period: “Programmers (and analysts) followed a logic and procedures which were
largely of their own making,” Being tacit rather than codified, tools and rules were difficult to
communicate across locales. Working knowledge was in these senses private rather than social. As
one of Greenbaum’s interviewees put it:

“No one knew what was going on — certainly not the managers. But even the programmers and
systems analysts were confused. There were no standards for doing anything — coding, testing,
documenting — they were all done the way each person felt like it, or in fact, they were not done
at all. [...] Programmers never documented what it was their program was to do. It was the same
with setting up testing procedures and test data. When the whole system was put together, we
never knew if it really worked because nothing got written down.” (Greenbaum, 1979: 73-7)

At higher levels of process maturity, developers were embedded in larger social aggregates,
and encountered approaches that were the fruit of a complex, organized, large-scale process
development effort. Tools, more advanced models, rules, division of labor, community were no
longer naturally emergent phenomena grounded in local experience. They were formalized and
standardized. Developers were aware that their effectiveness was the not only the result of their own
individual effort and skill and of informally shared tricks of the trade, but also and increasingly the
result of this social, rather than private, accumulation of working knowledge.

At first, this socialization took a form many developers experienced as alienating and coercive.
Discussing the Military Standards that come into force in the mid-1980s, one veteran noted that:
“[Military Standard] 2167A was supposed to make coding a no-brainer” (D-20). In the civilian
Program A too, the initial experience with process was top-down, oriented to conformance, and “most
managers felt that it was just a matter of ensuring that people were implementing it” (A-11).

But by the time of my study a decade or more later, the Level 5 Programs had pushed the
socialization of the production process further, and it had taken a more enabling form. Two interviews
were particularly eloquent on this point:

* “I came from a background in industrial process computers and the organization I worked for
was much less structured in how they handled all this. The process was basically just define the
requirements, write the code, then do a final test. Apart from that, you were basically on your
own. Here the processes tell you a lot more about how to do the work. By formalizing things,
they make it easier to incorporate lessons-learned a lot a faster. Previously, it was more like a
‘hand-me-down’ — you learned how to do your work with some help from other people on the
job, or just by yourself.” (B-14)
* “Where I used to work before I came to GCC, the development process was entirely up to me
and my manager. What I did, when I did it, what it was going to look like when it was done, and
so forth, was all up to me. It was very informal. Here everything is very different. It’s much more
rigid. It’s much more formal. A lot of people lay out the schedule, the entire functionality, and
what I’m going to be accountable for — before I even get involved. […]
 When I got here I was kind of shocked. Right off, it was ‘Here are your Instructions.’ ‘So what
does this tell me?’ ‘It tells you how to do your job.’ I thought I was bringing the know-how I’d
need to do my job. But sure enough, you open up the Instructions, and they tell you how to do
your job: how to lay the code out, where on the form to write a change request number, and so
on. I was shocked.
 But I can see the need now. Now I’m just one of 30 or 40 other people who may need to work
on this code, so we need a change request number that everyone can use to identify it. It certainly
feels restrictive at first. They explained the Instructions and the whole Program C process to us in
our orientation seminar, but it’s hard to see the value of it until you’ve been around a while. Now
I can see that it makes things much easier in the long run.
 I hate to say it. As a developer, I’m pretty allergic to all this paperwork. It’s so time-
consuming. But it does help. You’ve got to keep in mind, too, that by the time we see the

 17

Instructions, they’ve been through a lot of revision and refinement. So they’re pretty much on
target.” (C-13)

Codification of knowledge: A key mechanism of socialization. A key force driving this
socialization of the objective elements of production was the codification of working knowledge —
specifying in writing a prescribed process. Codification led to socialization via five main effects.

First, a common vocabulary was formed:
“In a Level 1 organization, one without a common process, even one where there was a lot of
goodwill between the functions, they wouldn’t have the common vocabulary, or common
definitions of key tasks, and everything would be subject to conflicting interpretation, so people
would be fumbling in the dark. A common process greatly simplifies things.” (C-5)

Second, memory became objectified and collective:
* “Process gives people access to assets from prior work — for estimation, for standards and
procedures, and for lessons learned. In our asset library, we keep the standards and procedures of
all our projects, and project managers refer back to these to use as templates. We encourage
people to share and borrow.” (A-3)
* “Take for example our internal software delivery procedure. At first, developers thought that
this was just more burdensome paperwork. But soon they found it was a great memory system.”
(B-5)

Third, conflict became less personal, more public. Codified process meant that the parochial
concerns of subgroups and individuals and the resulting conflicts were drawn into the open. These
concerns became the objects of collective scrutiny and thus less covert:

“We say it’s important to document software errors, but that’s hard to sell. Developers are used to
just doing the corrections, and the testers hate the documentation too. But we try to sell the testers
on this by explaining that this way they can get credit for the problems they find. And we try to
explain to them that if we document the errors, we can track them, and if errors recur, we can find
root causes. That will help us convince the developers for example, that a given module has too
many problems. When it’s documented, it’s less personal, and it helps the dialogue with the
developers. But you also have to ensure that managers won’t use the data punitively.” (B-8)

Fourth, improvement became a collective endeavor. With process codification, a broader range
of people were drawn into a discussion of how their work should be performed:

“The Improvement Team’s work created a real sense of community. Each week it would be
someone else’s turn to present their process. Since you knew it would be your turn soon, we all
helped each other. And everybody got to see how the rest of the organization functioned.” (D-12)

Moreover, as we will see below, the collectivity involved here was not just that of the local program,
but the Government Systems group, GCC as a corporation, and indeed, the software process
community that helped create and validate the CMM.

Fifth, the acquisition of professional knowledge was rationalized. Process encouraged a shift
from a traditional form of training — apprenticeship — towards something more systematic.
Apprenticeship is a mode of learning that is appropriate and necessary when knowledge is the local,
tacit, private property of the artisan-craftsman (see for example Sacks, 1994; Lave, 1988). A more
socialized production process relies on forms of knowledge that are more codified and on forms of
training that can thus be more rationalized. Going back a couple of decades, this transformation began
with the shift to formal university training requirements for development jobs; more recently, under
the pressure of CMM, it continued in the further rationalization of the acquisition of firm-specific
skills:

* “We’ve developed a formal mentoring program. There’s a checklist of the key processes
everyone needs understand, and every new person is assigned a mentor whose job it is to explain
each of these in turn. The checklist is audited by QA.” (A-9)
* “We had an informal training and mentoring program, and when we got serious about the
CMM, we wrote it down. Writing the process down has had some great benefits. It’s made us

 18

think about how we work, and that’s led to improvements. For example, formalizing the training
program has helped bring some outliers into conformance.” (C-15)

Although codification plays a key role in socializing the production process, this codification
did not eliminate the importance of tacit knowledge. Both old and new forms of tacit knowledge were
critical to the effectiveness of documented knowledge (Adler, 1996; Dosi, 1996). Documentation was
largely complementary to tacit knowledge. The exception that proves the rule was Program B in its
efforts to learn from Program A’s relative process maturity:

 “We’ve brought in [from Program A] all the formal elements of the process — the policies,
methodologies, standards and procedures, and handbooks on the process side, and structural
elements like QA, Process Engineering, etc. But it’s basically an empty shell as yet. Apart from
the ex-Program A people, there’s no depth to it as yet, with little buy-in and little deployment.”
(B-12, formerly with Program A)

Tension: Socialization versus valorization. Tendencies towards socialization were
accompanied by counter-tendencies. These counter-tendencies appeared to reflect the exigencies of
capital valorization. In the words of one interviewee:

“One key challenge is maintaining buy-in at the top. Our top corporate management is under
constant pressure from the stock market. The market is constantly looking at margins, but
Government business has slim margins. That doesn’t leave much room for expenditures
associated with process improvement — especially when these take two or three years to show
any payoff.” (C-14)

As we will see in the subsections below, the progressive socialization of the labor process was
simultaneously stimulated and retarded by the valorization process, as expressed in (a) the
competitive rivalry between firms, (b) the tension between corporate interests and the collective
interests of its employees, and (c) the tension between the collective nature of work and the
individualizing effects of the wage relation. In aggregate, the centrifugal effects of valorization appear
to have been weaker than the centripetal effects of socialization, but the former were strong enough to
make progress of socialization halting and uneven. Such, I submit, is the conclusion suggested by the
following subsections.
Subject: A more interdependent self

My interviews suggest that process maturity led to a changed subjective identity among
developers — towards a more interdependent self-construal. What mattered to these professionals’
self-esteem and identity was now not so much their individual efficacy as their collective efficacy
(Bandura, 1997; Gibson and Earley, n.d.). In my interviews, “we” tended to replace “I” as the subject
of work, because people increasingly saw themselves as part of a collective effort. The ratio of
mentions of “we” to mentions of “I” in my interview notes was 1.83 in Program A and 1.95 in
Program C (the two Level 5 programs), and 1.29 in Program B and 1.44 in Program D (the two Level
3 programs).

The proximate cause of this change was the experience by developers of changes in the other,
“objective” elements of the software production activity system. As argued a century ago by
pragmatist philosophers and symbolic interactionist sociologists, and as further articulated by CHAT,
the self is not an immutable spirit hovering above the material world, merely influenced, but never
fundamentally changed, by an external context. The self is an identity whose contours and contents
vary with — indeed, are constituted by — the networks of people and things within which the
individual is located. The hacker self reflected the structure of CMM Level 1 activity systems. The
effect of process maturity on the software development activity system was to socialize its objective
elements and thereby to forge a different kind of self — a broader, more interdependent sense of
one’s identity. Some excerpts illustrate:

* “In a small organization doing small projects, you have a lot of flexibility, but there’s not much
sharing. You’re kind of on your own. Here, I’m just a small part of a bigger project team. So you
don’t do anything on your own. It’s a collaborative effort.” (C-13)

 19

* “We used to be a group of hackers. If we’d have had to rebuild a system, we simply wouldn’t
have been able to do it because we wouldn’t have had the documents. We’ve come a long way
from that! Now we function according to a defined process and we collect data on ourselves so
we can do defect causal analysis to drive continuous improvement.” (A-3)

More concretely, this new self-construal emerged through a mix of adult socialization (e.g.,
Kohn and Schooler, 1983) and “attraction-selection-attrition” (Schneider, 1987). On the effects of the
former, we have the testimony quoted earlier of “But I can see the need now” (C-13). In Program D,
one interviewee described his experience in these terms:

“I was not originally a believer in this process stuff. I remember seeing coding guidelines when I
joined the Program D. I just threw them into a corner. But a year later, I found that my code
didn’t make it through the code checker, and that got me to reconsider. So I went to some CMM
training a few years ago — and I’ve been converted! Most of the developers and leads are being
dragged into process kicking and screaming. Any coder would rather just hack.” (D-22)

(See Conn, 2002, for discussion of the process of developer socialization in another software factory.)
On the importance of attraction-selection-attrition, two excerpts are illustrative:

* “You won’t fit in well here if you don’t like structure, you prefer working by yourself, you
don’t like getting suggestions from other people, or you don’t like taking responsibility for your
work and for making it better.” (A-8)
* “We still have to deal with the ‘free spirits’ who don’t believe in process. […] Most of them
adapt, although some don’t and they leave.” (C-14)

A new professionalism. This more interdependent self implied a corresponding mutation in
the nature of developers’ notion of professionalism. Some aspects of professionalism were preserved,
while some were significantly transformed.

On the one hand, process leveraged traditional values of professionalism, including the appeal
to individual pride in the results of one’s own work:

* “We appeal to people’s sense of professionalism, saying something like, ‘We’re all
professionals. And as professionals, we’re both pretty mobile and committed to high quality
work. Since I may leave here at some point, even soon, it’s my duty as a professional to give the
organization the documentation it needs to continue serving the customer.’” (B-5)
* “Our process makes for better testing, which means earlier detection of problems, which in turn
makes the life of the programmer a lot easier and avoids a lot of embarrassment.” (B-15)

On the other hand, however, process seemed to encourage a mutation of professionalism.
Whereas traditional conceptions of professionalism give great salience to the individual practitioner’s
judgment and thus to their autonomy — if not economic autonomy, at least technical decision-making
autonomy (Freidson, 2001) — process encouraged the emergence of a more collective professional
subject. This mutation is particularly significant because it appeared to moderate the traditional
tension between professional autonomy and bureaucratic authority:

* “Usually people run away from audits. But amazingly, recently we’ve seen several projects
volunteering — they want to show off their accomplishments and process capabilities.” (A-15)
* “The Improvement Team’s work [...] made everyone realize that there are real business benefits
to sharing information — instead of just worrying about your own rice bowl. I’m your [internal]
customer, so I need you to understand my requirements. And the effect has been to make people
interested in improving their own operations on their own, even without management being
involved or pushing them.” (D-12)

Tensions: Interdependence versus dependence and independence. Interviews revealed two
main types of tensions that could provoke resistance to the more socialized development process and
thus affect the emergence of a more interdependent self.

First, due to the primary contradictions at each of the other nodes, there was the constant risk
that the demand for interdependence would mutate into coercive dependence and provoke either
resistance or apathy. Subsequent subsections will explore this in more detail.

 20

Second, developers sometimes clung to their independence. This was due in part to the primary
contradiction at the subject node, expressed in the tension between the collective and collaborative
requirements of effective process (the use-value aspect) and the individual and competitive nature of
the employment contract (the exchange-value aspect). In part it was also due to the quaternary
contradictions between prior socialization and the demands of the new model for a new self-construal.
In a U.S. context, the change from a more independent to a more interdependent self-construal means
a change in deeply ingrained cognitions and emotions. Such a change challenges the subject’s prior
socialization, as effected in early childhood personality formation, and in subsequent education,
training, and work experiences.

The overall result of these tendencies and counter-tendencies was an uneven process of
subjective socialization. Expanding on the excerpt above:

“We still have to deal with the ‘free spirits’ who don’t believe in process. These are typically
people who have worked mainly in small teams. It’s true that a small group working by itself
doesn’t need all this process. But we rarely work in truly independent small teams: almost all our
work has to be integrated into larger systems, and will have to be maintained by people who
didn’t write the code themselves. These free spirits, though, are probably only between 2% and
4% of our staff. We find some of them in our advanced technology groups. We have some in the
core of our business too, because they are real gurus in some complex technical area and we can’t
afford to lose them. And there are some among the new kids coming in too: many of them need
convincing on this score. Most of them adapt, although some don’t and they leave.” (C-14)

I now turn to the other nodes of the software development activity system so as to better
understand the forces driving this transformation of self-construals and those responsible for this
unevenness.
Object: An expanded object

My interviews suggest, first, that process maturity made the object of developers’ work more
stable and more intelligible. This object was less likely to mutate in unpredictable ways due to the
poor quality of configuration control, requirements planning, or quality management:

“Before I came to GCC, I worked for a small software firm doing business software. It was what
the SEI folks would call a Level 1 organization — completely ad hoc. No documentation, no
design reviews, no standardized testing. So there was a lot of chaos and rework. [...] In a place
like this, everything is more organized, and you know exactly where you are in the development
process. I like the fact that you know where you’re up to and how to do your work. It’s more
streamlined and there’s less rework.” (C-9)

Second, process meant more paperwork. Process forced developers to document their work
more thoroughly — to attach to the code or the test a description of its meaning, its intent, and the
rationale of the design. The developer quoted immediately above went on to say:

“On the other hand, I don’t like all the paperwork. Your work may be more streamlined, but after
the work is done, there’s more forms you have to fill out to document what you’ve done.” (C-9)

The deeper significance of the growing documentation burden seems to be that process maturity
expanded the object of work to include an imaginary dialogue with previous and future developers (a
temporal expansion) and with other people who are working on the code (a social expansion):

 “I think that our process — and even the paperwork part of it — is basically a good thing. My
documentation is going to help the next person working on this code, either for testing or
maintenance. And vice versa when I’m on the receiving end.” (C-11)

Process also enabled a technical expansion of the object of work to include process itself.
Developers were called upon to participate in process improvement efforts. The process itself thus
became an object of their work:

“Perhaps the biggest change as we’ve become more process mature is that it makes everyone
more interested in process improvement. Take an example: now I’m working on a new software
utility. Top management asked us to evaluate it, to see if we should all use it. So I’ve been

 21

facilitating a series of meetings with all the managers, where everyone is talking about the
utilities they are using and the problems they’re having. It’s been great to see this kind of
problem-solving work going on. That’s the effect of having a defined technology change
management process [a CMM Level 5 KPA]. CMM got this process going for us.” (D-12)

Tensions: “In the end, it’s all about profit and meeting schedules!” Process maturity meant
tensions between competing priorities, between short- and long-term goals, and between technical
and business needs:

* “Lower-level managers juggle the needs of the customer and the pressures from GCC upper
management. And upper management is focused primarily on things that strengthen GCC’s
position for obtaining future work rather than what we need to retain current work. So even
though the requests for things like CMM ratings may have no value-added for our immediate
assignment, we do them anyway.” (A-12)
* “I understand why we need the CMM evaluations. But it’s added a lot to the amount of
documentation we need and the number of interviews we have to go through. I suppose that in the
long term, this documentation might help us improve, but for the developers, it’s added a lot of
paperwork.” (C-9)

Clearly, part of the CMM effort was “for show,” responding to symbolic legitimacy pressures
rather than technical performance pressures. As such, it sometimes led to a decoupling between
formal process and daily practice (as described by Meyer and Rowan, 1977). Comments such as these
were common in the two Level 3 Programs but less so in the two Level 5 Programs:

* “We do have written processes, but some are not always used consistently. They are not always
being used by the developers. They are not always used by the program managers in their regular
reviews.” (B-13)
* “The evaluation and CMM SCE forced us to update our documents. We didn’t really change
anything in how we work though.” (D-10)

In part, this symbolic/technical tension reflected a deeper, primary contradiction at this node:
interviewees were often aware that their (use-value oriented) process improvement efforts were at risk
of being overridden by a higher (exchange-value) imperative:

* “As I see it, GCC is a corporation, and that means it’s run for the benefit of the major
stockholders. So top management is incentivized to maximize dollar profits. Quality is only a
means to that end, and in practice, quality sometimes gets compromised. I used to be a technical
person, so I know about quality. But now I’m a manager, and I’m under pressure to get the
product out — come what may. I just don’t have time to worry about the quality of the product. I
have a manager of software development under me who’s supposed to worry about that.” (D-20)
* “It’s hard to convince people that improving the process will help us get or keep business.
[Referring to the downsizing of Program A:] We had a world-class process, and look what
happened to us! Jobs in an organization like this depend a lot more on the vagaries of contracting
than on our process excellence.” (A-6)

The contradiction between use-value and exchange-value was particularly visible to the
interviewees in the form of missed opportunities for process improvement:

“We could do better at capturing and using lessons learned. We have all the vehicles for doing it
— presentations, newsletters, databases. But it takes time. And there are so many competing
priorities. In the end, it’s all about profit and meeting schedules!” (laughs) (A-8)

In sum, the impact on the subject node of the transformation of the object under mature process
conditions was to make developers more conscious of their interdependence with other contributors in
attempting to create a good product, even if the organization’s profit imperative sometimes
undermined those efforts.

 22

Outcome: Collaborating with customers
The outcome of the software development activity system at these GCC programs was a

market-mediated exchange, exchanging software for fees with a distinct activity system in the
customer organization. Process was both influenced by and in turn influenced these relations.

As noted above, government agencies were increasingly making CMM Level 3 an important
factor in awarding contracts. Program B’s contract included an explicit Level 3 requirement, and
customer pressure had been a critical impetus to process efforts in Programs A, C, and D too. For
customers and suppliers alike, process maturity held the promise that the risks associated with arm’s
length market transactions — the inevitable gap between the producer’s supply and the customer’s
demand — could be moderated by mutual commitment to a process that set expectations and guided
collaborative decision-making. This drew developers into more conscious collaboration with people
in the client organization. Instead of submitting to the conventional wisdom that “The customer is
always right,” GCC staff were encouraged to push back and open a dialogue:

“There’s a great focus now on ‘accountability’ all through the system. We are expected to be
more aggressive in pushing back when things are inconsistent with our processes. And that goes
down to our project managers. Instead of simply supporting our customer management
counterparts, the project managers have to be willing to push back. That’s changed the tone of
some of our monthly program review meetings with the customer. This culture change goes right
down to the staff. In general, we try to buffer the staff from these issues, but if they get
instructions that violate our processes, they have to push back too.” (C-10)

Tensions: coordination versus market anarchy. The fact that the customers were
economically independent entities pursuing their own priorities sometimes undercut the cooperation
needed to assure a high-quality custom software process:

“The biggest problem here has been the customer and getting their buy-in. At Program A, our
customer grew towards process maturity with us. Here [at Program B], we started with a less
mature client. Some of the customer management even told us that they didn’t want to hear about
QA or our quality management system — they saw it as wasteful overhead. When you bid a
project, you specify a budget for QA and so forth, but if they don’t want to pay, you have a
resource problem. And once you get the contract, then you start dealing with specific project
managers within the customer organization, and these managers don’t necessarily all believe in
QA or simply don’t want to pay for it out of their part of the budget. On the Y2K project, the
customer kept changing standards and deadlines. Basically, we were dealing with a pretty
process-immature customer, and that made it difficult for us to build our process maturity. Things
have improved considerably since then.” (B-13, formerly with Program A)

Even at high levels of maturity, the outcome node was the site of quaternary contradictions
between activity systems. Program C illustrates:

“Our customer has been rated a CMM Level 4, but they don’t seem to implement their process.
For example, in one of our recent projects, the requirements kept changing and the scope kept
growing, but the customer wasn’t following a disciplined process for controlling these changes
and just didn’t want to hear about the implications. The requirements kept drifting so much that it
was very hard to even regularly update our estimate of the size of the project. They just ignored
our concerns for nearly a year. Finally we issued a cost report that showed that that we’d need
25% more staff-months. Putting it in dollars finally got their attention. But not before we had
wasted a lot of work and time.” (C-5)

In sum, the transformation of the outcome under mature conditions made developers more
conscious of their interdependence with clients in creating a good product, even if the two
organizations’ distinct profit objectives sometimes undermined that effort.
Tools: Better information

Under a more mature process, many interviewees felt that they had better tools for software
development work. First, as we saw earlier, process was a tool that helped clarify the object of
development work:

 23

“Our policies and procedures mean that I have better information on what we’re trying to do
because we have better requirements documents and better information on how to do it with
Instructions etc. At Level 5 versus Level 1, I’m more confident we’re all playing to the same
sheet of music. Looking across the organization, process also means that managers understand
better the way the whole system works, so they are all playing the same game.” (C-2)

Second, process functioned as a tool providing guidance in the work process:
“Developers want above all to deliver a great product, and the process helps us do that. What I’ve
learned coming here is the value of a well thought-out process, rigorously implemented, and
continuously improved. It will really improve the quality of the product. In this business, you’ve
got to be exact, and the process ensures that we are. You have to get out of hacker mode!” (A-14)

Overall, process did not appear to hinder creativity — or at least not the forms of creativity
needed in these programs. This excerpt expresses the assessments made by several interviewees:

“[E]ven when tasks are more innovative, you can still get a lot of advantage from process. You
need to sit down and list the features you want in the system, and then work out which are similar
and which are different from your previous work. And you need to make sure the differences are
real ones. You’ll discover that even in very innovative projects, most of the tasks are ones you’ve
done many times before. Then, for the tasks that are truly novel, you can still leverage your prior
experience by identifying somewhat related tasks and defining appropriate guidelines based on
those similarities. They won’t be precise instructions of the kind you’ll have for the truly
repetitive work: but these guidelines can be a very useful way to bring your experience to bear on
the creative parts of the work.” (B-9, formerly with Program A).

Automation of tools was a crucial precondition for process maturity, since developers needed
to consult voluminous documentation and circulate work-in-process in a timely manner. GCC had
therefore invested considerable resources into building not only a sophisticated “development
environment” for technical tasks but also an integrated suite of databases and tools for the associated
management tasks. The software factory was thus highly automated — contrasting with the
“handicraft” or “manufacturing” models that prevailed in software development in earlier decades
(using Marx’s periodization, 1997: Pt. IV).

Alongside this automation, GCC also sought to streamline the remaining human tasks. Testing
exemplified this trend:

“Over the last ten years, we’ve refined the test procedures considerably. First, we have better
tools. Documentation and reports that used to take two or three days each week to create can now
be generated in an hour. Second, we streamlined some of the procedures for some projects. Now
we have a generic template, which we can modify to suit the circumstances. We moved from
prescribed, detailed test tables to simpler and voluntary guidelines based on historical examples.
And with the benefit of experience and analysis, we are collecting more useful information and
less of the kinds of information that proved to be not all that useful.” (A-9)

Tensions: Less “people-dependence” means less (individual) power. Sophisticated tools
such as offered by mature processes reduce the dependence of the organization on the individual:

* “When I arrived here, we had a lot of veterans with deep process knowledge. But as we lost
those people, we lost their institutional knowledge. That’s why I’m trying to document our
process. That will make us less people-dependent.” (D-17)
* “Our process makes us less people-dependent. And that goes for managers too. We have
promoted the three project managers we used to have, and now we have five new project
managers. Bringing these new managers up to speed was much easier with a strong process.” (C-
3)

While the direct business benefits were obvious, reducing people-dependence also reduced the
individual’s power vis-à-vis the organization. A fear of vulnerability thus lurked in the background:

“If you have a good process, then people become like widgets you can stick into it, and everyone
knows what their job is. Obviously that’s a big advantage for the organization. [...] On the other

 24

hand, it also brings some fear for job security. It does make my job as a programmer easier to
fill.” (B-15)

This vulnerability was moderated by the favorable labor-market situation of software
professionals. Moreover, our discussion of the division of labor will reveal that process gives more
influence to subordinates as well as to managers.

Tensions: Insufficient automation and simplification. Many interviewees argued that
insufficient effort had been devoted to lightening the burdens of process. Comments such as these
were common:

* “All these forms have a valid purpose, but it takes so long to fill them out that it just doesn’t
seem very efficient. We really need a lot more automation in doing all this.” (B-6)
* “There’s no doubt that more process maturity means more paperwork. Some of it is good, and
some of it is an impediment, especially from a productivity point of view. Unless we have the
tools to automate this documentation, it has to slow us down. We still don’t have the right tools.”
(C-5)

These comments suggest that these activity systems still suffered from unresolved (secondary)
contradictions between the available tools and the expanded object of work. The object had expanded
in the eyes of managers and developers, but management had not invested the resources needed to
upgrade the tools to accomplish the new, expanded task. Such tensions are inevitable when the object
itself evidences the (primary) contradiction between use-value — great code, well produced — and
exchange-value — “In the end, it’s all about profit.” Under such conditions, resource investment
decisions are inevitably somewhat inconsistent.

In sum, from the use-value point of view, the transformation of tools under mature process
conditions not only helped developers in their daily work, but it did so in a way that made their
interdependence increasingly visible. On the other hand, from an exchange-value point of view,
developers were expendable variable capital and tools were expensive.
Rules: Constraints that make sense

Process maturity did mean that there were more rules constraining developers in how they did
their work, but it also meant that these constraints were largely seen as means by which the efforts of
many contributors to the development activity could be coordinated more effectively. Expanding on
an excerpt quoted above:

“Here, I’m just a small part of a bigger project team. So you don’t do anything on your own. It’s
a collaborative effort. So there has to be a lot of communication between us. And the process is
there to ensure that this communication takes place and to structure it. The process helps keep us
all in sync.” (C-13)

At higher levels of process maturity rules were more numerous, but developers had more
opportunity to participate in defining and refining them. As quoted above, interviewees described the
cultures of Programs A and C as having become more participative in recent years. In daily practice,
rules took the “enabling” form described by Adler and Borys (1996). Through a formalized
“Tailoring Cycle,” software development standards and procedures (“S&Ps,” of which there were
over 100 at Program A) were modified for each project with participation by the developers
themselves:

* “People have to be a part of defining the process. We always say that ‘People support what they
help create.’ That’s why the Tailoring Cycle is so important. As a project manager, you’re too far
away from the technical work to define the S&Ps yourself, so you have to involve the experts.
You don’t need everyone involved, but you do need your key people. It’s only by involving them
that you can be confident you have good S&Ps that have credibility in the eyes of their peers.”
(A-8)
* “When S&Ps are chosen for a project, the rule is that they have to be sent out to everyone
affected for review. And sometimes we give some pretty negative feedback! I remember I wrote
on one draft, ‘Hey, you’ve forgotten to tell us how to get out of bed in the morning and how to

 25

brush our teeth!’ It was way too detailed and rigid. Those kinds of things get shot down pretty
quickly. Over a period of years, people learned how to write procedures that were reasonable for
our work environment. [...]
 When I managed software development on one of our bigger projects, I asked all our software
developers to help me tailor our S&Ps. The GCC people knew the drill, but we also had some
other contractors working on this with us [...] and they would say, ‘No, just tell me how you want
us to do this.’ About a year into the project, I remember one of the contractors who had
complained the most about this extra work coming to me to thank me, saying, ‘If you’d have
written these, I would have just ignored them. But since I helped write them, I’ve felt duty bound
to follow them.’” (A-12)

The Tailoring Cycle was not the only vehicle for participation in process definition. In
Programs C and D, Software Engineering Process Groups (SEPGs) also served this purpose. In recent
years, the SEPG at C, but less so at D, had put increasing weight on encouraging suggestions for
process improvement from lower-level staff. Moreover, many departments in all four programs had
process improvement teams. Whereas these teams were sparse and temporary in the less mature
programs, they were ubiquitous and on-going in the more mature programs.

Tensions: Rules, enabling versus coercive. Some rules appeared to developers as
burdensome and coercive:

* “Frankly, I don’t see much value to some of this [process]. For instance, documents and
presentations have to be submitted to QA. I have never experienced any value-added in this step.
And QA has to be invited to all presentations and given copies of walk-through materials. Again,
I have never seen any value-added. We’re all doing the best we can for the customer.” (A-12)
* “The forms are all electronic, but we still have to print them out and sign them. Why all this
overhead? The theory is that it will increase quality. But I’m not convinced it really helps quality.
Sometimes it seems like it’s more for accountability.” (B-2)

The professional character of the workforce gave developers considerable power to resist
coercive rules. Earlier, we saw how developers stopped the adoption of Ada. Another excerpt offers a
second illustration:

“Whenever you force programmers to do paperwork they don’t want to do, they get sloppy. They
will invent workarounds just to avoid it. And those workarounds can create problems. For
example, if you want to create a new sub-routine versus add to an existing one, you have to write
a whole new package. So programmers will go a long way to avoid creating a new sub-routine,
even if it means that the quality of the code is affected.” (B-2)

The importance of buy-in and the temptation of coercion are evidenced in the firmness with
which senior management treats instances of autocratic behavior by managers. Among the several
cases cited by interviewees in the various Programs, this one was illustrative:

“Executive management might impose on me as program manager a CMM rating goal without
much dialogue, and they might even have a pretty coercive view of what process discipline
consists of. But I can’t let that flow downhill from me. We explain to our managers why the
rating is important to our future. And once you see the heads nodding, then you have to find the
right people for the implementation team — people who aren’t going to dictate to the other levels
how to proceed. We really can’t afford an autocratic style of leadership. The risk of losing critical
people is too high. [,,,] We did have a pretty autocratic manager a while back in our software
development organization. He had very strong technical skills and would often make decisions
without consulting his staff. We heard a lot of complaints, and we saw some turnover too. But his
technical skills made him very valuable to us, so we kept him on even after he offered to resign.
We tried to get him to change his style, but he didn’t, and eventually, after maybe two years of
this, we just had to let him go. It was difficult. And he took a few loyal staff people with him
too.” (D-5)

In sum, process mature organizations drew developers into collaborative efforts to define and
refine their rules, and they struggled to preserve this participation against the temptations of coercion.

 26

Community: Beyond my cube
At higher levels of process maturity, the collective nature of software development work

became more explicit as did the organizational architecture of this community:
* “A well-defined process gives you a kind of map of the whole enterprise.” (B-5)
* “The overall process is more intelligible now. All the organization charts, the people, the
processes and documents, and the minutes of various groups are on the website.” (C-3)

Moreover, the boundaries of individual’s everyday reference group — the community with
which people identified — broadened to encompass all the functions that contributed to the final
product:

“Some programmers here used to be very isolated. We had one fellow who just sat in his cube all
day from six in the morning till two in the afternoon. Many of us didn’t even know his name! But
the process here drew him into team meetings and into new conversations. Eventually we even
got him helping with training.” (B-7)
“The Improvement Team’s work created a real sense of community. Each week it would be
someone else’s turn to present their process. Since you knew it would be your turn soon, we all
helped each other. And everybody got to see how the rest of the organization functioned. All the
data was shared. I compare that to the way the organization functioned a few years ago. One of
our big problems was poor communications across the organization and up and down the
organization. No one knew anything anyone else was doing. Now we’re working in unison.
Process makes for a more unified front for the customer. And it makes you feel important,
because you’re part of the process and you know where you’re at in the process. I’m only a tiny
part of the process, but I know that what I do is needed for the success of the whole thing.” (D-
12)

Interviewee B-13 was one of the senior process staff at Program A before being transferred to
Program B to help its process maturity efforts. His assessment reflected longer experience:

“At Level 5, everyone feels part of the enterprise — versus feeling very good technically, in what
they do, but hazy about their place in the whole business organization — for example, they can’t
explain the functions of QA. At Level 5, you understand what other people are doing and why.
Everyone can discuss and are involved in improvement efforts, not only technical but also
process, organizational problems — versus at Level 1, where the only improvements people that
can talk about are local and technical. And at Level 5, measurement is a part of life. At worst,
people tolerate it. The majority see it as an integral part of their work — versus at Level 1, where
measurement is not part of the culture, where it’s not seen as having value, and where it’s seen as
waste, bureaucratic overhead, and people feel ‘Just leave me alone.’” (B-13)

Cosmopolitans versus locals. Professionals tend to have strong ties to and identify with their
occupational community (Gouldner, 1957; Van Maanen and Barley, 1984) Interviews suggested that
the greater process maturity strengthened both developers’ professional-cosmopolitan orientations
and their bureaucratic-local orientations.

On the one hand, process strengthened somewhat developers’ cosmopolitan orientations. At
higher CMM Levels, at least some staff spent more time reading industry journals and magazines and
attending industry conferences:

* “In Program A, there was a focus on the big picture, and we tried to make development staff
aware of other studies, findings, activities outside GCC. This sometimes prompted developers to
become more interested in such conferences as the SEPG, DoD Tech conferences, and SEI
affiliates symposia.” (B-13, formerly with Program A)
* “The process-focused people certainly spend more time outside — the more you know, the
more you know you don't know and need to learn. And probably some percentage of the general
population spends more time outside as their awareness of things not-immediately-project
increases and their interest is piqued. But my guess is that the John Q. project guy is still
spending most of his time ‘doing.’” (D-14, also works with Program C)

On the other hand, process maturity simultaneously strengthened local orientations:

 27

* “On the one hand, as higher levels of maturity are attained, many of the good developers realize
their value and are now more marketable outside; on the other hand, they have ‘bonded’ with the
organization and may be a bit more inclined to stay.” (B-13, formerly with Program A)
* “Programs that don't have a process focus tend to have less of a formal connection with the
larger GCC corporation. Programs focusing on advancing their process maturity tend to receive
support from outside the immediate project, and tend to reach across GCC for best practices and
lessons learned. The connection does create enhanced awareness, and in that sense perhaps both
more ‘professionalism’ and more corporate identity.” (D-14, also works with Program C)

Tensions: Community versus self. Ultimately, the capitalist employment relation recognizes
individuals, not collectivities. Even in firms with extensive team and organization-wide rewards --
and as noted above, GCC had few -- these are minor components of the individual rank-and-file
employee’s compensation. The “collective worker” (Marx, 1977: Ch. 13) — the community as
productive actor — is in contradiction with the individualistic and instrumental foundation of the
wage relation. This contradiction might explain a certain disinterest and passivity on the part of
several interviewees:

* “I follow the rules because they are there.” (B-6)
* “By and large, people just accept the Instructions pretty passively.” (C-2)
* “It’s hard to scare up much process improvement effort from the troops. Almost all the process
improvement activity comes from people assigned to that task.” (C-15)

Tensions: Community versus class. On the one hand, developers and managers were (and
saw themselves) part of a community, part of a collective endeavor. On the other hand, their interests
sometimes put them in opposition to each other. We saw this in the earlier discussions of the conflict
over Ada and the organization’s interest in avoiding “people-dependence.” Not surprisingly, senior
management put considerable weight on building a sense of common destiny and community: but the
battle could never be won once and for all. This excerpt illustrates:

“We didn’t initially have any questions on the employee survey about your boss. Frankly, people
were worried that managers might retaliate. But now we do, and we find the data very useful in
surfacing management problems. The earlier rounds of the survey did show some big
communications problems in some groups. Counseling often helped, and in some cases, we
moved people out to other positions.” (A-11)

In sum, under mature process conditions developers experienced themselves more strongly
connected to program, corporate, and professional communities, although the effect was sometimes
mitigated by conflicting interests.
Division of labor: Differentiation and integration

The division of labor at GCC differentiated various roles and sub-units whose complementary
capabilities were integrated both by superordinate goals and by strong process discipline. The
following excerpt presents an assessment that is particularly interesting because the interviewee is a
woman whose experience of a relatively mature process was recent:

“A more mature process means you go from freedom to do things your own way to being
critiqued. It means going from chaos to structure. It’s a bit like streetball versus NBA basketball.
Streetball is roughhousing, showing off. You play for yourself rather than the team, and you do it
for the love of the game. In professional basketball, you’re part of a team, and you practice a lot
together, doing drills and playing practice games. You aren’t doing it just for yourself or even just
for your team: there are other people involved — managers, lawyers, agents, advertisers. It’s a
business, not just a game. You have to take responsibility for other people — your team-mates —
and for mentoring other players coming up.” (B-7)

Process maturity created both more differentiation and more systematic integration in three
dimensions of the division of labor: horizontal, line/staff, and vertical. I take them in turn.

As the process became more mature and disciplined, the horizontal division of labor deepened.
The span of integration became correspondingly broader: actors developed relations with a broader

 28

set of partners. These relations became tighter: the coordination across groups became more rigorous.
And they became more collaborative: mutual indifference or rivalry was replaced by active
collaboration. These changes were visible within departments and well as between them:

“Process means that people play more specialized, defined roles, but also that these specialists get
involved earlier and longer as contributors to other people’s tasks. If we analyzed the way a coder
uses their time, and compared it with comparable data from, say, 15 years ago, we’d find the
coder doing less coding because of more automated tools. They’d be spending more time
documenting their code, both as it was being built and afterwards in users’ guides. They’d be
spending more time in peer reviews. And they’d be spending more time in design meetings and
test plan meetings. As for testers […] now the testers are more involved in system concept
definition and requirement definition activities.” (A-3)

With process maturity, new staff functions such as Configuration Management and Process
Engineering emerged, and new line/staff relations were created. QA illustrates. (For discussion of the
impact of process maturity on the role of another key staff function, Configuration Management, see
Butler, Standley, and Sullivan, 2001: many of the same conclusions apply.) In the past, QA was often
remote from the daily work of developers, arriving on the scene at the end of the work cycle to
inspect the output. QA’s role evolved with process maturity to (a) a greater focus on process quality
rather than only product quality, (b) greater responsibility for infusing process rather than only
auditing it, and (c) a closer and more collaborative relation with the line departments. QA’s role in the
Tailoring Cycle is a good example:

“First, QA sits down with project manager and his management team. I’ll ask: what processes do
you need? Do they exist? We come up with a process approach for the project. Second, project
managers work with Process Engineering to resolve the action items out of the first step: what
new S&Ps have to written? Which have to be modified? The project managers, often assisted by
their leads, then define the S&Ps they need. Third, this proposal comes to the CRB [Change
Review Board] for discussion and approval. Fourth, we try to get the managers of each project to
do the training for their S&Ps. Fifth, QA conducts a regular in-progress process audit to check the
project’s compliance with the process approach they’ve chose. And there’s also an End-of-life-
cycle-phase audit. […] QA is not a policeman! QA is there to help the project identify the
processes you need, tailor existing ones to your needs, learn that process, and do a check to see if
you’re using it. If I find a problem, it’s my job to help the project work out how to address it and
how I can help.” (B-5)

Finally, in the vertical dimension too, relations grew denser and more collaborative. Process
brought greater specificity — clarity and detail — to planning and assessing the progress of work:

“With a more mature process, my manager has visibility into how I do my work and can
challenge me on it —I can’t just play excuses and he can’t use brute force.” (B-6)

Process also provided superior-subordinate relations with objective points of reference outside the
dyadic interpersonal relationship. Process thus reduced the “people-dependence” of these authority
relations just as it reduced people-dependence in technical relations. Several interviewees argued that
the objective character of the data created in a more mature process gave the subordinate more power.
This excerpt illustrates:

“I think formalized process and metrics can give autocratic managers a club. But it also gives
subordinates training and understanding, so it makes the organization less dependent on that
manager: he can be replaced more easily. Before I came to GCC, I worked for one of the most
autocratic managers you can find. It was always, ‘And I want that report on my desk by 5 p.m.
today,’ with no explanation or rationale. Compared to that kind of situation, an organization with
a more mature process leaves a lot less room for a manager to arbitrarily dictate how you should
work and when work is due. And a more mature process also means that there are more formal
review points, so any arbitrary autocratic behavior by a manager will become visible pretty
quickly.” (D-5)

Tensions: General versus parochial interests. Differentiation created local identities, which
complicated the horizontal integration task. This excerpt illustrates:

 29

“On most of our projects, different people fill the two roles, systems engineering versus software
engineering. (On smaller projects, the same person may have both roles.) As with any interaction
between two groups, there have been communication gaps between them. There are a variety of
reasons: the systems engineers point to the software engineers and say ‘They didn’t read what I
wrote,’ and ‘They don’t understand what I mean,’ and the software engineers point back and say
‘They didn’t specify the requirements adequately,’ ‘The requirements are inconsistent,’ and ‘That
wasn’t in the requirements.’” (D-14, who also works with Program C)

Staff/line relations were not always easy:
“By and large, we haven’t had too much difficulty bringing our managers around to this more
collaborative approach. […] We did have a problem with one staff person. He had a very difficult
relationship with the project people he was supposed to be helping. We got a lot of complaints
that he was trying to force the projects to conform to his idea of how they should function. We
tried to counsel him and get him to work in a more cooperative way. But he just wouldn’t ease
up. Eventually we just had to let him go.” (A-11)

Interviewees also discussed tensions in the vertical dimension: management did not always
“listen,” or if they listened, did not always “hear.” Compared to the horizontal tensions, the vertical
ones reflected a deeper, structural asymmetry of power and authority:

“How managers react depends a bit on how you present your suggestion. If you present your idea
constructively, they’re more likely to react positively. If you come at them with complaints and
negative criticism, they don’t take it as well. Managers are people too! And sometimes how
receptive they are depends on other things going on. For example, if they are under pressure from
their bosses to move faster, they may not be very receptive to taking time out to redefine the
process.” (B-14)

Notwithstanding these tensions, it was striking that in its various dimensions, community
appeared to be stronger and more cohesive in the Level 5 Programs than in the Level 3 Programs. A
key factor explaining this result was the more extensive participation in process definition we saw in
the discussion of rules, above.

Tensions: “We still don’t have the resources.” Several interviewees pointed to another
persistent tension in the division of labor: the lack of dedicated resources for specialized staff
departments. The following quotes were illustrative:

* “We do ask project teams to do a Lessons Learned report at the end of the project. We post the
results on the database. But there’s no staff support for the process.” (A-3)
* “The key issue moving forward, I think, is that we still don’t have the resources we need to
devote to process. A program of this size should have a full-time staff dedicated to our internal
process maintenance.” (C-7)

(Recall that Program C, like D, did not have a dedicated Process Engineering group.) These concerns
echo those relative to resources for better tools.

In sum, the effect of more mature process on the division of labor was to increase both
differentiation and integration efforts. As a result, developers saw themselves as part of a larger, more
complex, and more interdependent endeavor — one that was often, but not always, collaborative in
nature.
A more advanced model: The CMM as scaffolding

In all four programs, the CMM was seen by many as representing a more advanced model of
software development work, a model that could guide improvement efforts. In this guidance, the
CMM took the form of “scaffolding.” The metaphor of scaffolding, originally articulated by Wood,
Bruner and Ross (1976), refers to the temporary assistance provided by teachers/adults to
students/children as they strive to accomplish a task in their “zone of proximal development”
(Vygostky, 1962, 1978; Griffin and Cole, 1984).

The challenge of CMM certification was to “map” the program’s existing practices to the
CMM’s KPAs. In some cases, existing practices were revealed to be satisfactory, and this mapping

 30

was therefore experienced as wasteful burden; but in most cases, the CMM provided guidance — the
kind of guidance that builders receive from scaffolding — for ongoing process improvement efforts.
Program C had long worked under Military Standards, so the discipline of the CMM was experienced
against that backdrop, but its experience was otherwise representative (expanding on an excerpt
quoted above):

“Most of our CMM work has been focused on translating what we already do into the CMM
KPAs. We were doing virtually all the KPAs anyway, just because you can’t manage large-scale
projects without doing something like what the SEI is recommending. The first SCE team told us
they knew that we must have good procedures and that everyone followed them because
everyone told us the same thing; but, they said, the process must have been tattooed on the inside
of eyelids because they couldn’t find them written down anywhere. So we spent the next year
putting them down on paper. For example, we had an informal training and mentoring program,
and when we got serious about the CMM, we wrote it down. Writing the process down has had
some great benefits. It’s made us think about how we work, and that’s led to improvements. For
example, formalizing the training program has helped bring some outliers into conformance. And
we formalized the SEPG process, and that has helped stimulate improvement.” (C-15)

The CMM could function effectively as scaffolding — as a model of a more advanced activity
system — because, and to the extent that, it was seen as an “industry-validated approach”:

“The CMM is helping us move ahead. Just to take an example, even if the CMM didn’t exist we
would need a technology change management process [a Level 5 KPA]. Of our 450 people, we
have about 50 people in CM, QA, and data management. To move them from one process to
another is sometimes like herding cats! The CMM helps us in that by providing an industry-
validated approach.” (C-10)

In their struggle against proponents of alternative organizational development scenarios,
proponents of the CMM had the advantage of this cultural-historical validation. In offering software
development organizations a prescription for their future that was based on lessons drawn from the
industry’s past, the CMM functioned in precisely the “proleptic” manner described by Cole (1976:
183 ff.).

Tensions: Scaffolding versus learner-centered development. Notwithstanding the research
evidence cited earlier, interviewees were nuanced in their assessments of the impact of CMM on
process effectiveness. One concern was that the CMM prescribed certain features of the development
process and in doing so, substituted its own “wisdom” for the results that might emerge from a more
self-directed organizational learning process. This concern echoed critiques of the “top-down” nature
of the scaffolding metaphor (Stone, 1993; Butler, 1998). This excerpt illustrates:

“SEI has encouraged people to think that progress will come from ‘implementing’ the KPAs,
when you really need to decide which KPAs matter to your business and how you should pursue
them. Many organizations, even some people in our Government Systems Group, think they need
to implement all the requirements of every Level. So the CMM ends up being seen as externally
coercive rather than as an internally motivated improvement process. You can get a false sense of
security when you force your way to certification — or a false sense of failure if you try to force
your way and fail.” (B-13, formerly with Program A)

As discussed above, part of the difficulty was how to juggle the goals of symbolically valuable
certification with technically valuable process improvement. On the upside, external legitimacy
pressure could facilitate internal change. However, CMM ratings seemed to play a somewhat
different role in the different organizations. According to this same interviewee:

“I can see that external evaluations are a very important learning tool. It's just like in college:
90% of what the student learns is in the week before the test! So we do need the test to create that
incentive. But it's not an end in itself. The real issue is: Is passing the test just a veneer? That
depends on how the managers treat the test — as an opportunity to put some banners on the
walls, or as an opportunity to focus attention and get some real learning done. At Program A, we
have reached (well, almost reached) the point where people like the tests as an opportunity to
show off their improvements.” (B-13, formerly with Program A)

 31

Tensions: Is CMM really a more advanced model? Some interviewees in Programs A and C
expressed skepticism concerning the value of some Level 4 and 5 practices. Levels 4 and 5 address
organization-wide, as distinct from project-specific, capabilities. Optimistically, one might imagine
that once a basic level of discipline was established in the conduct of individual projects, even greater
improvement might come from organization-wide cross-project discipline, since this would enable an
organization to leverage lessons learned from any one project to the whole portfolio of projects. This
would seem to be true of many hardware development improvement efforts (see Wheelwright and
Clark, 1992; Smith and Reinertsen, 1991). So far, however, the experience of the two Level 5
programs was mixed. At Programs A and C, several interviewees assessed the situation in these
terms:

* “We struggled to get past Level 3. Level 3 seems to give you most of the CMM’s benefits.
Frankly, Levels 4 and 5 haven’t changed or helped much. Beyond 3, documenting the technology
management process didn’t really do much for us: we manage to change technology pretty
effectively without formalizing that process. But on the other hand, defect prevention has been
very useful.” (A-2)
* “I think Level 3 was worth doing. But most of Levels 4 and 5 just don’t seem to add much. It
isn’t about everyday stuff anymore. We are doing most of these processes, and documenting them
adds a lot of cost but not much value.” (C-4)

Interviews suggested three possible reasons for this mixed reaction. First, the CMM might have
been simply misguided in how it characterized Levels 4 and 5. After all, when the CMM was first
elaborated, these levels, particularly Level 5, were essentially hypothetical, since so few software
organizations had been shown to function in this manner. (As of 2001, however, there were over 130
organizations certified at Levels 4 or 5.) This excerpt illustrates the validity concern:

“I worry that the CMM doesn’t ask you to collect any product data. I don’t think it’s been
empirically shown to be valid predictor of product quality — so it really shouldn’t be used as a
bid requirement. And the Continuous Improvement process hasn’t been applied to CMM itself —
there have been no real changes since it was initially promulgated.” (B-13, formerly with
Program A)

Second, and alternatively, perhaps Levels 4 and 5 were well conceived, but the hypothesized
potential benefits would only materialize with further effort and experience. A third, related, possible
reason is that the magnitude of the benefits of cross-project processes is related to the number of
projects undertaken. Both Program A and Program C undertook a relatively small number of
relatively large projects — as compared to the larger number and smaller size of projects we might
find in the hardware development organizations studied by Wheelwright and Clark and by Smith and
Reinertsen. This excerpt is suggestive:

“You have to go through the cycle a couple of times to see that there’s a payoff — especially in
reducing rework. That’s how you sell process: less rework, less aggravation, and less
humiliation.” (B-11)

Overall, however, the interviews suggested that the CMM had been a valuable tool for
organizational improvement, and in doing so, had drawn developers into more conscious
collaborative improvement efforts — within their Programs, with clients, and with the community
behind the CMM.

DISCUSSION
We can draw two theoretical conclusions from the preceding analysis. They pertain

respectively to the objective-structural and the subjective aspects of process discipline in knowledge
work.
Enabling bureaucracy and power

Four features of the Level 5 software development activity system seems to mark it as an
“enabling” rather than “coercive” bureaucracy:

 32

* rules were defined and refined with considerable participation from lower-level staff;
* the division of labor was characterized by extensive differentiation but also by correspondingly
intensive efforts to assure integration;
* tools were designed appropriately to guide work and not hinder creativity; and
* program, corporate, and professional communities were strengthened.

However, on each of these dimensions, I also found counter-tendencies that pointed towards a
coercive model. What explains whether discipline takes an enabling or a coercive form? A key part of
the answer would appear to be the power of lower-level employees. In these four programs, turnover
created a threat to which managers were very sensitive given the dependence of successful
development on employee commitment. Managers trod very gently in imposing process discipline,
and managers with coercive styles came under considerable pressure from their superiors.

These programs appeared to be engaged in an effort to increase simultaneously the degree of
influence exercised by lower-level developers and higher-level managers. Notwithstanding the work
by Tannenbaum (1968; see also Henderson and Lee, 1992; Sagie, 1997), organizational research
often proceeds as if influence at lower and higher levels of authority were mutually exclusive, in a
zero-sum relation. This case reminds us that they are not. In the four programs studied here, and in
particular the two Level 5 ones, Program A and Program C, both higher-level and lower-level
influence were relatively strong:
* Higher-level influence was exercised through standards, plans, and mutual adjustment mechanisms.
Standardization of processes allowed operational decision-making to be safely decentralized (per
March and Simon’s model of premise-setting). Management exercised strong control over project
schedules and plans. And management actively structured mutual adjustment between people and
units. The autonomy of action of individuals and units was thus severely curtailed. Overall
coordination and consistency of action was not accidental or emergent, but planned through
centralized control.
* Lower-level influence was also strong, as witnessed by the extensive involvement of staff in
developing and refining the standards, plans, and mutual adjustment processes under which they all
worked, and by management’s commitment to the philosophy of “People support what they help
create.”
Socialization and the individual

On the strong version of the social-self thesis, the self is always social, always the result of a
socialization process. It was just as social, just as much the result of individual socialization, when it
took the hacker form. The independent self of the hacker was the result of socialization under a
division of labor that was (using Durkheim’s terms somewhat metaphorically) “mechanistic” — each
person working in parallel on a self-contained task — rather than “organic” — each person
contributing only a specialized component of the whole. This independent self was reinforced by the
shared norms of the profession, by educational experience, and by its fit with the relatively primitive
tools, rules, and division of labor that then characterized the software development activity system.
With greater process maturity and more advanced means of production, the social character of the self
is no longer merely an abstract proposition, but becomes concrete in the form of subjectively-
experienced interdependent self-construals. The self is socialized — as it always has been — but now
this socialization is not merely a remote antecedent, but becomes a lived reality.

However, the present study also points to the need to go beyond generic concepts of
interdependence. In the present case, the professional orientation of developers appears to promote
the distinctively modern form of interdependence, a form that preserves a certain individual
autonomy even within growing interdependence. This apparently paradoxical mix can be clarified by
invoking the two-dimensional characterization of culture and values articulated by Triandis and
others (see Triandis and Gelfand, 1998): on one dimension, interdependence and collectivism are

 33

contrasted with independence and individualism, and on the other dimension, “horizontal” cultures
and low power-distance are contrasted with “vertical” cultures and high power-distance. The type of
self-construals engendered by high-maturity software development organizations would appear to be
more collectivist but simultaneously low on power distance and relatively egalitarian — “horizontal-
collective.” A similar idea is expressed in the view that individualism and collectivism are orthogonal
constructs and the new subject would score high on both (see discussion in Oyserman et al. 2002: 8,
and other contributors to that issue; also Kagitcibasi, 1997: 20 on the “autonomous-related” self).
Such a self-construal provides a less conformist form of other-directedness — a form of caring. (On
the social-self thesis and other-directedness, see Livingston, 2000.) Viewed developmentally, one
might characterize this orientation as representing a dialectical synthesis (transcendence) of the
contradiction between traditional community (Tönnies’ Gemeinschaft, with its associated
“engulfment” of the individual: see Cohen, 1974) and the modern, alienated autonomous individual
(under Gesellschaft conditions) – a synthesis Hirschhorn (1997) calls the “post-modern” self.

CONCLUSION
The motivation for the present study was to understand the transformations of knowledge-

work, through analysis of the case of software development. I found that progress towards CMM
Level 5 process maturity was driven, first, by a combination of external customer pressure and the
availability of a more advanced model that both the customer and the internal proponents could
champion as an industry-validated alternative. In a second “moment” (in the Hegelian sense), these
circumstances prompted senior management to commit to pursuing the new model and, more
concretely, to commit the required staff, training, leadership, and support. Under such conditions, the
third moment could unfold: organizations were able to develop and implement the mechanisms of
participation that ensured developers’ involvement. (This ability was presumably moderated by the
available leadership’s behavior; but I have too little interview data on this theme to explore it
empirically.) Involvement in such a socialized activity system led in a fourth moment to the
emergence of more interdependent self-construals, to more directly socialized subjectivity. But the
forces at work in this activity system embodied contradictions both at and between the nodes, so
tendencies towards socialization were accompanied by counter-tendencies. The path of socialization
was therefore uneven.

My empirical research has several obvious limitations. It is based on a sample of only four
units of a single company. These units were focused on large-scale, complex systems for government
clients. Process maturity is not necessarily a wise goal for all segments of the software industry.
Elsewhere, socialization of software development may proceed by other mechanisms or may not
proceed at all. My conclusions regarding developers’ experience of work — and a fortiori the claims
about self-construals — remain to be tested by more extensive sampling and surveying. My analysis
of the way the various elements of the activity system interact to foster new identities needs to be
tested through close-range ethnographic research. The specific contours of the new self-construals
also need closer analysis.

But a case study can point us in exciting research directions. The present study suggests that
CMM Level 5 may indeed be viable from both a business and a human point of view. This in turn
suggests that future research on knowledge work should further explore the enabling bureaucracy
form of organization and the corresponding subjective experiences of work.

This paper also opens new channels for dialogue with some of the classics of sociology. First,
Elias. Elias (2000) showed how the modern, “civilized” self first emerged as the subjective
counterpart to a more interdependent form of society that emerged under the impact of political
centralization and economic transformation in the late medieval period. Adopting a strong social self
standpoint (“homines aperti” in opposition to the Cartesian “homo clausus” — see Elias 1998, Ch.
15), Elias shows how economic and political interdependence profoundly reshaped not only our ideas
of acceptable behavior, but also our deepest self-construals. The present study can be read as

 34

extending Elias’s reasoning into the workplace and extending his chronology of civilization into the
“late modern” period. (Zuboff, 1988, pursues a similar intent; see also van Iterson et al., 2002.)

Second, Marx. Marx contrasted the isolation of individuals and communities in the pre-
capitalist world with the growing interdependence fostered by capitalist development. He saw
capital’s civilizing mission to abolish “rural idiocy” (Marx, 1959: 11) and “craft idiocy” (Marx, n.d.,
p. 161) — where the term idiocy preserves both its colloquial sense and the meaning from the Greek
idiotes, denoting an asocial individual isolated from the polis. With capitalist development, “In place
of the old local and national seclusion and self-sufficiency, we have intercourse in every direction,
universal interdependence” (Marx, 1959: 11), and private, parochial selves are socialized in the
process (see Cohen, 1974). When Marx discusses the socialization of the forces of production, we
should understand him to include both the objective as well as the subjective forces: capitalism
develops both technology and its human correlates — cognitive capabilities, world horizons, capacity
for large-scale, instrumental collaborative.

According to Marx, the development of capitalism is shaped by the basic contradiction
between, on the one hand, the growing socialization of the forces of production and, on the other
hand, the persistence of private ownership in the relations of production. Few today have Marx’s
confidence about the final outcome. But the present study suggests that this basic contradiction
continues to shape the evolution of work, as illustrated here by the path traced by process maturity
efforts -- taking software development beyond “hacker idiocy.”

 35

REFERENCES

Abbott, A., 1988, The System of Professions: An Essay on the Division of Expert Labor. Chicago:

University of Chicago Press.
Adler P.S., 1999, “Building better bureaucracies,” Academy of Management Executive, 13, 4: 36-47.
Adler, P.S, 2001, “Market, hierarchy, and trust: The knowledge economy and the future of

capitalism,” Organization Science, 12, 2: 214-234.
Adler, P.S. and B. Borys, 1996, “Two types of bureaucracy: Enabling and coercive,” Administrative

Science Quarterly, 41, 1: 61-89.
Adler, P.S., 1996, “The dynamic relationship between tacit and codified knowledge: Comments on

Nonaka’s ‘Managing innovation as a knowledge creation process,” in G. Pogorel and J.
Allouche (eds.), International Handbook of Technology Management: 110-124, Amsterdam:
North-Holland.

Adler, P.S., Kwon, S., Singer, J., 2003. “The “Six West” problem: An essay on the role of
professionals in knowledge management, with particular reference to the case of hospitals,”
USC working paper.

Azjen, I., 1991, “The theory of planned behavior,” Organizational Behavior and Human Decision
Processes, 50: 179-211.

Bach, J., 1994, “The immaturity of CMM,” American Programmer, 7, 9, on-line at
http://www.satisfice.com/articles/cmm.htm.

Bach, J., 1995, “Enough About Process: What We Need Are Heroes,” IEEE Software, 12, 2: 96-98.
Bakhurst , D., and C. Sypnowich, 1995, “Introduction: Problems of the social self,” in D. Bakhurst

and C. Sypnowich (eds.), The Social Self: 1-17, London: Sage.
Bandura, A. 1997, Self-efficacy: The exercise of control, New York: W.H. Freeman.
Barley, S. R., 1986, “Technology as an occasion for structuring: Evidence from observations of CT

scanners and the social order of radiology departments.” Administrative Science Quarterly,
31, 1: 78-108.

Barley, S.R., and P.S. Tolbert, 1997, “Institutionalization and structuration: Studying the links
between action and institution,” Organization Studies, 18, 1: 93-117.

Baronas, A., and M. Louis, 1988, “Restoring a sense of control during implementation: How user
involvement leads to system acceptance,” MIS Quarterly, 12, 1: 111-124.

Bart, C. K, 1999, “Controlling new products: A contingency approach,” International Journal of
Technology Management, 18, 5-8: 395-413.

Blackler, F., 1993, “Knowledge and the theory of organizations: Organizations as activity systems
and the reframing of management,” Journal of Management Studies, 30, 6: 863-884.

Blau, P. M., 1955, The Dynamics of Bureaucracy. Chicago, IL: University of Chicago Press.
Bollinger, T., and C. McGowan, 1991, “A critical look at Software Capability Evaluations,” IEEE

Software, 8, 4: 25-41.
Bottomore, T. (ed.), 1983, A Dictionary of Marxist Thought, Cambridge, MA: Harvard University

Press.
Braverman, H., 1974, Labor and Monopoly Capital, New York: Monthly Review Press.
Brown, S.L., and K.M Eisenhardt, 1995. “Product development: Past research, present findings, and

future directions,” Academy of Management Review, 20, 2: 343-378.
Burkitt, I., 1991. Social Selves: Theories of the Social Formation of Personality. London: Sage.

 36

Burns, T. and G. Stalker, 1961, The Management of Innovation, London: Tavistock.
Butler, D.L., 1998, “In search of the architecture of learning: A commentary on scaffolding as a

metaphor for instructional interactions,” Journal of Learning Disabilities, 31, 4, July 1998:
374-385.

Butler, T., V. Standley, and E. Sullivan, 2001, “Software configuration management: A discipline
with added value,” Crosstalk, 14, 7: 4-8.

Chaiklin, S., and J. Lave, (eds.), 1993, Understanding Practice: Perspectives and Activity and
Context, New York: Cambridge University Press.

Chaiklin, S., M. Hedergaard, and U. J. Jensen (eds.), 1999, Activity Theory and Social Practice,
Aarhus: Aarhus University Press.

Clark, B., 1999. “Effects of process maturity on development effort,” unpublished paper available at
http://sunset.usc.edu/~bkclark/Research.

Cohen, G.A. 1974. “Marx’s dialectic of labor,” Philosophy and Public Affairs, 3, 3: 235-261.
Cole, M., 1996, Cultural Psychology: A Once and Future Discipline, Cambridge MA:

Belknap/Harvard University Press.
Conn, R., 2002, “Developing software engineers at the C-130J software factory,” IEEE Software,

September/October: 25-29.
Conradi, R., and A. Fuggetta, 2002, “Improving software process improvement,” IEEE Software,

July-August; 92-99.
Cooper, D.J., C.R. Hinings, R. Greenwood, and J.L. Brown, 1996, “Sedimentation and transformation

in organizational change: The case of Canadian law firms,” Organization Studies, 17, 4: 623-
647.

Couger, J.D., and R. O’Callaghan, 1994, “Comparing the motivation of Spanish and Finnish
computer personnel with those of the United States,” European Journal of Information
Systems, 3, 4, 285-301.

Craig, T. 1995. “Achieving innovation through bureaucracy: Lessons from the Japanese brewing
industry,” California Management Review, 38, 1: 8-36.

Crocca, W. T., 1992, “Review of “Japan’s Software Factories: A Challenge to U.S. Management,”
Administrative Science Quarterly, 37, 4: 670-674.

Crosby, P. B., 1979, Quality is Free, New York: McGraw-Hill.
Cusumano, M.A., 1991. Japan’s Software Factories: A Challenge to U.S. Management, New York:

Oxford University Press.
Cusumano, M.A., 2000. “’Made in India’: A new sign of software quality,” Computerworld, Feb. 29:

36.
Damanpour, Fariborz, 1991. “Organizational innovation.” Academy of Management Journal, 34: 555-

591.
Dannefer, D., 1984, “Adult development and social theory: A paradigmatic reappraisal,” American

Sociological Review, 49: 100-116
DeMarco, T., and T. Lister, 1987, Peopleware: Productive Projects and Teams, New York: Dorset.
Dewey, J., 1930, Individualism Old and New, New York: Minton, Balch & Co.
Dewey, J., 1939. “The individual in the new society,” in J, Ratner (ed.), Intelligence in the Modern

World: John Dewey’s Philosophy: 405-433, New York: Random House.
Dosi, G. 1996, “The contribution of economic theory to the understanding of a knowledge-based

economy,” in Employment and Growth in the Knowledge-Based Economy: 81-94, Paris:
Organization of Economic Cooperation and Development.

 37

Eisenhardt, K.M., and B.N. Tabrizzi, 1995. “Accelerating adaptive processes: Product innovation in
the global computer industry.” Administrative Science Quarterly, 40, 1: 84-111.

Elias, N., 2000. The Civilizing Process, Malden, MA: Blackwell.
Elias. N., 1998. On Civilization, Power, and Knowledge: Selected Writings. Edited by S, Mennell and

J. Goudsblou. Chicago: University of Chicago Press.
Engels, F. 1978, “Socialism: Utopian and Scientific,” in R, C. Tucker (ed.), The Marx-Engels Reader,

2nd edition: 683-717, New York: Norton.
Engestrom, Y., 1987, Learning by Expanding: An Activity-theoretical Approach to Developmental

Research, Helsinki: Orienta-Konsultit
Engeström, Y., 1990, Learning, Working and Imagining: Twelve Studies in Activity Theory.

Helsinki: Orienta-Konsultit.
Engestrom, Y., 1999, “Situated learning at the threshold of the new millennium,” in J. Bliss, R. Säljö,

P. Light (eds.), Learning Sites: Social and Technological Resources for Learning,
Amsterdam: Pergamon,

Engestrom, Y., R. Miettinin, R-L Punamaki, (eds.), 1999, Perspectives on Activity Theory,
Cambrige: Cambridge University Press.

Erez, M. and P.C. Earley, 1993, Culture, Self-identity, and Work, New York: Oxford University
Press.

Fiske, A.P., S. Kitayama, H.R. Markus, and R. E. Nisbett, 1998, “The cultural matrix of social
psychology,” in Gilbert, D. T., S. T. Fiske, G. Lindzey (eds.), The Handbook of Social
Psychology, 4th ed.: 915-981, Boston : McGraw-Hill.

Freidson, E., 2001. Professionalism: The Third Logic. Cambridge, UK: Polity.
Friedman, A.L., and D. S. Cornford, 1989, Computer Systems Development: History, Organization

and Implementation, Chichester: John Wiley& Sons
Galbraith, J. R. 1977, Organization Design. Reading, MA: Addison-Wesley,
Gibbs, G.G., 1994, “Software’s chronic crisis,” Scientific American Sept.: 86-92.
Gibson, C.D. and P. C. Earley, n.d., “Work-team performance motivated by collective thought: The

structure and function of group efficacy,” unpublished, University of Southern California.
Giddens, A., 1979, Central Problems in Social Theory, Berkeley: University of California Press,
Goldstein, D.K., and J.F. Rockart, 1984, “An examination of work-related correlates of job

satisfaction in programmer/analysts,” MIS Quarterly, 8,2: 103-115
Gouldner, A. W., 1954, Patterns of Industrial Bureaucracy. New York: Free Press.
Gouldner, A. W., 1957. “Cosmopolitans and locals: Toward an analysis of latent social roles,”

Administrative Science Quarterly, 2, 3: 281-306.
Green, G., and A.R. Hevner, “Perceived control of software developers and its impact on the

successful diffusion of information technology,” Carnegie Mellon University, Software
Engineering Institute, Special Report CMU/SEI-98-SR-013.

Greenbaum, J. M., 1979. In the Name of Efficiency, Philadelphia: Temple University Press.
Griffin, A. and J. R. Hauser, 1992. “Patterns of communication among marketing, engineering and

manufacturing: A comparison between two new product teams,” Management Science, 38, 3:
360-373

Griffin, P., and M. Cole, 1984, “Current activity for the future: The Zo-Ped,” in B. Rogoff and J.V.
Wertsch (eds.), Children’s Learning in the ‘Zone of Proximal Development,’” New
Directions for Child Development, no. 23, March: 45-63, San Francisco: Jossey-Bass

Griss, M.L., 1993, “Software reuse: From library to factory,” IBM Systems Journal, 32, 4: 548-566

 38

Hackman, J. R., and G. R. Oldham, 1980, Work Redesign. Reading, MA.: Addison-Wesley.
Harter, D.E., M.S. Krishnan, S.A. Slaughter, 2000, “Effects of process maturity on quality, cycle

time, and effort in software development,” Management Science, 46, 4: 451-466
Henderson, J. and S. Lee, 1992, “Managing I/S design teams: A control theories perspective,”

Management Science, 38. 6: 757-776.
Herbsleb, J., D. Zubrow, D. Goldenson, W. Hayes, and M. Paulk, 1997, “Software quality and the

Capability Maturity Model,” Communication of the ACM, 40, 6: 30-40.
Hernandez, M. and S.S. Iyengar, 2001, “What drives whom? A cultural perspective on human

agency,” Social Cognition, 19, 3: 269-294.
Hirschhorn, L., 1997, Reworking Authority, Cambridge: MIT Press.
Hoch, D.J., C.R. Roeding, G. Purkert, and S.K. Linder, 2000, Secrets of Software Success, Boston:

Harvard Business School Press.
Holt, G.R., and A. W. Morris, 1993, “Activity theory and the analysis of organizations,” Human

Organization, 52, 1: 97-109
Humphrey, W. S., 2002, “Three process perspectives: Organizations, teams, and people,” Annals of

Software Engineering, 14: 39-72.
Jackson, S. E. and R. S. Schuler, 1985, “A meta-analysis and conceptual critique of research on role

ambiguity and role conflict in work settings.” Organizational Behavior and Human Decision
Processes, 36: 17-78.

Jelinek, M. and C. B. Schoonhoven. 1993. The Innovation Marathon. San Francisco: Jossey-Bass.
Jones, C., 2002, “Defense software development in evolution,” CrossTalk, November, 26-29.
Kagitcibasi, C., 1997, “Individualism and collectivism,” in J. W. Berry, M. H. Segall, and C.

Kagitcibasi (eds.) Handbook of Cross-Cultural Psychology: 1-49, Needham Heights, MA:
Allyn & Bacon.

Kahn, R., D. Wolfe, R. Quinn, J.D. Snoek, and R. Rosenthal, 1964, Organizational Stress: Studies in
Role Conflict and Role Ambiguity, New York: John Wiley and Sons.

Kenney, M, and R. Florida, 1993, Beyond Mass Production: The Japanese System and its Transfer to
the U.S., New York: Oxford University Press.

King, R. C., and V. Sethi, 1998, “The impact of socialization on the role adjustment of information
system professionals,” Journal of Management Information Systems, 14, 1: 195-217

Kohn, M. L., and C. Schooler, 1983, Work and Personality. Norwood, NJ: Ablex.
Kraft, P., 1997, Programmers and Managers: The Routinization of Computer Programming in the

United States, New York: Springer Verlag.
Krishnan, M.S., C.H. Kriebel, S. Kekre, and T. Mukhopadhyay, 2000, “Productivity and quality in

software products,” Management Science, 46, 6: 745-759
Kunda, G., 1992, Engineering Culture: Control and Commitment in a High-Tech Corporation,

Philadelphia: Temple University Press
Langer, E., 1983, The Psychology of Control, Beverley Hills: Sage.
Lave, J, 1993, “The practice of learning,” in S. Chaiklin and J. Lave (eds.), Understanding Practice:

Perspectives and activity and context: 3-35, New York: Cambridge University Press.
Lave, J. 1988, Cognition in Practice, New York: Cambridge University Press.
Lave, J. 2001, “Lines on social practice theory,” unpublished manuscript, U.C. Berkeley.
Lawrence, P. R., and J. W. Lorsch, 1967, Organization and Environment: Managing Differentiation

and Integration. Boston, MA: Harvard University Graduate School of Business
Administration.

 39

Leont’ev, A.N., 1978. Activity, Consciousness, and Personality. Englewood Cliffs: Prentice-Hall.
Lieberman, H. and C. Fry, 2001. “Will software ever work?” Communications of the ACM, 44, 3:

122-124.
Lillkrank, P., 2003, “The quality of standard, routine and nonroutine processes,” Organization

Studies, 24, 2: 215-233.
Livingston, J., 2000, “The strange career of the ‘social self,’” Radical History Review, 76: 53-79
Lynn, L. H., 1991, “Assembly line software development,” Sloan Management Review, 88:
March, J., and H. Simon, 1958, Organizations, New York: Wiley.
Markus, H.R., and S. Kitayama, 1991, “Culture and the self: implications for cognition, emotion, and

motivation,” Psychological Review, 98, 224-253
Marx, K. 1973. Grundrisse, Harmondsworth: Penguin Books.
Marx, K. 1975. Karl Marx: Early Writings. New York: Vintage
Marx, K. n.d. The Poverty of Philosophy, Moscow: Progress
Marx, K., and F. Engels, 1959. “The Communist Manifesto” in L. S. Feuer, ed., Marx and Engels:

Basic Writings on Politics and Philosophy: 1-41, New York: Anchor.
Marx. K. 1977. Capital. Vol. 1. New York: Vintage.
Mathieson, K., 1991, “Predicting User Intentions: Comparing the technology acceptance model with

the theory of Planned Behavior,” Information Systems Research, 2, 3: 173-191
Meyer, J. W., and B. Rowan, 1977, “Institutionalized organizations: Formal structure as myth and

ceremony,” American Journal of Sociology, 83: 340-363
Mintzberg, H., 1979, The Structuring of Organizations: A Synthesis of the Research. Englewood

Cliffs, NJ: Prentice-Hall.
Mowery, D. C. (ed.), 1996, The International Computer Software Industry, New York: Oxford

University Press.
Nardi, B. A. 1996. “Studying context: A comparison of activity theory, situated action models, and

distributed cognition,” in B.A. Nardi (ed.), Context and Consciousness: Activity Theory and
Human-Computer Interaction: 69-102, Cambridge: MIT Press.

Ngwenyam, O. and P. A. Nielson, 2003, “Competing values in software process improvement: An
assumption analysis of CMM from an organizational culture perspective,” IEEE Transactions
on Engineering Management 50, 1: 100-112.

Organ, D. W., and C. N. Green, 1981, “The Effects of Formalization on Professional Involvement: A
Compensatory Process Approach.” Administrative Science Quarterly, 26: 237-252.

Oyserman, D., H. M. Coon, and M. Kemmelmeier, 2002, “Rethinking individualism and
collectivism: Evaluation of theoretical assumptions and meta-analyses,” Psychological
Bulletin, 126, 1: 3-73

Paulk, M. C., 1995, “The evolution of SEI’s Capability Maturity Model for Software,” Software
Process: Improvement and Practice, 1: 3-15.

Pinnington, A. and T. Morris, 2003, “Archetype change in professional organizations: Survey
evidence from large law firms,” British Journal of Management, 14, 1: 85-99.

Podsakoff, P. M., L. J. Williams, and W. T. Todor, 1986, “Effects of Organizational Formalization on
Alienation of Professionals and Non-Professionals.” Academy of Management Journal, 29, 4:
820-831.

Rasch, R.H., and H.L. Tosi, 1992, “Factors affecting software developers’ performance: an integrated
approach,” MIS Quarterly, Sept.: 395-413

 40

Rizzo, J. R., R. J. House, and S. I. Lirtzman, 1970, “Role Conflict and Ambiguity in Complex
Organizations.” Administrative Science Quarterly, 15: 150-163.

Sacks, M., 1994, On-The-Job Learning in the Software Industry, Westport, CT: Quorum.
Sagie, A., 1997, “Leader direction and employee participation in decision-making: contradictory or

compatible practices?” Applied Psychology: An International Review, 46: 387-416
Schneider, B. 1987. “The people make the place,” Personnel Psychology, 40, 437-454.
Schulmeyer, G.G., 1998, “Standardization of software quality assurance: Where is it all going?” in

G.G. Schulmeyer and J. I. McManus (eds.), Handbook of Software Quality Assurance: 61-90,
Upper Saddle River, NJ: Prentice Hall.

Smith, P.G., and D.G. Reinertsen, 1991, Developing products in Half the Time, New York: Van
Nostrand.

Software Engineering Institute, 2002. “Process Maturity Profile of the Software Community, 2002
Mid-year Update,” download from http://www.sei.cmu.edu

Sohn-Rethel, A. 1978. Intellectual and Manual labour : A Critique of Epistemology. Atlantic
Highlands, N.J.: Humanities Press.

Standish Group Chaos study report at www.standishgroup.com.
Steinmuller, W.E., 1996, “The U.S. software industry: An analysis and interpretive history,” in D.C.

Mowery (ed.), The International Computer Software Industry: 15-52, New York: Oxford
University Press.

Stone, C. A., 1993, ”What is missing in the metaphor of scaffolding?” in E. A. Forman, N. Minick,
C.A. Stone (eds.), Contexts for Learning: Sociocultural Dynamics in Children’s
Development: 169-183, New York: Oxford University Press.

Strauss, A.L., S. Fagerhaugh, B. Suczek, and C. Wiener, C., 1985, Social Organization of Medical
Work, Chicago: University of Chicago Press.

Suchman, L., 1987, Plans and Situated Actions. Cambridge: Cambridge University Press.
Swanson, K., D. McComb, J. Smith, and D. McCubbrey, 1991, “The application software factory:

Applying Total Quality Techniques to systems development,” MIS Quarterly, Dec.: 567-579
Tannenbaum, A.S. (ed.), 1968, Control in organizations, York, McGraw-Hill.
Taylor, C. 1989, The Sources of the Self, Cambridge: Cambridge University Press.
Taylor, S., and P. Todd, 1995, “Understanding information technology usage: A test of competing

models,” Information Systems Research, 6, 2: 144-176.
Thompson, P., 1989, The Nature of Work: An Introduction to Debates on the Labour Process.

London: Macmillan.
Triandis, H, C., and E, M. Suh, 2002, “Cultural influences on personality,” Annual Review of

Psychology, 53: 133-60.
Triandis, H, C., K. Leung, M. Villareal, and F.L. Clack, 1985, “Allocentric versus idiocentric

tendencies: Convergent and discriminant validation,” Journal of Personality Psychology, 19:
395-415.

Triandis, H.C., and M. J. Gelfand, 1998, “Converging measurement of horizontal and vertical
individualism and collectivism,” Journal of Personality and Social Psychology, 74, 1: 118-
128.

Van der Pijl, K. 1998, Transnational Classes and International Relations, London: Routledge.
Van Iterson, A., W. Mastenbroek, T. Newton, and D. Smith (eds.), 2002, The Civilized Organization:

Norbert Elias and the future of organization studies, Philadelphia: John Benjamins.

 41

Van Maanen, J., and S.R. Barley, 1984, “Occupational communities: Culture and control in
organizations,” Research in Organizational Behavior, 6, 287-365.

Vygostky, L.S., 1962, Thought and Language, Cambridge MA: MIT Press.
Vygotsky, L.S., 1978, Mind in Society, Cambridge MA: Harvard University Press.
Weber, H. (ed.), 1997, The Software Factory Challenge, Amsterdam: IOS Press.
Wertsch, J. V. (ed.), 1979, The Concept of Activity in Soviet Psychology, Armonk, New York: M.E.

Sharp.
Wertsch, J.V., P. Tulviste, and F. Hagstrom, “A sociocultural approach to agency,” in E. A. Forman,

N.Minick, C.A. Stone (eds.), Contexts for Learning: Sociocultural Dynamics in Children’s
Development: 136-56. New York: Oxford University Press.

Wheelwright, S.C. and K.B. Clark, 1992, Revolutionizing Product Development, New York: Free
Press.

Wood, D., J. Bruner, and G. Ross, 1976, “The role of tutoring in problem-solving,” Journal of Child
Psychiatry and Psychology, 17, 89-100

Yates, J., and W. J. Orlikowski, 1992, “Genres of organizational communication: A structurational
approach to studying communication and media,” Academy of Management Review, 17, 2:
299-323.

Zuboff, S., 1988, In the Age of the Smart Machine. Cambridge, MA: Harvard University Press.

 42

APPENDIX 1: INTERVIEWEES
Unless otherwise indicated, roles are non-managerial, although some are “leads” responsible

for small teams but without formal managerial authority. Managers are responsible for specific
projects or staff functions (such as QA or Development), or for whole programs.

Program Id. Role
Program A 1 Process engineering
 2 Contract officer
 3 QA/CM/Test
 4 Training
 5 Test
 6 Dept manager
 7 Project manager
 8 Project manager
 9 Testing
 10 Process engineer
 11 Program manager
 12 Development
 13 Systems engineering
 14 Development
 15 Process engineering
 16 Project manager
Program B 1 Testing (formerly with Program A)
 2 Development
 3 Development
 4 Development
 5 QA
 6 Development
 7 Development
 8 Testing (formerly with Program A)
 9 Testing
 10 Development manager (formerly with Program A)
 11 Project manager (formerly with Program A)
 12 Process engineering (formerly with Program A)
 13 Process engineering (formerly with Program A)
 14 Development
 15 Dept manager (formerly with Program A)
Program C 1 Project manager
 2 Development manager
 3 Program manager
 4 Project manager
 5 Project manager
 6 Process engineering
 7 QA
 8 QA
 9 Development
 10 Program manager
 11 Development
 12 Dept manager
 13 Development

 43

 14 Process engineering (manager with no staff)
 15 Training
 16 Development
Program D 1 Project support
 2 Improvement Team
 3 Dept manager
 4 QA
 5 Program manager
 6 Development
 7 Development
 8 Development manager
 9 Development
 10 Development
 11 Development manager
 12 Logistics
 13 Program manager
 14 Process engineer (also works with Program C)
 15 Dept manager
 16 Business development/Improvement Team
 17 Dept manager
 18 QA manager
 19 CM/Improvement Team
 20 Development manager
 21 Project support
 22 Process engineering

 44

EXHIBIT 1: THE CAPABILITY MATURITY MODEL

Level Focus and description Key Process Areas
Level 1:
Initial

Competent people and heroics:
The software process is ad hoc,
occasionally even chaotic. Few
processes are defined, and success
depends on individual effort and
heroics.

Level 2:
Repeatable

Project management processes:
Basic project management processes are
established to track cost, schedule, and
functionality. The necessary process
discipline is in place to repeat earlier
successes on projects with similar
applications.

* software configuration management
* software quality assurance
* software subcontract management
* software project tracking and oversight
* software project planning
* requirements management

Level 3:
Defined

Engineering processes and
organizational support:
The software process for both
management and engineering activities
is documented, standardized, and
integrated into a standard software
process for the organization. All
projects use an approved, tailored
version of the organization’s standard
software process for developing and
maintaining software.

* peer reviews
* intergroup coordination
* software product engineering
* integrated software management
* training program
* organization process definition
* organization process focus

Level 4:
Managed

Product and process quality:
Detailed measures of the software
process and product quality are
collected. Both the software process and
products are quantitatively understood
and controlled.

* software quality management
* quantitative process management

Level 5:
Optimizing

Continuous process improvement:
Improvement is enabled by quantitative
feedback from the process and from
piloting innovative ideas and
technologies.

* process change management
* technology change management
* defect prevention

 45

EXHIBIT 2: THE STRUCTURE OF AN ACTIVITY SYSTEM
(from Engestrom, 1987)

tools

subject object

rules community division of
labor

outcome

more advanced
model

