
5

Beyond Hacker Idiocy

The Changing Nature of Software Community
and Identity

Paul S. Adler

Introduction

Professions are often taken as prototypical of a more collegial form of

community, one that can be contrasted with both traditional Gemeinschaft

and modern Gesellschaft. Indeed, the collegiality of professionals doing

intrinsically meaningful work stands as a prefigurative model of the com-

munist utopia of a ‘free association of producers.’1 The key features of

professions giving them this status are their common professional social-

ization and their autonomy in economic status and in technical decision

making.

In reality however, professionals’ autonomy is increasingly restricted.

First, a substantial and growing proportion of professionals work under

heteronomous conditions, as employees of capitalist firms: engineers are

the largest category of these ‘organizational professionals.’ Even without

economic autonomy, professionals traditionally enjoyed considerable

technical autonomy; but this technical autonomy too has been under-

mined by recent trends towards the bureaucratization of professional

work.2

Many observers interpret the loss of economic and technical autonomy

as a sign of abject proletarianization.3 If such is indeed the future of profes-

sional work, the plausibility of the central thesis of this volume would be

seriously undermined. After all, professions are the occupational category

most directly implicated in the trends towards knowledge-intensive and

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 198 20.11.2005 12:34am

solutions-oriented production that we have interpreted as driving the

movement towards collaborative community.

This chapter challenges that pessimistic prognosis: I argue that it is

precisely the loss of autonomy that is allowing professionals to move

beyond the primitive, guild form of coordination towards a more ad-

vanced form—collaborative community. To ground my argument, this

chapter examines the case of software developers.

Software is a fruitful field for this investigation. On the one hand, in the

early years of the industry programmers—much like the physicians de-

scribed by Maccoby in Chapter 6—resembled guild craftsmen, sharing

elements of common socialization and enjoying great technical auton-

omy in their work. To quote one of them:

I remember that in the fifties and early sixties I was a ‘jack of all trades.’ As a

programmer I got to deal with the whole process. I would think through a problem,

talk to the clients, write my own code, and operate the machine. I loved it—

particularly the chance to see something through from beginning to end.4

On the other hand, over the past few decades, a significant part of the

software industry has undergone massive bureaucratization. A growing

proportion of developers describe their work in terms more like these,

taken from an interview with a developer who worked in a large systems-

development consulting firm I will call GCC:

Where I used to work before I came to GCC, the development process was entirely

up to me and my manager. What I did, when I did it, what it was going to look like

when it was done, and so forth, was all up to me. It was very informal. Here

everything is very different. It’s much more rigid. It’s much more formal. A lot of

people lay out the schedule, the entire functionality, and what I’m going to be

accountable for—before I even get involved. . . .

When I got here I was kind of shocked. Right off, it was ‘Here are your Instruc-

tions.’ ‘So what does this tell me?’ ‘It tells you how to do your job.’ I thought I was

bringing the know-how I’d need to do my job. But sure enough, you open up the

Instructions, and they tell you how to do your job: how to lay the code out, where

on the form to write a change request number, and so on. I was shocked.

Notwithstanding the development of powerful programming technolo-

gies over the recent decades, the guild model common in the industry’s

early years has proven grossly inadequate for the development of larger,

more complex software systems. As systems have grown larger, so too has

the proportion of projects that fail to meet their goals or fail entirely,

creating what many observers call a state of ‘crisis’ and ‘chaos.’5 The effort

to tame the chaos in software development has led to an increasing focus

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 199 20.11.2005 12:34am

199

Beyond Hacker Idiocy

on ‘process,’ understood as the standardization, formalization, and man-

agement control of work processes. One popular vehicle for attaining

greater process discipline is the Capability Maturity Model (CMM1)

developed by the Software Engineering Institute (described in more detail

below). At high levels of ‘maturity,’ software development should, its

proponents argue, resemble a bureaucratic factory process in its discip-

lined operations, predictable results, and continuous improvement. The

interviewee from GCC quoted above is from an organization at the highest

CMM maturity level.

On the one hand, this bureaucratization promises considerably greater

efficiency, timeliness, and quality.6 On the other hand, concerns have

been voiced about the CMM’s bureaucratic nature. These concerns echo

those addressed to the broader family of ‘software factory’ concepts of

which the CMM is a part.7 In particular, concern is often expressed that

the discipline recommended by the CMM will reduce the autonomy of

developers and will therefore be experienced by them as burdensome and

coercive constraint. This would stifle the motivation and creativity that

are, over the longer run, required for high-quality and innovative software

development.8 One software development manager interviewed in the

present study expressed the concern this way: ‘Programming has always

been seen as more of an art form than a factory process. Programmers

are supposed to be creative, free spirits, able to figure things out them-

selves. So the software factory idea was very alien to the culture of

programmers.’

The debate about the future of software development, like the broader

debate about the effects of bureaucratization on professional work, hinges

crucially on our understanding of how professionals’ communities and

identities are reshaped by bureaucratic rationalization. So far, however, we

have little research on these issues. Many observers simply assume that

developers will reject this bureaucratization; but my interviews at GCC

suggested a more complex picture. The developer quoted above—‘I was

kind of shocked’—went on to say:

But I can see the need now. Now I’m just one of 30 or 40 other people who may

need to work on this code, so we need a change request number that everyone can

use to identify it. It certainly feels restrictive at first. They explained the Instruc-

tions and the whole Program C process to us in our orientation seminar, but it’s

hard to see the value of it until you’ve been around a while. Now I can see that it

makes things much easier in the long run. I hate to say it. As a developer, I’m pretty

allergic to all this paperwork. It’s so time-consuming. But it does help. You’ve got to

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 200 20.11.2005 12:34am

200

Paul S. Adler

keep in mind, too, that by the time we see the Instructions, they’ve been through a

lot of revision and refinement. So they’re pretty much on target.

The research reported here analyzes the experience of software developers

in four software development units within GCC that have adopted the

CMM and reached relatively high levels of maturity. My main findings are

threefold: (a) under the influence of the CMM, the software development

process had become more interdependent, and thus had been ‘socialized’

in the sense used by Marx and Engels;9 (b) as a result, the structure of

development organizations has shifted towards an ‘enabling bureaucracy’

form, one which combines high levels of community and hierarchy prin-

ciples of organization, and creating a form of community that is collab-

orative rather than merely associational or guildlike; (c) the subjective

identity of developers shifted from the individualistic ‘hacker’ form

towards interdependent self-construal, in the sense used by cultural psych-

ology;10 and (d) these trends were simultaneously stimulated, distorted,

and retarded by profitability pressures.

Theoretical starting points

My study takes as its theoretical starting point Marx’s analysis of the

capitalist production process. As discussed in Chapter 1, Marx saw capit-

alism as a system characterized by the production of ‘commodities’—

goods and services produced for sale on the market rather than for

direct use by the producers. The commodity is thus a ‘contradictory

unity’ of use-value (utility) and exchange-value (its value in exchange)—

contradictory, because the imperatives of making something useful are

not necessarily congruent with the imperatives that flow from the desire

for profit.11

Within the capitalist production process, writes Marx, the basic use-

value/exchange-value contradiction is expressed in the contradiction be-

tween the labor process, in which use-values in the form of working cap-

acity, tools, and materials are combined to create new use-values, and the

valorization process, in which these use-values appear in the monetary form

of wages, fixed capital, and circulating capital, and are combined to create

new exchange-value in the form of profit.12 In Marx’s view of the devel-

opment of capitalism, the contradiction between these two aspects of the

production process intensifies over time, as the labor process embodies a

tendency towards what Marx called the ‘socialization’ of the forces of

production, while the valorization process embodies the persistence of

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 201 20.11.2005 12:34am

201

Beyond Hacker Idiocy

private-property-based relations of production. Valorization pressures

simultaneously encourage, undermine, and distort the tendency towards

socialization.13 Let us unpack this summary formulation.

Socialization is commonly construed as the process whereby people new

to a culture internalize its norms: Marx’s use is broader. Marx’s discussion

of the socialization of the forces of production (as distinct from his argu-

ments in favor of the socialization of property relations through national-

izations) suggests that this psychological internalization is just one form

of a more general phenomenon: the forces of production are socialized

insofar as they come to embody the capabilities developed in the larger

society rather than only those that emerge from isolated, local contexts.14

The ‘objective’ socialization of the forces of production is visible at the

societal level in the increasingly complex social division of labor—the

specialization of industries and regions, and their increasing global inter-

dependence.15 At the enterprise level—where society’s forces of produc-

tion are instantiated as specific labor processes and specific collectivities—

objective socialization was characterized by Engels in these terms:16

Before capitalist production. i.e. in the Middle Ages. . . . the instruments of labor—

land, agricultural implements, the workshop, the tool—were the instruments of

labor of single individuals, adapted for the use of one worker. . . [The bourgeoisie

transformed these productive forces] from means of production of the individual

into social means of production, workable only by a community of men. The

spinning-wheel, the hand-loom, the blacksmith’s hammer were replaced by the

spinning-machine, the power-loom, the steam-hammer; the individual workshop,

by the factory, implying the cooperation of hundreds and thousands of workmen.

In like manner, production itself changed from a series of individual into a series of

social acts.

Firms develop a whole panoply of management techniques to master what

Marx calls the ‘cooperation’ necessary to coordinate this interdependent

‘series of social acts.’17 In this light, the emergence of bureaucracy can be

seen as a key part of the socialization process.

To these objective dimensions of socialization corresponds a subjective

dimension—to reprise the conventional meaning of socialization. When

the effective subject of production is no longer an individual worker but

the ‘collective worker,’18 workers’ identities change—workers are resocial-

ized. Socialization in this subjective sense can be understood as the emer-

gence of more ‘interdependent self-construals.’19 The civilizing mission of

capitalism is not only to stimulate enormously the quantitative develop-

ment of the objective components of the forces of production, but also to

take a decisive step in the realization of humankind’s fundamentally social

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 202 20.11.2005 12:34am

202

Paul S. Adler

nature: ‘When the worker cooperates in a planned way with others, he

strips off the fetters of his individuality, and develops the capabilities of his

species.’20

The development of the forces of production pulls workers out of what

Marx and Engels call ‘rural idiocy’ and ‘craft idiocy.’21 Marx’s use of the

term idiocy preserves both its colloquial sense and the meaning from the

Greek idiotes, denoting an asocial individual isolated from the polis. At the

opposite end of the spectrum from the idiotes—in the form of the farmer or

the craftsman—is the ‘social individual,’ described in the Grundrisse as the

technician who accesses and deploys society’s accumulated scientific and

technological knowledge in a collaboratively organized production pro-

cess.22

Under capitalism, this socialization tendency is simultaneously stimu-

lated, retarded, and distorted by the prevailing relations of production.

Competitive pressures force firms to break down parochialisms, to bring

everyone into the world market, and to stimulate technological progress;

but instead of a broadening association of producers progressively master-

ing their collective future, capitalism imposes the coercion of quasi-nat-

ural laws of the market over firms and the despotism of corporate

bureaucracy over workers. The limitations on collective mastery that re-

sult from the dominance of the market over firms are visible in capitalism’s

inability to manage public goods and externalities. The limitations result-

ing from the coercion of the market are visible in the difficulties facing

firms that attempt to establish collaborative relations with other firms up-

and down-stream, only to find that competitive pressure destroys these

high-trust relations. The limitations resulting from the despotic authority

of managers over workers within firms is visible in the Sisyphean nature of

corporate human resource management strategies—condemned to futility

by the capitalist firm’s need for workers who are simultaneously depend-

able and disposable.23 With the increasing complexity of technology and

the growing knowledge intensity of the economy, these handicaps be-

come increasingly intolerable fetters on social development.24

In the overall dynamics of capitalism, these various constraints must

and do slowly cede to the overall progress of socialization. In modern

industry, competitive advantage often flows from skill upgrading and

from greater collaborative interdependence within and between firms.

The pursuit of those sources of competitive advantage makes capitalists

the ‘involuntary promoters’ of socialization.25 While at first, socialization

appears in the alienated form of coercive market and bureaucratic control,

the subsequent development of capitalism constantly brings forth new,

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 203 20.11.2005 12:34am

203

Beyond Hacker Idiocy

more conscious and collaborative forms of socialization—forms which

stand in ever-sharper contrast to the prerogatives of capital.

As a result of the persistence of capitalist relations of production, the

path of socialization—the emergence of collaborative community—is

halting and uneven. Globalization integrates markets, but by whipsawing

regions against each other. Management mobilizes the collective worker,

but then is seduced by the easy profits from downsizing and outsourcing.

There is a long-term skill upgrading trend, but firms find the low road of

deskilling and super-exploitation ever tempting.

The body of this chapter shows that this dialectic of socialization and

valorization drives the evolution of software development and the muta-

tions of professional communities and identities. First, however, I describe

the context of the research and my research methods.

Some context

The Capability Maturity Model

In the 1980s, the US Air Force studied seventeen major software systems

contracts and found that every project was late (by an average of 75 per

cent) and over budget.26 The chaos in large-scale commercial sector pro-

jects was (and still is) in general even worse.27 In 1984, frustrated with such

chaos, the Department of Defense (DoD) funded the Software Engineering

Institute (SEI), based at Carnegie-Mellon University, to develop a model of

a more reliable software development process. With the assistance of the

MITRE Corporation, SEI developed a process maturity framework, releas-

ing a preliminary description in 1987 and the first official version (version

1.1) in 1991.

A broad community of industry people helped shape the CMM. One of

the CMM authors writes: ‘Nearly 1000 external reviewers who were part of

a ‘‘CMM Correspondence Group’’ had the opportunity to comment on the

various drafts leading to CMM version 1.1. A CMM Advisory Board helped

the SEI review and reconcile conflicting requests.’28 The software CMM

was subsequently complemented by CMM tools for systems engineering,

people management, software acquisition, and engineering. In 2000, sev-

eral of these were integrated into a broader tool called CMM-Integration.

This study focuses on the software CMM. This CMM distinguishes five

successively more ‘mature’ levels of process capability, each characterized

by mastery of a number of Key Process Areas (KPAs)—see Table 5.1. The

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 204 20.11.2005 12:34am

204

Paul S. Adler

T
a
b

le
5
.1

.
T
h

e
C

a
p

a
b

ili
ty

M
a
tu

ri
ty

M
o
d

e
l

Le
ve

l
Fo

cu
s

a
n

d
d

e
sc

ri
p

ti
o
n

K
e
y

p
ro

ce
ss

a
re

a
s

D
is

tr
ib

u
ti
o
n

o
f
a
p

p
ra

is
e
d

o
rg

a
n

iz
a
ti
o
n

s
in

:
1
9
8
7
–
1
9
9
1

(1
3
2

o
rg

a
n

iz
a
ti
o
n

s)
2
0
0
0
–
m

id
-2

0
0
4

(1
,5

4
3

o
rg

a
n

iz
a
ti
o
n

s)

Le
ve

l
1
:
In

it
ia

l
C

o
m

p
e
te

n
t

p
e
o

p
le

a
n

d
h

e
ro

ic
s:

T
h

e
so

ft
w

a
re

p
ro

ce
ss

is
a
d

h
o
c,

o
cc

a
si

o
n

a
lly

e
ve

n
ch

a
o
ti
c.

Fe
w

p
ro

ce
ss

e
s

a
re

d
e
fi
n

e
d

,
a
n

d
su

cc
e
ss

d
e
p

e
n

d
s

o
n

in
d

iv
id

u
a
l
e
ff
o
rt

a
n

d
h

e
ro

ic
s.

8
0
.0

%
9
.6

%

Le
ve

l
2
:

R
e
p

e
a
ta

b
le

P
ro

g
ra

m
m

a
n

a
g

e
m

e
n

t
p

ro
ce

ss
e
s:

B
a
si

c
p

ro
g

ra
m

m
a
n

a
g

e
m

e
n

t
p

ro
ce

ss
e
s

a
re

.
so

ft
w

a
re

co
n

fi
g

u
ra

ti
o
n

m
a
n

a
g

e
m

e
n

t
1
2
.3

%
4
2
.6

%

e
st

a
b

lis
h

e
d

to
tr

a
ck

co
st

,
sc

h
e
d

u
le

,
a
n

d
fu

n
ct

io
n

a
lit

y.
T
h

e
n

e
ce

ss
a
ry

p
ro

ce
ss

d
is

ci
p

lin
e

is
in

p
la

ce
to

re
p

e
a
t

e
a
rl
ie

r
su

cc
e
ss

e
s

o
n

p
ro

g
ra

m
s

w
it
h

si
m

ila
r

a
p

p
lic

a
ti
o
n

s.

.
so

ft
w

a
re

q
u
a
lit

y
a
ss

u
ra

n
ce

.
so

ft
w

a
re

p
ro

je
ct

tr
a
ck

in
g

a
n

d
o
ve

rs
ig

h
t

.
so

ft
w

a
re

p
ro

je
ct

p
la

n
n

in
g

.
re

q
u
ir
e
m

e
n

ts
m

a
n

a
g

e
m

e
n

t

Le
ve

l
3
:
D

e
fi
n

e
d

E
n

g
in

e
e
ri

n
g

p
ro

ce
ss

e
s

a
n

d
o

rg
a
n

iz
a
ti

o
n

a
l
su

p
p

o
rt

:
T
h

e
so

ft
w

a
re

p
ro

ce
ss

fo
r

b
o
th

m
a
n

a
g

e
m

e
n

t
a
n

d
e
n

g
in

e
e
ri
n

g
a
ct

iv
it
ie

s
is

d
o
cu

m
e
n

te
d

,
st

a
n

d
a
rd

iz
e
d

,
a
n

d
in

te
g

ra
te

d
in

to
a

st
a
n

d
a
rd

so
ft

w
a
re

p
ro

ce
ss

fo
r

th
e

o
rg

a
n

iz
a
ti
o
n

.
A

ll
p

ro
g

ra
m

s
u
se

a
n

a
p

p
ro

ve
d

,
ta

ilo
re

d
ve

rs
io

n
o
f
th

e
o
rg

a
n

iz
a
ti
o
n

’s
st

a
n

d
a
rd

so
ft

w
a
re

p
ro

ce
ss

fo
r

d
e
ve

lo
p

in
g

a
n

d
m

a
in

ta
in

in
g

so
ft

w
a
re

.

.
p

e
e
r

re
vi

e
w

s
.

in
te

rg
ro

u
p

co
o
rd

in
a
ti
o
n

.
so

ft
w

a
re

p
ro

d
u
ct

e
n

g
in

e
e
ri
n

g
.

in
te

g
ra

te
d

so
ft

w
a
re

m
a
n

a
g

e
m

e
n

t
.

tr
a
in

in
g

p
ro

g
ra

m
.

o
rg

a
n

iz
a
ti
o
n

p
ro

ce
ss

d
e
fi
n

it
io

n
.

o
rg

a
n

iz
a
ti
o
n

p
ro

ce
ss

fo
cu

s

6
.9

%
3
0
.1

%

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 205 20.11.2005 12:34am

205

Beyond Hacker Idiocy

T
a
b

le
5
.1

.
T
h

e
C

a
p

a
b

ili
ty

M
a
tu

ri
ty

M
o
d

e
l
(C

o
n
t’

d
)

Le
ve

l
Fo

cu
s

a
n

d
d

e
sc

ri
p

ti
o
n

K
e
y

p
ro

ce
ss

a
re

a
s

D
is

tr
ib

u
ti
o
n

o
f
a
p

p
ra

is
e
d

o
rg

a
n

iz
a
ti
o
n

s
in

:
1
9
8
7
–
1
9
9
1

(1
3
2

o
rg

a
n

iz
a
ti
o
n

s)
2
0
0
0
–
m

id
-2

0
0
4

(1
,5

4
3

o
rg

a
n

iz
a
ti
o
n

s)

Le
ve

l
4
:
M

a
n

a
g

e
d

P
ro

d
u

ct
a
n

d
p

ro
ce

ss
q

u
a
li
ty

:
D

e
ta

ile
d

m
e
a
su

re
s

o
f
th

e
so

ft
w

a
re

p
ro

ce
ss

a
n

d
p

ro
d

u
ct

q
u
a
lit

y
a
re

co
lle

ct
e
d

.
B
o
th

th
e

so
ft

w
a
re

p
ro

ce
ss

a
n

d
p

ro
d

u
ct

s
a
re

q
u
a
n

ti
ta

ti
ve

ly
u
n

d
e
rs

to
o
d

a
n

d
co

n
tr

o
lle

d
.

.
so

ft
w

a
re

q
u
a
lit

y
m

a
n

a
g

e
m

e
n

t
0
.0

%
8
.6

%

.
q

u
a
n

ti
ta

ti
ve

p
ro

ce
ss

m
a
n

a
g

e
m

e
n

t

Le
ve

l
5
:
O

p
ti
m

iz
in

g
C

o
n

ti
n

u
o

u
s

p
ro

ce
ss

im
p

ro
v
e
m

e
n

t:
Im

p
ro

ve
m

e
n

t
is

e
n

a
b

le
d

b
y

q
u
a
n

ti
ta

ti
ve

fe
e
d

b
a
ck

fr
o
m

th
e

p
ro

ce
ss

a
n

d
fr

o
m

p
ilo

ti
n

g
in

n
o
va

ti
ve

id
e
a
s

a
n

d
te

ch
n

o
lo

g
ie

s.

.
p

ro
ce

ss
ch

a
n

g
e

m
a
n

a
g

e
m

e
n

t

0
.8

%
9
.6

%
.

te
ch

n
o
lo

g
y

ch
a
n

g
e

m
a
n

a
g

e
m

e
n

t
.

d
e
fe

ct
p

re
ve

n
ti
o
n

S
o
u
rc

es
:
P
a
u
lk

e
t

a
l.

(1
9
9
3
);

S
o
ft

w
a
re

E
n

g
in

e
e
ri
n

g
In

st
it
u
te

(2
0
0
4
).

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 206 20.11.2005 12:34am

206

Paul S. Adler

CMM belongs to a class of improvement approaches that focus on ‘pro-

cess’ rather than ‘people.’ It does not recommend any particular approach

to organizational and behavioral issues: it focuses on the ‘whats’ and not

the ‘hows,’ leaving CMM users to determine their own implementation

approach. Level 1 represents an ad hoc approach—it corresponds to the

traditional model of professional work. Level 2 represents the rationaliza-

tion of the management of individual projects. Level 3 characterizes the

way the organization manages its portfolio of projects. Level 4 addresses

the quantification of the development process. Level 5 addresses the

continuous improvement of that process. The underlying philosophy of

this hierarchy was inspired by Crosby’s five stages of TQM maturity—

uncertainty, awakening, enlightenment, wisdom, and certainty.29

Early CMM assessments revealed a startlingly ‘immature’ state of soft-

ware process, but one that conforms to the expectations of mainstream

contingency theory: fully 80 per cent of the 132 organizations assessed

during 1987–91 were found to be at the ad hoc Level 1. Over the subse-

quent years, there appears to have been significant shift (although it is

difficult to tell given the changing and unrepresentative nature of the

sample). This shift was assisted by the fact that the DoD and other gov-

ernment and private-sector organizations began using Software Capability

Evaluations (SCEs) based on the CMM as part of their source selection

process. The first evaluations pressed suppliers to reach Level 2, but before

long the bar was raised to Level 3. Not surprisingly, the CMM has become

the basis for numerous software service organizations’ improvement ef-

forts in both the government and commercial sectors. (The CMM is almost

unknown among firms developing pre-packaged software products.)

Evidence is slowly accumulating that moving up the CMM hierarchy

leads to improvements in product cost, quality, and timeliness. The SEI

website lists several case studies of high-maturity organizations and the

benefits they have achieved. According to one multi-organization statis-

tical study, total development costs decreased by 5 to 10 per cent for

every further level attained.30 Another study examined thirty software

projects in the systems integration division of a large IT firm over the

period 1984–96, and estimated the effects of moving from Level 1 to 3 to

be an increase of 578 per cent in the lines of code per error, a reduction of

30 per cent in cycle time, and a reduction of 17 per cent in person-

months of effort.31

Skeptics remain unconvinced.32 Critics of process approaches argue

that these gains may be specific to the sampled organizations. More fun-

damentally, they may be earned at the expense of developer morale and

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 207 20.11.2005 12:34am

207

Beyond Hacker Idiocy

commitment, and given the importance of developers’ attitudes to per-

formance, any performance gains may therefore be ephemeral.

However, we currently lack any reliable evidence on how developers

actually respond to the discipline of CMM. Part of the problem is the

inadequacy of most of the theoretical framings available for such re-

search. The most common framing assumes that autonomy is a primor-

dial psychological need—especially for professionals like software

developers.33 On reflection, however, it would beg the question to take

autonomy as a key variable. It is surely insufficient to characterize the

bureaucratization of software work only by what is lost: we also need to

understand what replaces that lost autonomy. Abstractly speaking, au-

tonomy is replaced by greater task interdependence and correspondingly

more intensive coordination efforts. Autonomy theories assume that

coordination is coercive, and that autonomy is thus replaced by depend-

ence and domination. But this assumption needs to be tested against

reality, since it is possible that autonomy is replaced by a more symmet-

rical and collaborative form of coordination—one that might be experi-

enced very differently by employees.

Research methods

The research was conducted in a large, US-based professional service firm,

which I will call GCC. With the support of senior management, inter-

views were conducted with staff in four programs in GCC’s Government

Systems group. (‘Programs’ at GCC were organizational units devoted to

long-standing, multi-project client engagements.) The choice of these

programs was guided by a research strategy that sought to understand

how development staff experienced work at high CMM Levels. At the

time of my research, Program A was at CMM Level 5; Program A’s sister,

Program B, was Level 3; Program C was almost Level 5 (it was certified

Level 5 shortly after my study); and Program C’s sister, Program D, was at

Level 3.

In late 1999, I interviewed between fifteen and twenty-two people at

various hierarchical levels and in various functions in each of these four

programs. Interviews lasted approximately one hour. They were tape-

recorded and interviewees were assured anonymity. The recordings were

transcribed, and relevant excerpts were sent back to interviewees for re-

view and correction. I also consulted voluminous internal documentation

from each of these programs as well as documents from corporate entities

supporting them.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 208 20.11.2005 12:34am

208

Paul S. Adler

To bring some order to these materials, I moved back and forth between

existing theories and concepts derived inductively from the interview

data. A draft report was circulated to interviewees and other interested

parties at GCC, and their comments and corrections were incorporated in

subsequent iterations. The present article distills some of the key argu-

ments.

Building process at GCC

GCC is one of the largest software services firms in the world. Major

players in this industry include Accenture, IBM, EDS, and CSC. In 2000,

GCC’s total sales exceeded $9 billion. It employed around 58,000 people.

GCC had experienced double-digit annual revenue growth over most of

the prior decade.34

At GCC, as in other large organizations, the term ‘process’ was used to

refer to a whole hierarchy of standard operating procedures, from ‘Policies’

defining broad, corporate requirements down to ‘Instructions’ defining

individual tasks. The ‘granularity’ of process at its finest levels can be

gauged by the Instructions at one of the Level 5 programs, Program C.

Amongst myriad other categories there were separate Instructions that

covered high-level design, two types of low-level design, two types of

code reviews, one for testing, as well as Instructions for filling out change

request implementation forms and root-cause analysis forms. Each In-

struction was several pages in length. They often included the specific

forms to be completed as well as flow charts detailing the sequence of

associated tasks. Overall, the process documentation summed to some

eight linear feet of shelf space. A sketch of the hierarchy of the Govern-

ment Systems group’s process documentation is given in Table 5.2. In

recent years, almost all of this documentation had been put online,

along with a host of other management information and communication

tools. Prescribed work-flows were being built into automated document

routing systems. Table 5.2 also describes this technology infrastructure.

If the documentation that developers were required to read was volu-

minous, so too was the documentation that they were required to write. In

the words of one interviewee (perhaps exaggerating for dramatic effect):

I can write the code in two hours, but then I have to spend two days documenting

it! It can be very frustrating. We have to document check-in and check-out, a detail

design plan, a development plan. We have to print out all the differences between

the old and the new code. There’s documentation for inspection and certification.

There’s an internal software delivery form. A test plan. And all these need to be

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 209 20.11.2005 12:34am

209

Beyond Hacker Idiocy

T
a
b

le
5
.2

.
P
ro

ce
ss

d
o
cu

m
e
n

ta
ti

o
n

a
n

d
in

fr
a
st

ru
ct

u
re

P
R
O

C
E
S
S
E
S

IN
FR

A
S
T
R
U

C
T
U

R
E

P
o

li
ci

e
s

a
n

d
p

ro
ce

d
u

re
s

w
e
re

lis
te

d
u
n

d
e
r

n
in

e
h

e
a
d

in
g

s:
.

G
e
n

e
ra

l
.

O
rg

a
n

iz
a
ti
o
n

.
H

u
m

a
n

re
so

u
rc

e
s

.
S
e
cu

ri
ty

a
n

d
fa

ci
lit

ie
s

.
P
ro

g
ra

m
d

e
ve

lo
p

m
e
n

t
.

Le
g

a
l/

co
n

tr
a
ct

s
.

P
ro

ce
ss

d
e
fi
n

it
io

n
a
n

d
m

a
n

a
g

e
m

e
n

t
.

Fi
n

a
n

ce
.

P
ro

cu
re

m
e
n

t

P
ro

ce
ss

d
e
fi

n
it

io
n

a
n

d
m

a
n

a
g

e
m

e
n

t
b

ro
ke

d
o
w

n
in

to
th

e
fo

llo
w

in
g

co
m

p
o
n

e
n

ts
.

T
h

e
se

m
a
p

p
e
d

a
p

p
ro

x
im

a
te

ly
o
n

to
th

e
C

M
M

K
e
y

P
ro

ce
ss

A
re

a
s:

.
P
ro

ce
ss

d
e
fi
n

it
io

n
a
n

d
m

a
n

a
g

e
m

e
n

t
.

P
ro

je
ct

p
la

n
n

in
g

.
P
ro

je
ct

tr
a
ck

in
g

.
R
e
q

u
ir
e
m

e
n

ts
m

a
n

a
g

e
m

e
n

t
.

In
te

rg
ro

u
p

co
o
rd

in
a
ti
o
n

.
S
o
ft

w
a
re

a
cq

u
is

it
io

n
a
n

d
m

a
n

a
g

e
m

e
n

t
a
n

d
p

la
n

n
in

g
.

S
u
b

co
n

tr
a
ct

m
a
n

a
g

e
m

e
n

t
.

Q
u
a
lit

y
a
ss

u
ra

n
ce

p
la

n
.

C
o
n

fi
g

u
ra

ti
o
n

m
a
n

a
g

e
m

e
n

t
.

Li
fe

-c
y
cl

e
e
n

g
in

e
e
ri
n

g
.

Tr
a
in

in
g

m
a
n

a
g

e
m

e
n

t
.

S
o
ft

w
a
re

q
u
a
lit

y
m

a
n

a
g

e
m

e
n

t
.

Q
u
a
n

ti
ta

ti
ve

p
ro

ce
ss

m
a
n

a
g

e
m

e
n

t
.

D
e
fe

ct
p

re
ve

n
ti
o
n

.
P
ro

ce
ss

ch
a
n

g
e

m
a
n

a
g

e
m

e
n

t
.

Te
ch

n
o
lo

g
y

ch
a
n

g
e

m
a
n

a
g

e
m

e
n

t

P
ro

je
ct

tr
a
ck

in
g

in
cl

u
d

e
d

:
.

P
o
lic

y
st

a
te

m
e
n

t
.

P
ro

ce
d

u
re

s:
-

C
o
st

a
n

d
sc

h
e
d

u
le

tr
a
ck

in
g

-
Te

ch
n

ic
a
l
m

e
tr

ic
s

tr
a
ck

in
g

-
P
ro

je
ct

re
vi

e
w

s
-

R
is

k
m

a
n

a
g

e
m

e
n

t
.

In
st

ru
ct

io
n

s

1
.
Lo

tu
s

N
o
te

s
d

a
ta

b
a
se

:
.

D
o
cu

m
e
n

t
lib

ra
ry

-
P
ro

g
ra

m
A

d
e
ve

lo
p

m
e
n

t
m

e
th

o
d

o
lo

g
y

-
st

a
n

d
a
rd

s
a
n

d
p

ro
ce

d
u
re

s
-

g
u
id

e
b

o
o
ks

.
P
ro

ce
ss

a
ss

e
ts

-
p

ro
ce

ss
im

p
ro

ve
m

e
n

t
in

it
ia

ti
ve

s
-

te
ch

n
o
lo

g
y

m
a
n

a
g

e
m

e
n

t
-

re
fe

re
n

ce
d

o
cu

m
e
n

ts
-

le
ss

o
n

s
le

a
rn

e
d

.
S
o
ft

w
a
re

M
e
a
su

re
m

e
n

t
S
y
st

e
m

-
co

lle
ct

e
d

d
a
ta

-
d

a
ta

a
n

a
ly

si
s

-
co

lle
ct

io
n

st
a
tu

s
-

to
o
ls

/h
e
lp

.
IS

O
/C

M
M

D
is

cu
ss

io
n

-
d

e
p

lo
y
m

e
n

t
te

a
m

m
e
e
ti
n

g
m

in
u
te

s
-

C
M

M
/I

S
O

b
ri
e
fi
n

g
s

-
p

ro
ce

ss
b

ri
e
fi
n

g
s

2
.
A

u
to

m
a
te

d
w

o
rk

fl
o
w

m
a
n

a
g

e
m

e
n

t
to

o
ls

!
!

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 210 20.11.2005 12:34am

210

Paul S. Adler

signed. . . . I used to be an independent developer for about three years. I never

even created a flow chart of my work! The only documentation I needed was a ‘to

do’ list. So I had to change a lot of habits when I got here. (B developer)

To some extent, this formalization was due to size. The projects in the

programs under study here were not huge (see details below), but were large

enough to require a level of formalization and standardization that was

noticeably higher than some employees had experienced in prior positions

in smaller establishments. Moreover, government clients typically imposed

more documentation requirements than commercial sector clients. And in

Programs A and C, formalization was further increased due to the life-threat-

ening risks associated with the products that the software was supporting.

These were, of course, differences in the degree of routineness across the

programs and across the departments within the programs; however, all

the departments in all four programs—from the most routine to the

least—had come under great pressure to adopt a more mature process

orientation. Partly this was due to pressure to conform to the expectations

of key customers, and partly it was because progress towards higher CMM

Levels appeared to at least some influential insiders as a valuable oppor-

tunity for technical process improvement. As a result of these external and

internal pressures, all four programs had considerably increased the degree

of standardization and formalization of all the aspects of the development

process. The two high-maturity programs (A and C) had gone significantly

further than Programs B and D, with detailed Instructions specifying the

work of even the development functions.

It is particularly noteworthy that this drive to bureaucratization took

place in organizations devoted to relatively innovative tasks. While the

degree of innovativeness was not as high as we might find in a pure

research environment, it was substantial since each project represented a

novel challenge: all these programs delivered fully customized systems as

well as maintaining current systems. Moreover, over recent years, even as

they were bureaucratizing, the programs were becoming more rather than

less innovative. In all four programs, customer requirements were becom-

ing more complex; new technologies and languages were being intro-

duced at an accelerating rate; and the programs were being pushed to

show ever-greater flexibility in responding to customer demands. As a

result, training budgets had increased in all four programs in recent

years. A program manager at Program C noted, ‘Our main challenge has

been to transition a staff of 400 plus to new languages and technologies.

That has engaged us in a large-scale training effort.’

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 211 20.11.2005 12:34am

211

Beyond Hacker Idiocy

A common human resource management challenge

Software development relies primarily on relatively ‘professional’ person-

nel. It is true that software developers’ claim to professionalism is limited

because they have not established an accreditation monopoly such as that

accorded physicians and lawyers, and because their knowledge base is not

as theoretical (although a discipline of ‘software engineering’—of which

CMM is a direct reflection—has begun to change this).35 Nevertheless, two

factors encouraged a professional status and outlook. First, software devel-

opment depends critically on the capabilities of the staff, and these cap-

abilities are more occupation specific and less firm specific than is the case

with less-professionalized occupations. As evidence, I would cite the fact

that in the four focal units, two-thirds of the personnel held a bachelor’s,

master’s, or Ph.D. degree. And second, notwithstanding the discipline

created by process maturity, developers needed to exercise considerable

discretion in their work to ensure quality and efficiency. Developers thus

had considerable power in their relations with management. This excerpt

illustrates:

Buy-in is important in this kind of business. Take an example: programming

languages. The DoD was very enthusiastic a few years ago about Ada. It was a

great language from a management point of view, since it specified things in a

way that gave management a lot of control over the process. But the programmers

preferred C because it was less constraining and more open. They simply refused to

get on board with Ada, and management lost the fight. (A program manager)

Given this relatively professional character of the work, and given also the

persistent imbalance of supply and demand in the labor market for soft-

ware personnel, staff retention had long been a high priority for GCC and

an important consideration in the management of process rationalization

efforts. As government contractors, these GCC programs had little control

over salary levels, and salaries tended to be lower than in the commercial

sector. Moreover, by policy, GCC offered only modest financial incentives

to staff below senior management levels; symbolic rewards were more

common. So managers understood that retaining talented employees

depended above all on making GCC a good place to work, with both

good employment conditions and challenging tasks. Program D illustrates

the resulting climate:

The turnover figures don’t show you how many people come back. We’ve had six or

seven people leave then return. They realized that we have a pretty good environ-

ment. You don’t get crucified for mistakes, for one thing. The ‘blame game’ is pretty

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 212 20.11.2005 12:34am

212

Paul S. Adler

much non-existent. If someone underperforms, we usually find another job for

them that’s a better fit. They aren’t humiliated. (D department manager)

In the programs studied, annual staff turnover in recent years had been

significantly lower than the industry average.

Key findings

To analyze the evolution of software development, we need a theoretical

framework that allows us to recognize the mutual influence of commu-

nity, identity, and the other factors internal and external to the collectivity

that affect the organization of software development. To this end, this

chapter relies on cultural-historical activity theory (CHAT). CHAT’s key

ideas are summarized in Appendix 5.2. We take from CHAT the framework

summarized in Fig. 5.1.

In the sections below, I will discuss each of the elements of the software

development activity system in turn. In each case, we will see the contra-

diction between valorization and socialization at work. By way of intro-

duction, I begin with an overview.

Traditionally, at the lowest levels of process maturity, Level 1, developers

enjoyed high levels of autonomy, task variety, and task identity. Recall the

interview quoted in the introduction. The activity systems within which

developers worked were largely local. As another study of programmers of

that period noted, ‘Programmers (and analysts) followed a logic and pro-

cedures which were largely of their own making.’36 Being tacit rather than

codified, tools and rules were difficult to communicate across locales.

Working knowledge was in these senses private rather than social.

tools

subject object

community

outcome

more advanced
model

Fig. 5.1 The structure of an activity system (adapted from Engeström 1987)

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 213 20.11.2005 12:34am

213

Beyond Hacker Idiocy

At higher levels of process maturity, developers were embedded in

larger, more complex organizations, and encountered approaches that

were the fruit of a complex, organized, large-scale process design and

development effort—recall the second interview quoted in the introduc-

tion. Tools, models of the development process, and the structuring of the

work community were no longer naturally emergent phenomena

grounded in local experience. They were formalized, standardized, bur-

eaucratized. Developers were aware that their effectiveness was not only

the result of their own individual effort and skill and of informally shared

tricks of the trade, but also and increasingly the result of this social, rather

than private, accumulation of working knowledge.

At first, this socialization took a form many developers experienced as

alienating and coercive. Discussing the Military Standards for software

quality assurance that came into force in the mid-1980s, one veteran

noted that: ‘[Military Standard] 2167A was supposed to make coding a

no-brainer’ (C development manager). In the civilian Program A too, the

initial experience with process was top down, oriented to conformance,

and ‘most managers felt that it was just a matter of ensuring that people

were implementing it’ (A program manager).

But by the time of my study a decade or more later, the Level 5 programs

had pushed the socialization of the production process further, and it had

taken a more enabling form. Recall the GCC interview quoted in the

Introduction: ‘But I can see the need now.’ Another developer said:

I came from a background in industrial process computers and the organization I

worked for was much less structured in how they handled all this. The process was

basically just define the requirements, write the code, then do a final test. Apart

from that, you were basically on your own. Here the processes tell you a lot more

about how to do the work. By formalizing things, they make it easier to incorporate

lessons-learned a lot faster. Previously, it was more like a ‘hand-me-down’—you

learned how to do your work with some help from other people on the job, or just

by yourself. (B developer)

Overall, my interviews suggest that the bureaucratization represented by

CMM-style process maturity had broadly positive effects, both technical

and attitudinal. Technically, the more routine tasks in software develop-

ment were rendered more efficient by standardization and formalization,

leaving the non-routine tasks relatively unstructured to allow more cre-

ativity in their performance. Moreover, non-routine tasks benefited from

the guidance afforded by well-designed process controls, and from the

elimination of ‘noise’ and overload created by unnecessary rework in

routine tasks.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 214 20.11.2005 12:34am

214

Paul S. Adler

Attitudinally, process maturity was experienced by many developers as

enabling and empowering rather than coercive and alienating. Process

maturity did mean a loss of autonomy. Higher CMM Levels drew people

into broader and tighter webs of interdependence, both horizontally and

vertically. The individualistic ‘hacker’ model of software development was

displaced by a new understanding of work as a collective endeavor. In that

collective endeavor, process discipline, even though a constraint on indi-

vidual autonomy and a burden on individual productivity, was often seen

as a functional necessity in the pursuit of individually and collectively

valued goals.

The key to ensuring a positive response to process discipline was exten-

sive participation: As several interviews summarized it, ‘People support

what they help create.’ These organizations had both formalized processes

supporting participation and strong normative commitments to partici-

pative rather than autocratic styles of leadership. The resulting organiza-

tional form corresponded to the ‘enabling bureaucracy’ type, combining a

dense web of rules and a finely differentiated vertical and horizontal

division of labor with high levels of trust and collective cohesion—com-

bining the community and hierarchy principles of organization.37 Thus,

not only did community become more salient, but the form of commu-

nity changed—from the guildlike traditional form of professional com-

munity to the collaborative community discussed in this volume’s

Introduction.

On the other hand, however, as we will see below, the forces at work also

reflected valorization pressures, and these pressures simultaneously stimu-

lated and limited socialization. Socialization appeared to be the dominant

tendency; but the progress of socialization was hesitant and uneven. In

each of the following subsections, I first identify the dominant tendency

and then one or more accompanying tensions that reflect the various

contradictions at work.

Object: an expanded object

Common English usage captures the dual nature of the object of work—

both raw materials and purpose. My interviews suggest, first, that process

maturity made the object of developers’ work more stable and more

intelligible. This object was less likely to mutate in unpredictable ways

due to the poor quality of configuration control, requirements planning,

or quality management:

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 215 20.11.2005 12:34am

215

Beyond Hacker Idiocy

Before I came to GCC, I worked for a small software firm doing business software. It

was what the SEI folks would call a Level 1 organization—completely ad hoc. No

documentation, no design reviews, no standardized testing. So there was a lot of

chaos and rework. . . . In a place like this, everything is more organized, and you

know exactly where you are in the development process. I like the fact that you

know where you’re up to and how to do your work. It’s more streamlined and

there’s less rework. (C testing)

Second, process meant that the object of developers’ work expanded to

include more paperwork. Process forced developers to document their

work more thoroughly—to attach to the code or the test a description of

its meaning, its intent, and the rationale of the design. The developer

quoted immediately above went on to say: ‘On the other hand, I don’t

like all the paperwork. Your work may be more streamlined, but after the

work is done, there’s more forms you have to fill out to document what

you’ve done.’

On the one hand, this paperwork could feel like a burden; but on the

other hand, it represented welcome expansion of the object of work to

include an imaginary dialogue with previous and future developers (a

temporal expansion) and with other people who are working on the

code (a social expansion): ‘I think that our process—and even the paper-

work part of it—is basically a good thing. My documentation is going to

help the next person working on this code, either for testing or mainten-

ance. And vice versa when I’m on the receiving end’ (C developer).

Process also enabled a technical expansion of the object of work to

include process itself. Developers were called upon to participate in pro-

cess improvement efforts. The process itself thus became an object of their

work:

Perhaps the biggest change as we’ve become more process mature is that it makes

everyone more interested in process improvement. Take an example: now I’m

working on a new software utility. Top management asked us to evaluate it, to

see if we should all use it. So I’ve been facilitating a series of meetings with all the

managers, where everyone is talking about the utilities they are using and the

problems they’re having. It’s been great to see this kind of problem-solving work

going on. That’s the effect of having a defined technology change management

process [a CMM Level 5 KPA]. CMM got this process going for us. (D logistics)

TENSIONS: ‘IN THE END, IT’S ALL ABOUT PROFIT AND

MEETING SCHEDULES!’

The object of work is never simply an unproblematic, technical given.

When the object of work expands to include CMM certification, tensions

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 216 20.11.2005 12:34am

216

Paul S. Adler

appear between competing priorities, between short- and long-term goals,

and between technical and business needs:

Lower-level managers juggle the needs of the customer and the pressures from GCC

upper management. And upper management is focused primarily on things that

strengthen GCC’s position for obtaining future work rather than what we need to

retain current work. So even though the requests for things like CMM ratings may

have no value-added for our immediate assignment, we do them anyway. (A

developer)

I understand why we need the CMM evaluations. But it’s added a lot to the amount

of documentation we need and the number of interviews we have to go through. I

suppose that in the long term, this documentation might help us improve, but for

the developers, it’s added a lot of paperwork. (C developer)

Clearly, part of the CMM effort was ‘for show,’ responding to symbolic

legitimacy pressures rather than technical performance pressures. As such,

it sometimes led to a decoupling between formal process and daily prac-

tice.38 Comments such as these were common in the two Level 3 programs

but less so in the two Level 5 programs:

We do have written processes, but some are not always used consistently. They are

not always being used by the developers. They are not always used by the program

managers in their regular reviews. (B process engineering, formerly with A)

The evaluation and CMM SCE forced us to update our documents. We didn’t really

change anything in how we work though. (D developer)

In part, this symbolic/technical tension in the nature of the object

reflected a deeper contradiction, between the use-value and exchange-

value aspects of the object. Interviewees were often aware that their (use-

value-oriented) process improvement efforts were at risk of being overrid-

den by a higher (exchange-value) imperative:

As I see it, GCC is a corporation, and that means it’s run for the benefit of the major

stockholders. So top management is incentivized to maximize dollar profits. Qual-

ity is only a means to that end, and in practice, quality sometimes gets comprom-

ised. I used to be a technical person, so I know about quality. But now I’m a

manager, and I’m under pressure to get the product out—come what may. I just

don’t have time to worry about the quality of the product. I have a manager of

software development under me who’s supposed to worry about that. (D develop-

ment manager)

It’s hard to convince people that improving the process will help us get or keep

business. [Referring to the downsizing of Program A:] We had a world-class process,

and look what happened to us! Jobs in an organization like this depend a lot more

on the vagaries of contracting than on our process excellence. (A department

manager)

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 217 20.11.2005 12:34am

217

Beyond Hacker Idiocy

The contradiction between use-value and exchange-value was particularly

visible to the interviewees in the form of missed opportunities for process

improvement:

One key challenge is maintaining buy-in at the top. Our top corporate manage-

ment is under constant pressure from the stock market. The market is constantly

looking at margins, but Government business has slim margins. That doesn’t leave

much room for expenditures associated with process improvement—especially

when these take two or three years to show any payoff. (C developer)

We could do better at capturing and using lessons learned. We have all the vehicles

for doing it—presentations, newsletters, databases. But it takes time. And there are

so many competing priorities. In the end, it’s all about profit and meeting sched-

ules! (laughs) (A project manager)

In sum, the impact on the transformation of the object under mature

process conditions was to make developers more conscious of their inter-

dependence with other contributors in attempting to create a good prod-

uct, even if the organization’s profit imperative sometimes undermined

those efforts.

Tools: better information

Under a more mature process, many interviewees felt that they had better

tools for software development work. First, as we saw earlier, process was a

tool that helped clarify the object of development work:

Our policies and procedures mean that I have better information on what we’re

trying to do because we have better requirements documents and better infor-

mation on how to do it with Instructions etc. At Level 5 versus Level 1, I’m more

confident we’re all playing to the same sheet of music. Looking across the organ-

ization, process also means that managers understand better the way the whole

system works, so they are all playing the same game. (C development man-

ager)

Second, process functioned as a tool providing valued guidance in the

work process:

Developers want above all to deliver a great product, and the process helps us

do that. What I’ve learned coming here is the value of a well-thought-out

process, rigorously implemented, and continuously improved. It will really im-

prove the quality of the product. In this business, you’ve got to be exact, and

the process ensures that we are. You have to get out of hacker mode! (A

developer)

Process maturity assisted in this by creating a common vocabulary:

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 218 20.11.2005 12:34am

218

Paul S. Adler

In a Level 1 organization, one without a common process, even one where there

was a lot of goodwill between the functions, they wouldn’t have the common

vocabulary, or common definitions of key tasks, and everything would be subject

to conflicting interpretation, so people would be fumbling in the dark. A common

process greatly simplifies things. (C project manager)

Process maturity also provided tools in the form of objectified and collect-

ively accessible memory:

Process gives people access to assets from prior work—for estimation, for standards

and procedures, and for lessons learned. In our asset library, we keep the standards

and procedures of all our projects, and project managers refer back to these to use as

templates. We encourage people to share and borrow. (A quality assurance)

Take for example our internal software delivery procedure. At first, developers

thought that this was just more burdensome paperwork. But soon they found it

was a great memory system. (B quality assurance)

Overall, process did not appear to hinder creativity—or at least not the

forms of creativity needed in these programs. This excerpt expresses the

assessments made by several interviewees:

[E]ven when tasks are more innovative, you can still get a lot of advantage from

process. You need to sit down and list the features you want in the system, and

then work out which are similar and which are different from your previous work.

And you need to make sure the differences are real ones. You’ll discover that even

in very innovative projects, most of the tasks are ones you’ve done many times

before. Then, for the tasks that are truly novel, you can still leverage your prior

experience by identifying somewhat related tasks and defining appropriate guide-

lines based on those similarities. They won’t be precise instructions of the kind

you’ll have for the truly repetitive work: but these guidelines can be a very useful

way to bring your experience to bear on the creative parts of the work. (B testing,

formerly with A)

Automation of tools was a crucial precondition for process maturity, since

developers needed to consult voluminous documentation and circulate

work-in-process in a timely manner. GCC had therefore invested consid-

erable resources into building not only a sophisticated ‘development en-

vironment’ for technical tasks but also an integrated suite of databases and

tools for the associated management tasks. The software factory was thus

highly automated—contrasting with the ‘handicraft’ or ‘manufacturing’

models that prevailed in software development in earlier decades.39

Alongside this automation, GCC also sought to streamline the remain-

ing human tasks. Testing exemplified this trend:

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 219 20.11.2005 12:34am

219

Beyond Hacker Idiocy

Over the last ten years, we’ve refined the test procedures considerably. First, we

have better tools. Documentation and reports that used to take two or three days

each week to create can now be generated in an hour. Second, we streamlined some

of the procedures for some projects. Now we have a generic template, which we can

modify to suit the circumstances. We moved from prescribed, detailed test tables to

simpler and voluntary guidelines based on historical examples. And with the

benefit of experience and analysis, we are collecting more useful information and

less of the kinds of information that proved to be not all that useful. (A testing)

TENSIONS: LESS ‘PEOPLE DEPENDENCE’ MEANS LESS

(INDIVIDUAL) POWER

Sophisticated tools such as those offered by mature processes reduce the

dependence of the organization on the individual:

When I arrived here, we had a lot of veterans with deep process knowledge. But as

we lost those people, we lost their institutional knowledge. That’s why I’m trying to

document our process. That will make us less people dependent. (D department

manager)

Our process makes us less people dependent. And that goes for managers too. We

have promoted the three project managers we used to have, and now we have five

new project managers. Bringing these new managers up to speed was much easier

with a strong process. (C program manager)

While the direct business benefits were obvious, reducing people depend-

ence also reduced the individual’s power vis-à-vis the organization. A fear

of vulnerability thus lurked in the background:

If you have a good process, then people become like widgets you can stick into it, and

everyone knows what their job is. Obviously that’s a big advantage for the organiza-

tion. . . . On the other hand, it also brings some fear for job security. It does make my

job as a programmer easier to fill. (B department manager, formerly with A)

This vulnerability was moderated by the favorable labor-market situation

of software professionals. Moreover, our discussion of the community will

reveal that process gives more influence to subordinates as well as to

managers.

TENSIONS: INSUFFICIENT AUTOMATION AND

SIMPLIFICATION

Many interviewees argued that insufficient effort had been devoted to

developing the tools needed to lighten the burdens of process. Comments

such as these were common:

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 220 20.11.2005 12:34am

220

Paul S. Adler

All these forms have a valid purpose, but it takes so long to fill them out that it just

doesn’t seem very efficient. We really need a lot more automation in doing all this.

(B developer)

There’s no doubt that more process maturity means more paperwork. Some of it is

good, and some of it is an impediment, especially from a productivity point of

view. Unless we have the tools to automate this documentation, it has to slow us

down. We still don’t have the right tools. (C project manager)

The object had expanded in the eyes of managers and developers, but

management had not invested the resources needed to upgrade the tools

to support the new, expanded tasks. Such tensions are inevitable when the

object itself evidences the (primary) contradiction between use-value—

great code, well produced—and exchange-value—‘In the end, it’s all

about profit.’ Under such conditions, resource investment decisions are

inevitably somewhat inconsistent.

In sum, from the use-value point of view, the transformation of tools

under mature process conditions not only helped developers in their daily

work, but it did so in a way that made their interdependence increasingly

visible. On the other hand, from an exchange-value point of view, devel-

opers were expendable variable capital and tools were expensive.

Community: beyond my cube

At higher levels of process maturity, the collective nature of software

development work became more explicit as did the organizational archi-

tecture of this community:

A well-defined process gives you a kind of map of the whole enterprise. (B quality

assurance)

The overall process is more intelligible now. All the organization charts, the people,

the processes and documents, and the minutes of various groups are on the

website. (C program manager)

Moreover, the boundaries of people’s everyday reference group—the com-

munity with which people identified—broadened to encompass all the

functions that contributed to the final product:

Some programmers here used to be very isolated. We had one fellow who just sat in

his cube all day from six in the morning till two in the afternoon. Many of us didn’t

even know his name! But the process here drew him into team meetings and into

new conversations. Eventually we even got him helping with training. (B developer)

The Improvement Team’s work created a real sense of community. Each week it

would be someone else’s turn to present their process. Since you knew it would be

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 221 20.11.2005 12:34am

221

Beyond Hacker Idiocy

your turn soon, we all helped each other. And everybody got to see how the rest of

the organization functioned. All the data was shared. I compare that to the way the

organization functioned a few years ago. One of our big problems was poor com-

munications across the organization and up and down the organization. No one

knew anything anyone else was doing. Now we’re working in unison. Process

makes for a more unified front for the customer. And it makes you feel important,

because you’re part of the process and you know where you’re at in the process. I’m

only a tiny part of the process, but I know that what I do is needed for the success of

the whole thing. (D logistics)

Interviewee B-13 was one of the senior process staff at Program A before

being transferred to Program B to help its process maturity efforts. His

assessment reflected longer experience:

At Level 5, everyone feels part of the enterprise—versus feeling very good technic-

ally, in what they do, but hazy about their place in the whole business organiza-

tion—for example, they can’t explain the functions of QA. At Level 5, you

understand what other people are doing and why. Everyone can discuss and are

involved in improvement efforts, not only technical but also process, organiza-

tional problems—versus at Level 1, where the only improvements that people can

talk about are local and technical. And at Level 5, measurement is a part of life. At

worst, people tolerate it. The majority see it as an integral part of their work—versus

at Level 1, where measurement is not part of the culture, where it’s not seen as

having value, and where it’s seen as waste, bureaucratic overhead, and people feel

‘Just leave me alone.’ (B process engineering, formerly with A)

RULES: CONSTRAINTS THAT MAKE SENSE

Process maturity did mean that there were more procedural rules con-

straining developers in how they did their work, but it also meant that

these constraints were largely seen as means by which the efforts of many

contributors to the development activity could be coordinated more ef-

fectively:

Here, I’m just a small part of a bigger project team. So you don’t do anything on

your own. It’s a collaborative effort. So there has to be a lot of communication

between us. And the process is there to ensure that this communication takes place

and to structure it. The process helps keep us all in sync. (C developer)

At higher levels of process maturity rules were more numerous, but devel-

opers had more opportunity to participate in defining and refining them.

As quoted above, interviewees described the cultures of Programs A and C

as having become more participative in recent years. In daily practice,

rules took an enabling form. Through a formalized ‘Tailoring Cycle,’

software development standards and procedures (‘S&Ps,’ of which there

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 222 20.11.2005 12:34am

222

Paul S. Adler

were over 100 at Program A) were modified for each project with partici-

pation by the developers themselves:

People have to be a part of defining the process. We always say that ‘People support

what they help create.’ That’s why the Tailoring Cycle is so important. As a project

manager, you’re too far away from the technical work to define the S&Ps yourself,

so you have to involve the experts. You don’t need everyone involved, but you do

need your key people. It’s only by involving them that you can be confident you

have good S&Ps that have credibility in the eyes of their peers. (A project manager)

When S&Ps are chosen for a project, the rule is that they have to be sent out to

everyone affected for review. And sometimes we give some pretty negative feed-

back! I remember I wrote on one draft, ‘Hey, you’ve forgotten to tell us how to get

out of bed in the morning and how to brush our teeth!’ It was way too detailed and

rigid. Those kinds of things get shot down pretty quickly. Over a period of years,

people learned how to write procedures that were reasonable for our work envir-

onment. . . .

When I managed software development on one of our bigger projects, I asked all

our software developers to help me tailor our S&Ps. The GCC people knew the drill,

but we also had some other contractors working on this with us . . . and they would

say, ‘No, just tell me how you want us to do this.’ About a year into the project, I

remember one of the contractors who had complained the most about this extra

work coming to me to thank me, saying, ‘If you’d have written these, I would have

just ignored them. But since I helped write them, I’ve felt duty bound to follow

them.’ (A developer)

The Tailoring Cycle was not the only vehicle for participation in process

definition. In Programs C and D, Software Engineering Process Groups

(SEPGs) also served this purpose. In recent years, the SEPG at C, but less

so at D, had put increasing weight on encouraging suggestions for process

improvement from lower-level staff. Moreover, many departments had

process improvement teams. Whereas these teams were sparse and tem-

porary in the less mature programs, they were ubiquitous and ongoing in

the more mature programs.

DIVISION OF LABOR: DIFFERENTIATION AND INTEGRATION

The division of labor at GCC differentiated various roles and subunits

whose complementary capabilities were integrated both by superordinate

goals and by strong process discipline. The following excerpt presents an

assessment that is particularly interesting because the interviewee is a

woman whose experience of a relatively mature process was recent:

A more mature process means you go from freedom to do things your own way to

being critiqued. It means going from chaos to structure. It’s a bit like streetball

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 223 20.11.2005 12:34am

223

Beyond Hacker Idiocy

versus NBA basketball. Streetball is roughhousing, showing off. You play for your-

self rather than the team, and you do it for the love of the game. In professional

basketball, you’re part of a team, and you practice a lot together, doing drills and

playing practice games. You aren’t doing it just for yourself or even just for your

team: there are other people involved—managers, lawyers, agents, advertisers. It’s a

business, not just a game. You have to take responsibility for other people—your

team-mates—and for mentoring other players coming up. (B developer)

Process maturity created both more differentiation and more systematic

integration in three dimensions of the division of labor: horizontal, line/

staff, and vertical. I take them in turn.

As the process became more mature and disciplined, the horizontal

division of labor deepened. The span of integration became correspond-

ingly broader: actors developed relations with a broader set of partners.

These relations became tighter: the coordination across groups became

more rigorous. And they became more collaborative: mutual indifference

or rivalry was replaced by active collaboration. These changes were visible

within departments as well as between them:

Process means that people play more specialized, defined roles, but also that these

specialists get involved earlier and longer as contributors to other people’s tasks. If

we analyzed the way a coder uses their time, and compared it with comparable data

from, say, 15 years ago, we’d find the coder doing less coding because of more

automated tools. They’d be spending more time documenting their code, both as it

was being built and afterwards in users’ guides. They’d be spending more time in

peer reviews. And they’d be spending more time in design meetings and test plan

meetings. As for testers . . . now the testers are more involved in system concept

definition and requirement definition activities. (A quality assurance)

With process maturity, new staff functions such as Configuration Man-

agement and Process Engineering emerged, and new line/staff relations

were created. QA exemplifies the trend.40 In the past, QA was often remote

from the daily work of developers, arriving on the scene at the end of the

work cycle to inspect the output. QA’s role evolved with process maturity

to (a) a greater focus on process quality rather than only product quality,

(b) greater responsibility for infusing process rather than only auditing it,

and (c) a closer and more collaborative relation with the line departments.

QA’s role in the Tailoring Cycle is a good example:

First, QA sits down with project manager and his management team. I’ll ask: what

processes do you need? Do they exist? We come up with a process approach for the

project. Second, project managers work with Process Engineering to resolve the

action items out of the first step: what new S&Ps have to be written? Which have to

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 224 20.11.2005 12:34am

224

Paul S. Adler

be modified? The project managers, often assisted by their leads, then define the

S&Ps they need. Third, this proposal comes to the CRB [Change Review Board] for

discussion and approval. Fourth, we try to get the managers of each project to do

the training for their S&Ps. Fifth, QA conducts a regular in-progress process audit to

check the project’s compliance with the process approach they’ve chosen. And

there’s also an End-of-life-cycle-phase audit. . . . QA is not a policeman! QA is there

to help the project identify the processes you need, tailor existing ones to your

needs, learn that process, and do a check to see if you’re using it. If I find a problem,

it’s my job to help the project work out how to address it and how I can help. (B

quality assurance)

Finally, in the vertical dimension too, relations grew denser and more

collaborative. Process brought greater specificity—clarity and detail—to

planning and assessing the progress of work: ‘With a more mature pro-

cess, my manager has visibility into how I do my work and can challenge

me on it—I can’t just play excuses and he can’t use brute force’ (B

developer).

Process also provided superior–subordinate relations with objective

points of reference outside the dyadic authority relationship. Process

thus reduced the ‘people dependence’ of these authority relations just as

it reduced people dependence in technical relations. Several interviewees

argued that the objective character of the data created in a more mature

process gave the subordinate more power. This excerpt illustrates:

I think formalized process and metrics can give autocratic managers a club. But it

also gives subordinates training and understanding, so it makes the organization

less dependent on that manager: he can be replaced more easily. Before I came to

GCC, I worked for one of the most autocratic managers you can find. It was always,

‘And I want that report on my desk by 5 p.m. today,’ with no explanation or

rationale. Compared to that kind of situation, an organization with a more mature

process leaves a lot less room for a manager to arbitrarily dictate how you should

work and when work is due. And a more mature process also means that there are

more formal review points, so any arbitrary autocratic behavior by a manager will

become visible pretty quickly. (D program manager)

TRAINING: BEYOND APPRENTICESHIP

The acquisition of professional knowledge was rationalized. Process

encouraged a shift from a traditional form of training—apprenticeship—

towards something more systematic. Apprenticeship is a mode of learning

that is appropriate and necessary when knowledge is the local, tacit,

private property of the guild artisan-craftsman.41 A more socialized pro-

duction process relies on forms of knowledge that are more codified and

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 225 20.11.2005 12:34am

225

Beyond Hacker Idiocy

on forms of training that can thus be more rationalized. Going back a

couple of decades, this transformation began with the shift to formal

university training requirements for development jobs; more recently,

under the pressure of CMM, it continued in the further rationalization

of the acquisition of firm-specific skills:

We’ve developed a formal mentoring program. There’s a checklist of the key

processes everyone needs to understand, and every new person is assigned a

mentor whose job it is to explain each of these in turn. The checklist is audited

by QA. (A testing)

We had an informal training and mentoring program, and when we got serious

about the CMM, we wrote it down. Writing the process down has had some great

benefits. It’s made us think about how we work, and that’s led to improvements.

For example, formalizing the training program has helped bring some outliers into

conformance. (C department manager, formerly with A)

TENSIONS: GENERAL VERSUS PAROCHIAL INTERESTS

Differentiation created local identities, which complicated the horizontal

integration task. This excerpt illustrates:

On most of our projects, different people fill the two roles, systems engineering

versus software engineering. (On smaller projects, the same person may have both

roles.) As with any interaction between two groups, there have been communi-

cation gaps between them. There are a variety of reasons: the systems engineers

point to the software engineers and say, ‘They didn’t read what I wrote,’ and ‘They

don’t understand what I mean,’ and the software engineers point back and say,

‘They didn’t specify the requirements adequately,’ ‘The requirements are incon-

sistent,’ and ‘That wasn’t in the requirements.’ (D process engineer, also works

with C)

Staff/line relations were not always easy:

By and large, we haven’t had too much difficulty bringing our managers around to

this more collaborative approach. . . . We did have a problem with one staff person.

He had a very difficult relationship with the project people he was supposed to be

helping. We got a lot of complaints that he was trying to force the projects to

conform to his idea of how they should function. We tried to counsel him and get

him to work in a more cooperative way. But he just wouldn’t ease up. Eventually we

just had to let him go. (A program manager)

Interviewees also discussed tensions in the vertical dimension: manage-

ment did not always ‘listen,’ or if they listened, did not always ‘hear.’

Compared to the horizontal tensions, the vertical ones reflected a deeper,

structural asymmetry of power and authority:

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 226 20.11.2005 12:34am

226

Paul S. Adler

How managers react depends a bit on how you present your suggestion. If you

present your idea constructively, they’re more likely to react positively. If you come

at them with complaints and negative criticism, they don’t take it as well. Man-

agers are people too! And sometimes how receptive they are depends on other

things going on. For example, if they are under pressure from their bosses to move

faster, they may not be very receptive to taking time out to redefine the process. (B

developer)

Notwithstanding these tensions, it was striking that in its various dimen-

sions, community appeared to be stronger and more cohesive in the Level

5 programs than in the Level 3 programs. A key factor explaining this

result was the more extensive participation in process definition we saw in

the discussion of rules, above.

TENSIONS: RULES, ENABLING VERSUS COERCIVE

Some rules appeared to developers as burdensome and coercive: ‘The

forms are all electronic, but we still have to print them out and sign

them. Why all this overhead? The theory is that it will increase quality.

But I’m not convinced it really helps quality. Sometimes it seems like it’s

more for accountability’ (B developer).

However, the professional character of the workforce gave developers

considerable power to resist coercive rules. Earlier, we saw how developers

stopped the adoption of Ada. Another excerpt offers a second illustration:

Whenever you force programmers to do paperwork they don’t want to do, they get

sloppy. They will invent workarounds just to avoid it. And those workarounds can

create problems. For example, if you want to create a new sub-routine versus add to

an existing one, you have to write a whole new package. So programmers will go a

long way to avoid creating a new sub-routine, even if it means that the quality of

the code is affected. (B developer)

The importance of buy-in and the temptation of coercion were evidenced

in the firmness with which senior management treats instances of auto-

cratic behavior by managers. Among the several cases cited by interview-

ees in the various programs, this one was illustrative:

Executive management might impose on me as program manager a CMM rating

goal without much dialogue, and they might even have a pretty coercive view of

what process discipline consists of. But I can’t let that flow downhill from me. We

explain to our managers why the rating is important to our future. And once you

see the heads nodding, then you have to find the right people for the implemen-

tation team—people who aren’t going to dictate to the other levels how to proceed.

We really can’t afford an autocratic style of leadership. The risk of losing critical

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 227 20.11.2005 12:34am

227

Beyond Hacker Idiocy

people is too high. . . . We did have a pretty autocratic manager a while back in our

software development organization. He had very strong technical skills and would

often make decisions without consulting his staff. We heard a lot of complaints,

and we saw some turnover too. But his technical skills made him very valuable to

us, so we kept him on even after he offered to resign. We tried to get him to change

his style, but he didn’t, and eventually, after maybe two years of this, we just had to

let him go. It was difficult. And he took a few loyal people with him too. (D program

manager)

TENSIONS: ‘WE STILL DON’T HAVE THE RESOURCES’

Several interviewees pointed to another persistent tension in the structure

of community: the lack of dedicated resources for specialized staff depart-

ments. The following quotes were illustrative:

We do ask project teams to do a Lessons Learned report at the end of the project. We

post the results on the database. But there’s no staff support for the process. (A

quality assurance)

The key issue moving forward, I think, is that we still don’t have the resources we

need to devote to process. A program of this size should have a full-time staff

dedicated to our internal process maintenance. (C developer)

(As explained in Appendix 5.1, Program C, like D, did not have a dedicated

Process Engineering group.) These concerns echo those relative to re-

sources for better tools.

TENSIONS: COMMUNITY VERSUS CLASS

On the one hand, developers and managers were (and saw themselves as)

part of a community, part of a collective endeavor. On the other hand, their

interests sometimesput theminopposition toeachother.Wesawthis in the

earlier discussions of the conflict over Ada and the organization’s interest in

avoiding ‘people dependence.’ While senior management put considerable

weight on building a sense of common destiny and community, the battle

could never be won once and for all. This excerpt illustrates:

We didn’t initially have any questions on the employee survey about your boss.

Frankly, people were worried that managers might retaliate. But now we do, and we

find the data very useful in surfacing management problems. The earlier rounds of

the survey did show some big communications problems in some groups. Coun-

seling often helped, and in some cases, we moved people out to other positions. (A

program manager)

In sum, under mature process conditions developers experienced them-

selves more strongly connected in their communities; but the effect

was sometimes undermined by conflicting interests. Process-mature

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 228 20.11.2005 12:34am

228

Paul S. Adler

organizations drew developers into collaborative efforts to define and

refine their rules; but managers struggled to preserve this participation

against the temptations of coercion. A more mature process augmented

both differentiation and integration efforts, and as a result, developers saw

themselves as part of a larger, more complex, and more interdependent

endeavor, one that was often, but not always, collaborative in nature.

Outcome: collaborating with customers

The outcome of the software development activity system at these GCC

programs was a market-mediated exchange, giving software in exchange

for fees from a distinct activity system in the customer organization.

Process was both influenced by and in turn influenced these relations.

As noted above, government agencies were increasingly making CMM

Level 3 an important factor in awarding contracts. Program B’s contract

included an explicit Level 3 requirement, and customer pressure had been

a critical impetus to process efforts in Programs A, C, and D too. For

customers and suppliers alike, process maturity held the promise that

the risks associated with arm’s-length market transactions—the inevitable

gap between the producer’s supply and the customer’s demand—could be

moderated by mutual commitment to a process that set expectations and

guided collaborative decision making. This drew developers into more

conscious collaboration with people in the client organization. Instead

of submitting to the conventional wisdom that ‘The customer is always

right,’ GCC staff were encouraged to push back and open a dialogue:

There’s a great focus now on ‘accountability’ all through the system. We are

expected to be more aggressive in pushing back when things are inconsistent

with our processes. And that goes down to our project managers. Instead of

simply supporting our customer management counterparts, the project managers

have to be willing to push back. That’s changed the tone of some of our monthly

program review meetings with the customer. This culture change goes right down

to the staff. In general, we try to buffer the staff from these issues, but if they get

instructions that violate our processes, they have to push back too. (C program

manager)

TENSIONS: COORDINATION VERSUS MARKET ANARCHY

The fact that the customers were economically independent entities pur-

suing their own priorities sometimes undercut the cooperation needed to

assure a high-quality custom software process:

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 229 20.11.2005 12:34am

229

Beyond Hacker Idiocy

The biggest problem here has been the customer and getting their buy-in. At

Program A, our customer grew towards process maturity with us. Here [at Program

B], we started with a less mature client. Some of the customer management even

told us that they didn’t want to hear about QA or our quality management sys-

tem—they saw it as wasteful overhead. When you bid a project, you specify a

budget for QA and so forth, but if they don’t want to pay, you have a resource

problem. And once you get the contract, then you start dealing with specific

project managers within the customer organization, and these managers don’t

necessarily all believe in QA or simply don’t want to pay for it out of their part of

the budget. On the Y2K project, the customer kept changing standards and dead-

lines. Basically, we were dealing with a pretty process-immature customer, and that

made it difficult for us to build our process maturity. Things have improved

considerably since then. (B process engineer, formerly with A)

Even at high levels of maturity, the outcome node was the site of contra-

dictions between activity systems. Program C illustrates:

Our customer has been rated a CMM Level 4, but they don’t seem to implement

their process. For example, in one of our recent projects, the requirements kept

changing and the scope kept growing, but the customer wasn’t following a

disciplined process for controlling these changes and just didn’t want to hear

about the implications. The requirements kept drifting so much that it was very

hard to even regularly update our estimate of the size of the project. They just

ignored our concerns for nearly a year. Finally we issued a cost report that showed

that we’d need 25% more staff-months. Putting it in dollars finally got their

attention. But not before we had wasted a lot of work and time. (C project

manager)

In sum, the transformation of the outcome under mature conditions made

developers more conscious of their interdependence with clients in creat-

ing a good product, even if the competing objectives of organizations and

subunits distinct profit objectives sometimes undermined that effort.

A more advanced model: the CMM as scaffolding

In all four programs, the CMM was seen by many as representing a more

advanced model of software development work, a model that could guide

improvement efforts. The challenge of CMM certification was to ‘map’ the

program’s existing practices to the CMM’s KPAs. In some cases, existing

practices were revealed to be satisfactory, and this mapping was therefore

experienced as wasteful burden; but in most cases, the CMM provided

guidance—the kind of guidance that builders receive from scaffolding—

for ongoing process improvement efforts.42

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 230 20.11.2005 12:34am

230

Paul S. Adler

Program C had long worked under Military Standards, so the discipline

of the CMM was experienced against that backdrop, but its experience was

otherwise representative. This excerpt expands on one quoted earlier:

Most of our CMM work has been focused on translating what we already do into

the CMM KPAs. We were doing virtually all the KPAs anyway, just because you can’t

manage large-scale projects without doing something like what the SEI is recom-

mending. The first SCE team told us they knew that we must have good procedures

and that everyone followed them because everyone told us the same thing; but,

they said, the process must have been tattooed on the inside of eyelids because they

couldn’t find them written down anywhere. So we spent the next year putting

them down on paper. For example, we had an informal training and mentoring

program, and when we got serious about the CMM, we wrote it down. Writing the

process down has had some great benefits. It’s made us think about how we work,

and that’s led to improvements. For example, formalizing the training program has

helped bring some outliers into conformance. And we formalized the SEPG process,

and that has helped stimulate improvement. (C training)

The CMM could function effectively as scaffolding—as a model of a more

advanced activity system—because, and to the extent that, it was seen as

an ‘industry-validated approach’:

The CMM is helping us move ahead. Just to take an example, even if the CMM didn’t

exist we would need a technology change management process [a Level 5 KPA]. Of

our 450 people, we have about 50 people in CM, QA, and data management. To move

them from one process to another is sometimes like herding cats! The CMM helps us

in that by providing an industry-validated approach. (C program manager)

In their struggle against proponents of alternative organizational devel-

opment scenarios, proponents of the CMM had the advantage of this

cultural-historical validation.43

TENSIONS: SCAFFOLDING VERSUS LEARNER-CENTERED

DEVELOPMENT

Notwithstanding the research evidence cited earlier, interviewees were

nuanced in their assessments of the impact of CMM on process effective-

ness. One concern was that the CMM prescribed certain features of the

development process and, in doing so, substituted its own ‘wisdom’ for

the results that might emerge from a more self-directed organizational

learning process.44 This excerpt illustrates:

SEI has encouraged people to think that progress will come from ‘implementing’

the KPAs, when you really need to decide which KPAs matter to your business and

how you should pursue them. Many organizations, even some people in our

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 231 20.11.2005 12:34am

231

Beyond Hacker Idiocy

Government Systems Group, think they need to implement all the requirements of

every Level. So the CMM ends up being seen as externally coercive rather than as an

internally motivated improvement process. You can get a false sense of security

when you force your way to certification—or a false sense of failure if you try to

force your way and fail. (B process engineer, formerly with A)

As discussed above, part of the difficulty was how to juggle the goals of

symbolically valuable certification with technically valuable process im-

provement. On the upside, external legitimacy pressure could facilitate

internal change. However, CMM ratings seemed to play a somewhat differ-

ent role in the different organizations. According to this same interviewee:

I can see that external evaluations are a very important learning tool. It’s just like in

college: 90% of what the student learns is in the week before the test! So we do need

the test to create that incentive. But it’s not an end in itself. The real issue is: Is

passing the test just a veneer? That depends on how the managers treat the test—as

an opportunity to put some banners on the walls, or as an opportunity to focus

attention and get some real learning done. At Program A, we have reached (well,

almost reached) the point where people like the tests as an opportunity to show off

their improvements. (B process engineer, formerly with A)

TENSIONS: IS CMM REALLY A MORE ADVANCED MODEL?

Levels 4 and 5 address organization-wide, as distinct from project-specific,

capabilities. Optimistically, one might imagine that once a basic level of

discipline was established in the conduct of individual projects, even

greater improvement might come from organization-wide cross-project

discipline, since this would enable an organization to leverage lessons

learned from any one project to the whole portfolio of projects. This

would seem to be true of many hardware development improvement

efforts.45 So far, however, the experience of the two Level 5 programs

was mixed. At Programs A and C, several interviewees—albeit a minority—

assessed their skepticism in these terms:

We struggled to get past Level 3. Level 3 seems to give you most of the CMM’s

benefits. Frankly, Levels 4 and 5 haven’t changed or helped much. Beyond 3,

documenting the technology management process didn’t really do much for us:

we manage to change technology pretty effectively without formalizing that pro-

cess. But on the other hand, defect prevention has been very useful. (A contract

officer)

I think Level 3 was worth doing. But most of Levels 4 and 5 just don’t seem to add

much. It isn’t about everyday stuff anymore. We are doing most of these processes,

and documenting them adds a lot of cost but not much value. (C training)

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 232 20.11.2005 12:34am

232

Paul S. Adler

Interviews suggested three possible reasons for this mixed reaction. First,

the CMM might have been simply misguided in how it characterized

Levels 4 and 5. After all, when the CMM was first elaborated, these levels,

particularly Level 5, were essentially hypothetical, since so few software

organizations had been shown to function in this manner. (As of 2001,

however, there were over 130 organizations certified at Levels 4 or 5.)

Second, and alternatively, perhaps Levels 4 and 5 were well conceived,

but the hypothesized potential benefits would only materialize with fur-

ther effort and experience. A third, related, possible reason is that the

magnitude of the benefits of cross-project processes is related to the num-

ber of projects undertaken, and both Program A and Program C undertook

a relatively small number of relatively large projects.

Overall, however, the interviews suggested that the CMM had been a

valuable tool for organizational improvement, and in doing so, had drawn

developers into more conscious collaborative improvement efforts—

within their programs, with clients, and with the community behind the

CMM.

Subject: a more interdependent self-construal

My interviews suggest that process maturity led to changes in the subject-

ive identity of developers—towards a more interdependent self-construal.

What mattered to these professionals’ self-esteem and identity was now

not so much their individual efficacy as their collective efficacy.46 In my

interviews, ‘we’ tended to replace ‘I’ as the subject of work, because people

increasingly saw themselves as part of a collective effort. The ratio of

mentions of ‘we’ to mentions of ‘I’ in my interview transcripts was 1.83

in Program A and 1.95 in Program C (the two Level 5 programs), and 1.29

in Program B and 1.44 in Program D (the two Level 3 programs).

The proximate cause of this change was the experience by developers of

changes in the other nodes of the software production activity system. As

argued a century ago by pragmatist philosophers and symbolic interac-

tionist sociologists, and as further articulated by CHAT, the self is not an

immutable spirit hovering above the material world, merely influenced,

but never fundamentally changed, by an external context. The self is an

identity whose contours and contents vary with—indeed, are constituted

by—the networks of people and things within which the individual is

located. The hacker self reflected the structure of CMM Level 1 activity

systems. The effect of process maturity on the software development

activity system was to socialize its objective elements and thereby to

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 233 20.11.2005 12:34am

233

Beyond Hacker Idiocy

forge a different kind of self—a broader, more interdependent sense of

one’s identity. Some excerpts illustrate:

In a small organization doing small projects, you have a lot of flexibility, but there’s

not much sharing. You’re kind of on your own. Here, I’m just a small part of a

bigger project team. So you don’t do anything on your own. It’s a collaborative

effort. (C developer)

We used to be a group of hackers. If we’d have had to rebuild a system, we simply

wouldn’t have been able to do it because we wouldn’t have had the documents.

We’ve come a long way from that! Now we function according to a defined process

and we collect data on ourselves so we can do defect causal analysis to drive

continuous improvement. (A quality assurance)

More concretely, this new self-construal emerged through a mix of adult

socialization and attraction-selection-attrition processes.47 On the effects

of the former, we have the testimony quoted earlier of ‘But I can see the

need now.’ In Program D, one interviewee described his experience in

these terms:

I was not originally a believer in this process stuff. I remember seeing coding

guidelines when I joined the Program D. I just threw them into a corner. But a

year later, I found that my code didn’t make it through the code checker, and

that got me to reconsider. So I went to some CMM training a few years ago—and

I’ve been converted! Most of the developers and leads are being dragged into

process kicking and screaming. Any coder would rather just hack. (D process

engineer)

On the importance of attraction-selection-attrition, two excerpts are illus-

trative:

You won’t fit in well here if you don’t like structure, you prefer working by yourself,

you don’t like getting suggestions from other people, or you don’t like taking

responsibility for your work and for making it better. (A project manager)

We still have to deal with the ‘free spirits’ who don’t believe in process. . . . Most of

them adapt, although some don’t and they leave. (C process engineer)

COSMOPOLITANS VERSUS LOCALS

Professionals tend to have strong ties to and identify with their occupa-

tional community: they traditionally have little identification with the

local, employer organization.48 Interviews suggested that the greater pro-

cess maturity strengthened both developers’ cosmopolitan orientations

and their local orientations.

First, process strengthened somewhat developers’ cosmopolitan

orientations. At higher CMM Levels, at least some staff spent more

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 234 20.11.2005 12:34am

234

Paul S. Adler

time reading industry journals and magazines and attending industry

conferences:

In Program A, there was a focus on the big picture, and we tried to make develop-

ment staff aware of other studies, findings, activities outside GCC. This sometimes

prompted developers to become more interested in such conferences as the SEPG,

DoD Tech conferences, and SEI affiliates symposia. (B process engineering, for-

merly with A)

The process-focused people certainly spend more time outside—the more you

know, the more you know you don’t know and need to learn. And probably some

percentage of the general population spends more time outside as their awareness

of things not-immediately-project increases and their interest is piqued. But my

guess is that the John Q. project guy is still spending most of his time ‘doing.’ (D

process engineering, also works with C)

At the same time, process maturity strengthened local orientations:

On the one hand, as higher levels of maturity are attained, many of the good

developers realize their value and are now more marketable outside; on the other

hand, they have ‘bonded’ with the organization and may be a bit more inclined to

stay. (B process engineering, formerly with A)

Programs that don’t have a process focus tend to have less of a formal connection

with the larger GCC corporation. Programs focusing on advancing their process

maturity tend to receive support from outside the immediate project, and tend to

reach across GCC for best practices and lessons learned. The connection does create

enhanced awareness, and in that sense perhaps both more ‘professionalism’ and

more corporate identity. (D process engineering, also works with Program C)

A NEW PROFESSIONALISM

This more interdependent self implied a corresponding mutation in the

nature of developers’ notion of professionalism. Some aspects of profes-

sionalism were preserved, while some were significantly transformed.

On the one hand, process leveraged traditional values of professionalism,

including the appeal to individual pride in the results of one’s own work:

We appeal to people’s sense of professionalism, saying something like, ‘We’re all

professionals. And as professionals, we’re both pretty mobile and committed to

high quality work. Since I may leave here at some point, even soon, it’s my duty as a

professional to give the organization the documentation it needs to continue

serving the customer.’ (B quality assurance)

Our process makes for better testing, which means earlier detection of problems,

which in turn makes the life of the programmer a lot easier and avoids a lot of

embarrassment. (B department manager, formerly with A)

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 235 20.11.2005 12:34am

235

Beyond Hacker Idiocy

On the other hand, however, process seemed to encourage a mutation of

professionalism. Whereas traditional conceptions of professionalism give

great salience to the individual practitioner’s judgement and thus to their

autonomy—if not economic autonomy, at least technical decision-mak-

ing autonomy—process encouraged the emergence of a more collective

professional subject. This was expressed eloquently by this interviewee:

Think of bridge building. Back in the eighteenth century, there were some very

beautiful bridges built, but quite a few of them collapsed because they were

designed by artists without any engineering understanding. Software is like bridge

building. Software developers think of software as something of an art, and yes, you

need that artistry, but you better have the engineering too. Developers often don’t

like the constraining rules, but the rules are necessary if you want to build complex

things that have to work together. If you have only two or three people, you don’t

need all these rules. But if you have hundreds of people, the way we have here, then

you need a lot of rules and discipline to get anything done. (C training)

This mutation is particularly significant because it appeared to moderate

the traditional tension between professional autonomy and bureaucratic

authority:

Usually people run away from audits. But amazingly, recently we’ve seen several

projects volunteering—they want to show off their accomplishments and process

capabilities. (A process engineer)

The Improvement Team’s work . . . made everyone realize that there are real

business benefits to sharing information—instead of just worrying about your

own rice bowl. I’m your [internal] customer, so I need you to understand my

requirements. And the effect has been to make people interested in improving

their own operations on their own, even without management being involved or

pushing them. (D logistics)

TENSIONS: INTERDEPENDENCE VERSUS DEPENDENCE AND

INDEPENDENCE

Interviews revealed two main types of tensions that could provoke resist-

ance to the more socialized development process and thus affect the

emergence of a more interdependent self.

First, due to the use-value/exchange-value contradictions at each of the

other nodes, there was the constant risk that the demand for interdepend-

ence would mutate into coercive dependence and provoke either resist-

ance or apathy. Second, developers sometimes clung to their

independence. This was due in part to the tension between the collective

and collaborative requirements of effective process (the use-value aspect)

and the individual and competitive nature of the employment contract

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 236 20.11.2005 12:34am

236

Paul S. Adler

(the exchange-value aspect). Ultimately, the capitalist employment rela-

tion recognizes individuals, not collectivities. Even in firms with extensive

team- and organization-wide rewards—and as noted above, GCC had

few—these are minor components of the individual rank-and-file employ-

ee’s compensation. The ‘collective worker’—the community as productive

actor—is in contradiction with the individualistic and instrumental foun-

dation of the wage relation. In part it was also due to the contradictions

between prior socialization and the demands of the new model for a new

self-construal. In the US context, the change from a more independent to

a more interdependent self-construal means a change in deeply ingrained

cognitions and emotions. Such a change challenges the subject’s prior

socialization, as effected in early childhood personality formation, and

in subsequent education, training, and work experiences.

Together, these contradictions help explain a certain lack of interest and

passivity on the part of several interviewees:

I follow the rules because they are there. (B developer)

By and large, people just accept the Instructions pretty passively. (C development

manager)

The overall result of these tendencies and counter-tendencies was an

uneven process of subjective socialization. Expanding on the excerpt

above:

We still have to deal with the ‘free spirits’ who don’t believe in process. These are

typically people who have worked mainly in small teams. It’s true that a small

group working by itself doesn’t need all this process. But we rarely work in truly

independent small teams: almost all our work has to be integrated into larger

systems, and will have to be maintained by people who didn’t write the code

themselves. These free spirits, though, are probably only between 2% and 4% of

our staff. We find some of them in our advanced technology groups. We have some

in the core of our business too, because they are real gurus in some complex

technical area and we can’t afford to lose them. And there are some among the

new kids coming in too: many of them need convincing on this score. Most of

them adapt, although some don’t and they leave. (C process engineer)

Discussion

Several features mark the emerging form of community here as collabora-

tive. In their values, structure, and identity, these organizations were

constructing a form of community that was distinct from Gemeinschaft

or Gesellschaft, and as distinct from the traditional, guildlike form of

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 237 20.11.2005 12:34am

237

Beyond Hacker Idiocy

professionalism. Clearly, the salience of this form of community in struc-

turing real working relations was rendered precarious by the pressures of

valorization; but just as clearly, these organizations had made considerable

progress towards the new form.

Values: interdependent contribution

The guildlike form of professional identity expressed in the hacker ideal of

technical autonomy was progressively replaced under more process-mature

conditions byanethosof collaborativecontribution—thesoftware engineer

as bridge builder. What mattered was one’s contribution to the success of a

complex organization rather than one’s individual prowess—being part of

a successful NBA team rather than a creative streetball player.

In the classic terms of cross-cultural analysis, we would say that the

values of developers had become considerably more ‘collectivist’; but

there was clearly something distinctive about this collectivism. The new

value orientation can be described with the two-dimensional mapping of

culture and values articulated by Triandis and others: on one dimension,

collectivism is contrasted with individualism, and on the other dimen-

sion, ‘horizontal’ cultures and low power distance are contrasted with

‘vertical’ cultures and high power distance.49 Hackers, like other trad-

itional professionals, are typically high on individualism and low on

power distance. By contrast, while high-maturity software developers re-

main low on power distance and relatively egalitarian, they are more

collectivist, a constellation we can call ‘horizontal-collective.’50

Organization: interdependent process management

We saw how process maturity transformed the coordination of work: As

the process became more mature and disciplined, the horizontal division

of labor deepened; the span of integration became correspondingly

broader; but at the same time, these relations became both tighter and

more collaborative. Guild independence was replaced by complex inter-

dependence. Guild independence was also undermined by the rational-

ization of an apprenticeship process that formalized the acquisition of

firm-specific know-how.

Crucially, this interdependence did not take the form of hierarchical

domination. The community principle prevailed over—but did not elim-

inate—the importance of hierarchy. These GCC programs appeared to be

engaged in an effort to simultaneously maintain a high level of influence

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 238 20.11.2005 12:34am

238

Paul S. Adler

by lower-level developers and dramatically increase the level of organiza-

tional control.

Organizational researchoftenproceedsas if influencebytherank-and-file

professional and organizational control were mutually exclusive, in a zero-

sum relation.51 This case reminds us that they are not. In the four programs

studied here, and in particular the two Level 5 ones, Program A and Program

C, both higher-level and lower-level influence were relatively strong:

. Control was achieved through a panoply of mechanisms. Higher

levels of the management hierarchy made overall architectural

choices. Standardization of processes allowed operational decision

making to be safely decentralized (per March and Simon’s model of

premiss setting). Management exercised strong control over project

schedules and plans. And management actively structured mutual

adjustment between people and units. The autonomy of individuals

and units was thus severely curtailed. Overall coordination and con-

sistency of action was not accidental or emergent, but planned

through centralized control.

. Lower-level influence was also strong, as witnessed by the extensive

involvement of staff in decision making and in developing and refin-

ing the standards, plans, and mutual adjustment processes under

which they all worked. Management was committed to the philoso-

phy of ‘People support what they help create.’ In the Level 5 pro-

grams, lower-level staff often participated in process tailoring; in

contrast, such participation was significantly less common in the

Level 3 programs. The Level 5 programs had ‘improvement teams’ in

every subunit; in contrast, such teams were only occasionally opera-

tive in the Level 3 programs.

Identities: interdependent self-construals

The self is always social, always the result of a socialization process. It was

just as social, just as much the result of individual socialization, when it

took the hacker form. The independent self of the hacker was the result of

socialization under a division of labor that was (using Durkheim’s terms

somewhat metaphorically) ‘mechanical’—each person working in parallel

on a self-contained task—rather than ‘organic’—each person contributing

only a specialized component of the whole. This independent self was

reinforced by the shared norms of the profession, by educational experi-

ence, and by its fit with the relatively primitive tools, rules, and division of

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 239 20.11.2005 12:34am

239

Beyond Hacker Idiocy

labor that then characterized the software development activity system.

With greater process maturity and more advanced means of production,

the social character of the self is no longer merely an abstract proposition,

but becomes concrete in the form of subjectively experienced interde-

pendent self-construals. The self is socialized—as it always has been—but

now this socialization is not merely a remote antecedent, but becomes a

lived reality.

In the present case, the experience of work under process maturity

appeared to promote, first, a more interdependent sense of self: people’s

reference groups broadened. Second, process maturity led to a richer, more

complex set of identities: we saw a heightened identification both with the

broader software profession and with the local GCC corporation. Third,

process promoted values that were, I argued, horizontal-collectivist, and

corresponding to these values, a distinctive self-construal that preserves a

certain individual autonomy even within growing interdependence.

Most cultural psychology contrasts independent and interdependent self-

construals—but does not distinguish carefully between the latter and what

we might more properly call dependent self-construals. This distinction

seems crucial to differentiate strongly ‘group’-based cultures and the

form of professionalism we saw at GCC. The interdependent self-con-

struals we heard expressed at GCC provide a less conformist form of

other-directedness—a form of caring.52 Viewed developmentally, one

might characterize this orientation as representing a dialectical synthesis

(transcendence) of the contradiction between Gemeinschaft, with its asso-

ciated ‘engulfment’ of the individual,53 and the modern, alienated au-

tonomous individual under Gesellschaft conditions, a synthesis

Hirschhorn (1997) calls the ‘post-modern’ self. We could call it the collab-

orative self.

Conclusion

The motivation for the present study was to understand the transform-

ations of professional work through an analysis of the case of software

development. I found that progress towards CMM Level 5 process matur-

ity prompted the emergence of a new, collaborative form of professional

community and of identity.

Marx contrasted the isolation of individuals and communities in the

pre-capitalist world with the growing interdependence fostered by capit-

alist development. He saw capital’s civilizing mission to abolish ‘rural

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 240 20.11.2005 12:34am

240

Paul S. Adler

idiocy’ and ‘craft idiocy,’ and to augment humanity’s capacity for large-

scale, productive collaboration. According to Marx, the development of

capitalism is shaped by the basic contradiction between, on the one hand,

the growing socialization of the forces of production and, on the other

hand, the persistence of private ownership in the relations of production.

Few today have Marx’s confidence about the final outcome. But the pre-

sent study suggests that this basic contradiction continues to shape the

evolution of work, as illustrated here by the path traced by process matur-

ity efforts—taking software development beyond ‘hacker idiocy.’

Appendix 5.1: Four programs

For the main part, my analysis abstracts from the differences between the four

programs. But the programs differed in many ways, as did the departments within

them. Some background is therefore useful.

Program A: CMM Level 5. Program A had had a continuous contractual relationship

with its customer for thirty years. Many employees had been attracted to the pro-

gram because of the high public profile of the customer. Historically, Program A had

ten to twenty projects under way at any one time, each building mid-sized subsys-

tems composed of 100,000–400,000 lines of source-code. Recent years, however, had

seen a downsizing of the organization due to the changes in the customer’s needs.

Between 1995 and 1999, employment had shrunk from over 1,600 to around 450.

Program A relied mainly on established technology and was responsible for a

considerable amount of software maintenance. Over time, however, the program’s

tasks had become more complex as the customer requirements and the associated

technologies had evolved. The business environment had also become more

demanding, with considerable pressure for more code reuse and tighter deadlines.

Discussing the history of process at Program A, one interviewee summarized the

evolution in these terms:

The first phase, in the late 1980s, was conformance. We had developed our standard process—

a big fat set of requirements and standards—and most managers felt that it was just a matter of

ensuring that people were implementing it. The second phase, in the early 1990s, was

enlightenment. This phase coincided with our big TQM push. We started getting working-

level people involved in improving things. The third phase, running between about 1994 and

1998, was empowerment. The word might sound trite to some people, but we had the process

framework, and we had the involvement, so we were really ready to delegate more autonomy

down to the projects and the tasks. (A program manager)

Program A adopted the CMM in the early 1990s, and during the latter part of the

decade used both CMM and ISO-9001 to help guide their improvement efforts.

While their customer did not require CMM certification, external pressure played

an important role in its adoption: ‘We knew that other clients would require it and

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 241 20.11.2005 12:34am

241

Beyond Hacker Idiocy

we felt it might be a good thing to do to help us improve’ (B process engineering,

formerly with A).

In 1991 the first formal, external Software Capability Evaluation (SCE) rated the

organization a Level 1. The organization subsequently undertook several internal

self-assessments. In 1996, the second evaluation rated them close to Level 3. In

1998, they were formally assessed as a Level 5 organization.

Program A was a ‘poster child’ for aggressive process improvement efforts at

GCC. Analyzing some thirty projects over the 1994–2000 timeframe, Program A

found that both productivity and quality improved on average by 10 per cent per

year. They also saw dramatic improvement in the accuracy and speed with which

they forecast costs and schedules for project proposals.

An internal survey of Program A personnel in 1999 asked whether they saw value

in the effort associated with CMM certification. There were 260 responses from 850

surveys distributed. Opinions were largely positive, and more so among people

who had personally participated in an audit. Of those not audited for the CMM, 58

per cent saw CMM as ‘well worth the effort’ and another 30 per cent as ‘of some

value.’ Of those audited, 79 per cent thought CMM was ‘well worth the effort’ and

another 18 per cent thought it was ‘of some value.’ The proportion who thought it

was of little or no value was 12 per cent among the non-audited and 3 per cent

among the audited.

Program B: CMM Level 3. Program B’s mission was to build information manage-

ment tools for its government client to use in operations around the world: internal

accounting, management, IS resource management, and so on. Program B’s staff

developed new systems, maintained and upgraded old ones, and operated a Help

Desk.

GCC won the contract in 1998 by promising to leverage GCC’s experience in

Program A to help Program B reach CMM Level 3 within eighteen months. GCC

replaced nearly thirty contractor organizations that had worked largely independ-

ently of each other. Program B functioned as a prime contractor and system

integrator, both developing systems itself and coordinating a small number of

subcontractors.

Program B itself employed directly or indirectly about 275 people. The largest of

its projects employed about ninety people. The overall system was composed of

700 files, comprising about 1 million lines of source-code (MSLOC).

To help reach Level 3, several people were transferred from Program A. The two

largest projects were each led by former Program A people, and Program A veterans

staffed several other key management and staff positions. Program B’s process

efforts were slowed down by a very difficult Y2K project, which strained relations

with the client. Once that project was completed, relations improved. The program

was officially assessed as Level 3 in early 2000.

Program C: CMM Level 5. This program, like Program A, had had a continuous

contractual relationship with its Department of Defense (DoD) end-customer for

some thirty years. But the relationship had always been mediated by other organ-

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 242 20.11.2005 12:34am

242

Paul S. Adler

izations serving as prime contractors. Program C undertook two or three major

projects at a time, each representing about 2.5 MSLOC. These projects created new

versions of the weapons system control software they provided to the DoD. Pro-

gram C employed about 450 people. It was divided into four main units that

developed and maintained the main modules of the system, plus several support

departments.

In recent years, there had been a swing towards greater bottom-up participation

and a corresponding effort to change management styles.

I think it’s fair to say that our culture has not put a lot of weight on things like participation

and empowerment. When I first came on board, I found levels of secrecy, need to know, and

cones of silence. In part, that was due to the influence of the customer we worked with, and to

the high proportion of senior people both there and here with military backgrounds. It was

like, ‘Don’t ask questions; just do it,’ and the ethos around here was more like ‘Just do your

job.’ Even the TQM program in the early 1990s didn’t make much of an impact. It was seen

mainly as a passing fad. But in the last 18 months, the change has been dramatic. We’ve

started to free up resources for symbolic and financial recognition. And we’ve emphasized

communication more. (C process engineering)

The key drivers of process maturity at Program C had historically been the succes-

sion of Military Standards imposed by the end-customer (the government) in

conjunction with the intermittent pressure of their immediate customer (the

prime contractor) (see Schulmeyer 1998 for an overview of the evolution of the

DoD software standards). Unlike Programs A and B, Programs C and D did not have

dedicated process engineering groups driving process improvement, but relied

instead on an expanded quality assurance staff and cross-functional manage-

ment-level Software Engineering Process Groups (SEPGs). Nevertheless, by the

middle of 1998, Program C was evaluated at Level 4, with all but some minor

elements of Level 5 in place as well. Shortly thereafter, it was evaluated at Level 5.

The quality of its products was widely recognized. The program had averaged 97

per cent of award fees, which is an unusually high rate among DoD contractors.

Program D: CMM Level 3. Program D began operations in 1991, developing

infrastructure systems for the DoD. Program D was unusual within GCC because

it covered the whole product life/cycle, offering complete solutions including

hardware, the integration of hardware and software, warehousing, installation,

and ongoing support. It had developed 2 MSLOC over the 1993–9 period. Program

D was also unusual within GCC for its extensive use of commercial, off-the-shelf

(COTS) hardware and software. Its systems incorporated over 200 commercial

products. The program’s systems were being used in about 100 sites, of which

about 50 were interlinked. In 2000, Program D employed some 350 people directly,

plus a further 120 contractors.

Until recently, software process had received less attention in this program than

in the others studied. According to one interviewee:

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 243 20.11.2005 12:34am

243

Beyond Hacker Idiocy

The Program D system was billed as based on a prototyping approach rather than the

traditional waterfall approach. At the time, this was pretty leading-edge stuff at GCC, and

it attracted people who don’t like the discipline associated with relatively routine projects of

the kind GCC Government Systems had traditionally done. But the initial team of 30 people

has grown to nearly 600, and the business really has to deliver, so they realized they needed

at least some Level 2 discipline. Even some of the die-hards have had a kind of religious

conversion, and have become quite committed to process now. (D process engineering, also

works with Program C)

Process had recently moved into the foreground. As part of a bid for a very large

DoD contract, Program D had to undergo an external process evaluation. In

preparation for that evaluation, they conducted their own assessment, and discov-

ered that the program would likely be rated no higher than a Level 1. The general

manager chartered an Improvement Team and charged it with taking the program

to Level 3. QA was significantly strengthened — the staff grew from three to eight

people — and a broad effort at process documentation was undertaken throughout

the organization by department-level Action Teams. By the end of 1999, the

program was assessed as Level 3.

Differences across the programs. Contingency theory teaches us that the scope for

process standardization and formalization such as recommended by the CMM is

closely related to the degree of routineness of the organization’s key tasks. Task

routineness varied across these GCC programs — that is, people encountered more

or fewer exceptions to established patterns of problem solving, and these exceptions

were more or less difficult to resolve. And as predicted by contingency theory, the

level of detail in the process varied across programs with this routineness. For ex-

ample, in comparison with Program C, its sister program Ddealt with a broader range

of technologies and these technologies evolved more rapidly; so it is not surprising

that Program C was considerably more mature in its process than Program D and its

process was more controlled at finer degrees of granularity. Within programs too, the

tasks of different departments differed in their degree of uncertainty and degree of

process discipline. For example, at Program D, one department was responsible for

defining site requirements, planning and procuring hardware, getting it to the site,

and installing it, and this department, unlike development, did specify Instructions.

Appendix 5.2: Cultural-historical activity theory

This paper relies on cultural-historical activity theory (CHAT) and the broader

Marxist theory on which CHAT is based. As developed primarily by Yjro Engeström

and Michael Cole, CHAT is based largely on the work of Vygotsky, Luria, and

Leont’ev.54 CHAT is distinctive first in its unit of analysis, positing that the most

appropriate unit of analysis for the study of work situations is the activity, under-

stood as the system of relations established when a community pursues a common

object. Leont’ev argues that in the study of work, the activity is the ‘molar’ unit of

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 244 20.11.2005 12:34am

244

Paul S. Adler

analysis, preferred over discrete psychological operations (quasi-automatic re-

sponses to stimuli) because work involves higher-order cognitive functions, and

preferred over actions (discrete goal-directed behaviors) because work is best under-

stood as a collective endeavor that unfolds over historical time.55

Adapting Engeström’s development of CHAT, and summarized in Figure 5.1, the

structure of an activity system can be understood as an interrelated set of func-

tional nodes:

. Subject: The subject of activity can be an individual or a collective actor.

. Object: The object of an activity is not merely the behaviorist’s stimulus, but

(consistent with common usage, American Pragmatism, and Marx of the 1844

Manuscripts) both (a) something given to the mind or senses, and (b) a purpose.

The gap between these two is the fundamental ‘motivation’ for the activity, and

the object thus has a profound effect on the shape of the rest of the activity

system.

. Tools: Human activity is distinctive in its extensive reliance on tools (including

concepts and language) as culturally transmitted artifacts that partly mediate

the subject’s relation to the object of activity.

. Community: The subject’s activity is embedded in the activity of community

that shares the same object. At the community node, CHAT captures the

contours of the subject’s reference group, its internal division of labor, and

the rules governing the behavior of individuals in the community.56

. Outcome: The result of the system’s activity is an outcome, a product. This

result will, in some cases, become an input to another activity system. Con-

versely, nodes of the focal system can themselves be the outcome of other

activity systems: tools, for example, are often procured from specialized sup-

pliers.

. More advanced model: In some circumstances, actors in the activity system are

aware of a potentially more advanced model of their activity, and the contra-

diction between this ideal and the current form of the activity system—along

with the other contradictions discussed below—can drive the evolution of the

system.

Figure 5.1 is a model of what Marx calls ‘production in general’—the generic

structure of productive activity; as it stands, this is a trans-historical model that

abstracts from the specific forms that activity takes in different social settings.57 To

understand any given activity, we need to augment this model with the more

concrete determinations that reflect the nature of the specific cultural-historical

context of activity. CHAT analyzes the resulting model in terms of its characteristic

contradictions. Following Engeström, we can distinguish four types of contradic-

tion, and in the analysis presented in the body of the chapter, we will see examples

of each:

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 245 20.11.2005 12:34am

245

Beyond Hacker Idiocy

. Each node is marked by a primary contradiction characteristic of all activities

(but particularly business activities) conducted in capitalist social settings—the

contradiction between use-value and exchange-value. I find that use-value

considerations in the implementation of the CMM drive the software devel-

opment activity system towards greater interdependence and greater efforts to

master that interdependence through more collaborative community. Ex-

change-value considerations, on the other hand, sometimes stimulate these

forces and sometimes impede them as unprofitable, replacing collaboration

with competition and autocratic control.

. Secondary contradictions give rise to tensions between nodes. In the present

study, I focus mainly on the contradictions that link the community and

subject nodes to the others. These are the proximate cause of the emergence

of a new form of professional community and new self-construals among

developers.

. Tertiary contradictions are those between the form of the current activity

system and a more advanced model of it. I find that the CMM functions in a

manner akin to what activity-oriented psychologists have called ‘scaffold-

ing,’58 guiding an organizational learning process that also contributes directly

and indirectly to the emergence of new forms of community and identity.

. Quaternary contradictions are those between the given activity system and

surrounding activity systems. On the outcome side, I find contradictions

between the interests of development organizations and those of their clients.

On the input side, I find contradictions between the prior socialization of

developers and the subjective demands of more mature development pro-

cesses.

CHAT offers a particularly fruitful path for understanding the mutations of soft-

ware development by interpreting change as resulting from these various contra-

dictions and their interactions.

References

Abbott, A. (1988). The System of Professions: An Essay on the Division of Expert Labor.

Chicago: University of Chicago Press.

Adler, P. S. (1996). ‘The dynamic relationship between tacit and codified know-

ledge: comments on Nonaka’s ‘‘Managing innovation as a knowledge creation

process.’’ ’ In G. Pogorel and J. Allouche (eds.), International Handbook of Technol-

ogy Management. Amsterdam: North-Holland: 110–24.

—— (1999). ‘Building better bureaucracies.’ Academy of Management Executive, 13/

4: 36–47.

—— (2001). ‘Market, hierarchy, and trust: the knowledge economy and the future

of capitalism.’ Organization Science, 12/2: 214–34.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 246 20.11.2005 12:34am

246

Paul S. Adler

—— and Borys, B. (1996). ‘Two types of bureaucracy: enabling and coercive.’

Administrative Science Quarterly, 41/1: 61–89.

—— Kwon, S., and Singer, J. (2003). ‘The ‘‘Six West’’ problem: an essay on the role

of professionals in knowledge management, with particular reference to the case

of hospitals.’ USC working paper.

Azjen, I. (1991). ‘The theory of planned behavior.’ Organizational Behavior and

Human Decision Processes, 50: 179–211.

Bach, J. (1994). ‘The immaturity of CMM.’ American Programmer, 7/9. Online at

www.satisfice.com/articles/cmm.htm.

—— (1995). ‘Enough about process: what we need are heroes.’ IEEE Software, 12/2:

96–8.

Bakhurst, D., and Sypnowich, C. (1995). ‘Introduction: problems of the social self.’

In D. Bakhurst and C. Sypnowich (eds.), The Social Self. London: Sage: 1–17.

Bandura, A. (1997). Self-Efficacy: The Exercise of Control. New York: W. H. Freeman.

Barley, S. R. (1986). ‘Technology as an occasion for structuring: evidence from

observations of CT scanners and the social order of radiology departments.’

Administrative Science Quarterly, 31/1: 78–108.

—— and Tolbert, P. S. (1997). ‘Institutionalization and structuration: studying the

links between action and institution.’ Organization Studies, 18/1: 93–117.

Baronas, A., and Louis, M. (1988). ‘Restoring a sense of control during implemen-

tation: how user involvement leads to system acceptance.’ MIS Quarterly, 12/1:

111–24.

Bart, C. K. (1999). ‘Controlling new products: a contingency approach.’ Inter-

national Journal of Technology Management, 18/5–8: 395–413.

Blackler, F. (1993). ‘Knowledge and the theory of organizations: organizations as

activity systems and the reframing of management.’ Journal of Management Stud-

ies, 30/6: 863–84.

Blau, P. M. (1955). The Dynamics of Bureaucracy. Chicago: University of Chicago

Press.

Boehm, B., and Turner, R. (2003). Balancing Agility and Discipline. Boston: Addison-

Wesley.

Bollinger, T., and McGowan, C. (1991). ‘A critical look at Software Capability

Evaluations.’ IEEE Software, 8/4: 25–41.

Bottomore, T. (ed.) (1983). A Dictionary of Marxist Thought. Cambridge, Mass.:

Harvard University Press.

Braverman, H. (1974). Labor and Monopoly Capital. New York: Monthly Review

Press.

Brown, S. L., and Eisenhardt, K. M. (1995). ‘Product development: past research,

present findings, and future directions.’ Academy of Management Review, 20/2:

343–78.

Burkitt, I. (1991). Social Selves: Theories of the Social Formation of Personality. London:

Sage.

Burns, T., and Stalker, G. (1961). The Management of Innovation. London: Tavistock.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 247 20.11.2005 12:34am

247

Beyond Hacker Idiocy

Butler, D. L. (1998). ‘In search of the architecture of learning: a commentary on

scaffolding as a metaphor for instructional interactions.’ Journal of Learning

Disabilities, 31/4 (July): 374–85.

Butler, T., Standley, V., and Sullivan, E. (2001). ‘Software configuration manage-

ment: a discipline with added value.’ Crosstalk, 14/7: 4–8.

Chaiklin, S., and Lave, J. (eds.) (1993). Understanding Practice: Perspectives and Activ-

ity and Context. New York: Cambridge University Press.

—— Hedergaard, M., and Jensen, U. J. (eds.) (1999). Activity Theory and Social

Practice. Aarhus: Aarhus University Press.

Clark, B. (1999). ‘Effects of process maturity on development effort.’ Unpublished

paper available at http://sunset.usc. edu/~bkclark/Research.

Cohen, G. A. (1974). ‘Marx’s dialectic of labor.’ Philosophy and Public Affairs, 3/3:

235–61.

—— (1978). Karl Marx’s Theory of History: A Defense. Princeton: Princeton Univer-

sity Press.

Cohen, Joshua (1982). Review of G. A. Cohen, Karl Marx’s Theory of History. Journal

of Philosophy, 79/5: 253–73.

Cole, M. (1996). Cultural Psychology: A Once and Future Discipline. Cambridge, Mass.:

Belknap/Harvard University Press.

Conn, R. (2002). ‘Developing software engineers at the C-130J software factory.’

IEEE Software (Sept.–Oct.): 25–9.

Conradi, R., and Fuggetta, A. (2002). ‘Improving software process improvement.’

IEEE Software (July–Aug.): 92–9.

Cooper, D. J., Hinings, C. R., Greenwood, R., and Brown, J. L. (1996). ‘Sedimenta-

tion and transformation in organizational change: the case of Canadian law

firms.’ Organization Studies, 17/4: 623–47.

Couger, J. D., and O’Callaghan, R. (1994). ‘Comparing the motivation of Spanish

and Finnish computer personnel with those of the United States.’ European

Journal of Information Systems, 3/4: 285–301.

Craig, T. (1995). ‘Achieving innovation through bureaucracy: lessons from the

Japanese brewing industry.’ California Management Review, 38/1: 8–36.

Crocca, W. T. (1992). ‘Review of Japan’s Software Factories: A Challenge to U.S.

Management.’ Administrative Science Quarterly, 37/4: 670–4.

Crosby, P. B. (1979). Quality is Free. New York: McGraw-Hill.

Cusumano, M. A. (1991). Japan’s Software Factories: A Challenge to U.S. Management.

New York: Oxford University Press.

—— (2000). ‘ ‘‘Made in India’’: a new sign of software quality.’ Computerworld (29

Feb.): 36.

Damanpour, Fariborz (1991). ‘Organizational innovation.’ Academy of Management

Journal, 34: 555–91.

Dannefer, D. (1984). ‘Adult development and social theory: a paradigmatic re-

appraisal.’ American Sociological Review, 49: 100–16.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 248 20.11.2005 12:34am

248

Paul S. Adler

DeMarco, T., and Lister, T. (1987). Peopleware: Productive Projects and Teams. New

York: Dorset.

Derber, C. (1982). Professionals as Workers: Mental Labor in Advanced Capitalism.

Boston: G. K. Hall & Co.

Dewey, J. (1930). Individualism Old and New. New York: Minton, Balch & Co.

—— (1939). ‘The individual in the new society.’ In J. Ratner (ed.), Intelligence in the

Modern World: John Dewey’s Philosophy. New York: Random House: 405–33.

Dosi, G. (1996). ‘The contribution of economic theory to the understanding of a

knowledge-based economy.’ In Employment and Growth in the Knowledge-Based

Economy. Paris: Organization of Economic Cooperation and Development: 81–94.

Eisenhardt, K. M., and Tabrizzi, B. N. (1995). ‘Accelerating adaptive processes:

product innovation in the global computer industry.’ Administrative Science Quar-

terly, 40/1: 84–111.

Elias. N. (1998). On Civilization, Power, and Knowledge: Selected Writings, ed. S.

Mennell and J. Goudsblou. Chicago: University of Chicago Press.

—— (2000). The Civilizing Process. Malden, Mass.: Blackwell.

Engels, F. (1978). ‘Socialism: utopian and scientific.’ In R. C. Tucker (ed.), The Marx-

Engels Reader. 2nd edn. New York: Norton: 683–717.

Engeström, Y. (1987). Learning by Expanding: An Activity-Theoretical Approach to

Developmental Research. Helsinki: Orienta-Konsultit.

Engeström, Y. (1990). Learning, Working and Imagining: Twelve Studies in Activity

Theory. Helsinki: Orienta-Konsultit.

—— (1999). ‘Situated learning at the threshold of the new millennium.’ In J. Bliss,

R. Säljö, and P. Light (eds.), Learning Sites: Social and Technological Resources for

Learning. Amsterdam: Pergamon.

—— Miettinin, R., and Punamaki, R.-L. (eds.) (1999). Perspectives on Activity Theory.

Cambridge: Cambridge University Press.

Erez, M., and Earley, P. C. (1993). Culture, Self-Identity, and Work. New York: Oxford

University Press.

Fiske, A. P., Kitayama, S., Markus, H. R., and Nisbett, R. E. (1998). ‘The cultural

matrix of social psychology.’ In D. T. Gilbert, S. T. Fiske, and G. Lindzey (eds.), The

Handbook of Social Psychology. 4th edn. Boston: McGraw-Hill: 915–81.

Freidson, E. (2001). Professionalism: The Third Logic. Cambridge: Polity.

Friedman, A. L., and Cornford, D. S. (1989). Computer Systems Development: History,

Organization and Implementation. Chichester: John Wiley & Sons.

Galbraith, J. R. (1977). Organization Design. Reading, Mass.: Addison-Wesley.

Gibbs, G. G. (1994). ‘Software’s chronic crisis.’ Scientific American (Sept.): 86–92.

Gibson, C. D., and Earley, P. C. (n.d.). ‘Work-team performance motivated by

collective thought: the structure and function of group efficacy.’ Unpublished,

University of Southern California.

Giddens, A. (1979). Central Problems in Social Theory. Berkeley and Los Angeles:

University of California Press,

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 249 20.11.2005 12:34am

249

Beyond Hacker Idiocy

Goldstein, D. K., and Rockart, J. F. (1984). ‘An examination of work-related correl-

ates of job satisfaction in programmer/analysts.’ MIS Quarterly, 8/2: 103–15.

Gordon, R. W., and Simon, W. H. (1992). ‘The redemption of professionalism?’ In

R. L. Nelson, D. M. Trubek, and R. L. Solomon (eds.), Lawyers’ Ideals/Lawyers’

Practice: Transformations in the American Legal Profession. Ithaca, NY: Cornell

University Press.

Gouldner, A. W. (1954). Patterns of Industrial Bureaucracy. New York: Free Press.

—— (1957). ‘Cosmopolitans and locals: toward an analysis of latent social roles.’

Administrative Science Quarterly, 2/3: 281–306.

Gramsci, A. (1971). Selections from the Prison Notebooks. New York: International

Publishers.

Green, G., and Hevner, A. R. (1999). ‘Perceived control of software developers and its

impact on the successful diffusion of information technology.’ Carnegie Mellon

University, Software Engineering Institute, Special Report CMU/SEI-98-SR-013.

Greenbaum, J. M. (1979). In the Name of Efficiency. Philadelphia: Temple University

Press.

Griffin, A., and Hauser, J. R. (1992). ‘Patterns of communication among marketing,

engineering and manufacturing: a comparison between two new product teams.’

Management Science, 38/3: 360–73.

Griffin, P., and Cole, M. (1984). ‘Current activity for the future: the Zo-Ped.’ In B.

Rogoff and J. V. Wertsch (eds.), Children’s Learning in the ‘Zone of Proximal Devel-

opment.’ New Directions for Child Development 23. San Francisco: Jossey-Bass:

45–63.

Griss, M. L. (1993). ‘Software reuse: from library to factory.’ IBM Systems Journal, 32/

4: 548–66.

Hackman, J. R., and Oldham, G. R. (1980). Work Redesign. Reading, Mass.: Addison-

Wesley.

Harter, D. E., Krishnan, M. S., Slaughter, S. A. (2000). ‘Effects of process maturity on

quality, cycle time, and effort in software development.’ Management Science, 46/

4: 451–66.

Henderson, J., and Lee, S. (1992). ‘Managing I/S design teams: a control theories

perspective.’ Management Science, 38/6: 757–76.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., and Paulk, M. (1997). ‘Software

quality and the Capability Maturity Model.’ Communication of the ACM, 40/6: 30–

40.

Hernandez, M., and Iyengar, S. S. (2001). ‘What drives whom? A cultural perspec-

tive on human agency.’ Social Cognition, 19/3: 269–94.

Hirschhorn, L. (1997). Reworking Authority. Cambridge, Mass.: MIT Press.

Hoch, D. J., Roeding, C. R., Purkert, G., and Linder, S. K., (2000). Secrets of Software

Success. Boston: Harvard Business School Press.

Holt, G. R., and Morris, A. W. (1993). ‘Activity theory and the analysis of organiza-

tions.’ Human Organization, 52/1: 97–109.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 250 20.11.2005 12:34am

250

Paul S. Adler

Humphrey, W. S. (2002). ‘Three process perspectives: organizations, teams, and

people.’ Annals of Software Engineering, 14: 39–72.

Hyman, R. (1987). ‘Strategy or structure? Capital, labour and control.’ Work, Em-

ployment and Society, 1/1: 25–55.

Jackson, S. E., and Schuler, R. S. (1985). ‘A meta-analysis and conceptual critique of

research on role ambiguity and role conflict in work settings.’ Organizational

Behavior and Human Decision Processes, 36: 17–78.

Jelinek, M., and Schoonhoven, C. B. (1993). The Innovation Marathon. San Fran-

cisco: Jossey-Bass.

Jones, C. (2002). ‘Defense software development in evolution.’ CrossTalk (Nov.):

26–9.

Kagitcibasi, C. (1997). ‘Individualism and collectivism.’ In J. W. Berry, M. H. Segall,

and C. Kagitcibasi (eds.), Handbook of Cross-Cultural Psychology. Needham

Heights, Mass.: Allyn & Bacon: 1–49.

Kahn, R., Wolfe, D., Quinn, R., Snoek, J. D., and Rosenthal, R. (1964). Organizational

Stress: Studies in Role Conflict and Role Ambiguity. New York: John Wiley and

Sons.

Kenney, M., and Florida, R. (1993). Beyond Mass Production: The Japanese System and

its Transfer to the U.S. New York: Oxford University Press.

King, R. C., and Sethi, V. (1998). ‘The impact of socialization on the role adjustment

of information system professionals.’ Journal of Management Information Systems,

14/1: 195–217.

Kogut, Bruce, and Metiu, Anca (2001). ‘Open-source software development and

distributed innovation.’ Oxford Review of Economic Policy, 17: 248–64.

Kohn, M. L., and Schooler, C. (1983). Work and Personality. Norwood, NJ: Ablex.

Kraft, P. (1977). Programmers and Managers: The Routinization of Computer Program-

ming in the United States. New York: Springer Verlag.

Krishnan, M. S., Kriebel, C. H., Kekre, S., and Mukhopadhyay, T. (2000). ‘Product-

ivity and quality in software products.’ Management Science, 46/6: 745–59.

Kunda, G. (1992). Engineering Culture: Control and Commitment in a High-Tech Cor-

poration. Philadelphia: Temple University Press.

Langer, E. (1983). The Psychology of Control. Beverly Hills, Calif.: Sage.

Lave, J. (1988). Cognition in Practice. New York: Cambridge University Press.

—— (1993). ‘The practice of learning.’ In S. Chaiklin and J. Lave (eds.), Understand-

ing Practice: Perspectives and Activity and Context. New York: Cambridge University

Press: 3–35.

—— (2001). ‘Lines on social practice theory.’ Unpublished manuscript, UC Berkeley.

Lawrence, P. R., and Lorsch, J. W. (1967). Organization and Environment: Managing

Differentiation and Integration. Boston: Harvard University Graduate School of

Business Administration.

Leont’ev, A. N. (1978). Activity, Consciousness, and Personality. Englewood Cliffs, NJ:

Prentice-Hall.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 251 20.11.2005 12:34am

251

Beyond Hacker Idiocy

Levine, A., and Wright, E. (1980). ‘Rationality and class struggle.’ New Left Review,

123: 47–68.

Lieberman, H., and Fry, C. (2001). ‘Will software ever work?’ Communications of the

ACM, 44/3: 122–4.

Lillkrank, P. (2003). ‘The quality of standard, routine and nonroutine processes.’

Organization Studies, 24/2: 215–33.

Livingston, J. (2000). ‘The strange career of the ‘‘social self.’’ ’ Radical History Review,

76: 53–79.

Luria, A. R. (1976). Cognitive Development: Its Cultural and Social Foundations. Cam-

bridge, Mass.: Harvard University Press.

Lynn, L. H. (1991). ‘Assembly line software development.’ Sloan Management Re-

view, 88:

McKinlay, J. B., and Arches, J. (1985). ‘Toward the proletarianization of physicians.’

International Journal of Health Services, 15/2: 161–95.

March, J., and Simon, H. (1958). Organizations. New York: Wiley.

Markus, H. R., and Kitayama, S. (1991). ‘Culture and the self: implications for

cognition, emotion, and motivation.’ Psychological Review, 98: 224–53.

Marx, K. (1955). The Poverty of Philosophy. Moscow: Progress. Online version con-

sulted 27 Dec. 2004 at www.marxists.org/archive/marx/works/1847/poverty-

philosophy/ch026.htm.

—— (1973). Grundrisse. Harmondsworth: Penguin Books.

—— (1975). Karl Marx: Early Writings. New York: Vintage.

—— (1977). Capital. Vol. i. New York: Vintage.

—— and Engels, F. (1959). ‘The Communist Manifesto.’ In L. S. Feuer (ed.),

Marx and Engels: Basic Writings on Politics and Philosophy. New York: Anchor:

1–41.

Mathieson, K. (1991). ‘Predicting user intentions: comparing the technology ac-

ceptance model with the theory of planned behavior.’ Information Systems Re-

search, 2/3: 173–91.

Meyer, J. W., and Rowan, B. (1977). ‘Institutionalized organizations: formal struc-

ture as myth and ceremony.’ American Journal of Sociology, 83: 340–63.

Mintzberg, H. (1979). The Structuring of Organizations: A Synthesis of the Research.

Englewood Cliffs, NJ: Prentice-Hall.

Mowery, D. C. (ed.) (1996). The International Computer Software Industry. New York:

Oxford University Press.

Nardi, B. A. (1996). ‘Studying context: a comparison of activity theory, situated

action models, and distributed cognition.’ In B. A. Nardi (ed.), Context and

Consciousness: Activity Theory and Human–Computer Interaction. Cambridge,

Mass.: MIT Press: 69–102.

Ngwenyama, O., and Nielson, P. A. (2003). ‘Competing values in software

process improvement: an assumption analysis of CMM from an organizational

culture perspective.’ IEEE Transactions on Engineering Management, 50/1:

100–12.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 252 20.11.2005 12:34am

252

Paul S. Adler

Organ, D. W., and Green, C. N. (1981). ‘The effects of formalization on professional

involvement: a compensatory process approach.’ Administrative Science Quarterly,

26: 237–52.

Oyserman, D., Coon, H. M., and Kemmelmeier, M. (2002). ‘Rethinking individu-

alism and collectivism: evaluation of theoretical assumptions and meta-ana-

lyses.’ Psychological Bulletin, 126/1: 3–73.

Paulk, M. C. (1995). ‘The evolution of SEI’s Capability Maturity Model for Soft-

ware.’ Software Process: Improvement and Practice, 1: 3–15.

—— Weber, Charles V., Garcia, Sozanne M., Chrissis, Mary Beth, and Bush, Marilyn

W. (1993). ‘Key practices of the capability maturity model, version 1.1.’ Software

Engineering Institute, CMU/SEI-93-TR-25, DTIC No. ADA263432, Feb.

Pinnington, A., and Morris, T. (2003). ‘Archetype change in professional organiza-

tions: survey evidence from large law firms.’ British Journal of Management, 14/1:

85–99.

Podsakoff, P. M., Williams, L. J., and Todor, W. T. (1986). ‘Effects of organizational

formalization on alienation of professionals and non-professionals.’ Academy of

Management Journal, 29/4: 820–31.

Rasch, R. H., and Tosi, H. L. (1992). ‘Factors affecting software developers’ perform-

ance: an integrated approach.’ MIS Quarterly (Sept.): 395–413.

Rizzo, J. R., House, R. J., and Lirtzman, S. I. (1970). ‘Role conflict and ambiguity in

complex organizations.’ Administrative Science Quarterly, 15: 150–63.

Sacks, M. (1994). On-the-Job Learning in the Software Industry. Westport, Conn.:

Quorum.

Sagie, A. (1997). ‘Leader direction and employee participation in decision-making:

contradictory or compatible practices?’ Applied Psychology: An International Re-

view, 46: 387–416.

Schneider, B. (1987). ‘The people make the place.’ Personnel Psychology, 40:

437–54.

Schulmeyer, G. G. (1998). ‘Standardization of software quality assurance: where is

it all going?’ In G. G. Schulmeyer and J. I. McManus (eds.), Handbook of Software

Quality Assurance. Upper Saddle River, NJ: Prentice Hall: 61–90.

Smith, P. G., and Reinertsen, D. G. (1991). Developing Products in Half the Time. New

York: Van Nostrand.

Software Engineering Institute (2002). ‘Process maturity profile of the software

community, 2002 mid-year update.’ Download from www.sei.cmu.edu.

—— (2004). ‘Process maturity profile software CMM, 2004 mid-year.’ Download

from www.sei.cmu.edu.

Sohn-Rethel, A. (1978). Intellectual and Manual Labour: A Critique of Epistemology.

Atlantic Highlands, NJ: Humanities Press.

Spenner, K. I. (1990). ‘Skill: meanings, methods, measures.’ Work and Occupations,

17: 399–421.

Standish Group (1994). Chaos study report at www.standishgroup.com.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 253 20.11.2005 12:34am

253

Beyond Hacker Idiocy

Steinmuller, W. E. (1996). ‘The U.S. software industry: An analysis and interpretive

history.’ In D. C. Mowery (ed.), The International Computer Software Industry. New

York: Oxford University Press: 15–52.

Stone, C. A. (1993). ’What is missing in the metaphor of scaffolding?’ In E. A.

Forman, N. Minick, and C. A. Stone (eds.), Contexts for Learning: Sociocultural

Dynamics in Children’s Development. New York: Oxford University Press: 169–83.

Strauss, A. L., Fagerhaugh, S., Suczek, B., and Wiener, C. (1985). Social Organization

of Medical Work. Chicago: University of Chicago Press.

Suchman, L. (1987). Plans and Situated Actions. Cambridge: Cambridge University

Press.

Swanson, K., McComb, D., Smith, J., and McCubbrey, D. (1991). ‘The application

software factory: applying Total Quality Techniques to systems development.’

MIS Quarterly (Dec.): 567–79.

Tannenbaum, A. S. (ed.) (1968). Control in Organizations. New York: McGraw-Hill.

Taylor, C. (1989). The Sources of the Self. Cambridge: Cambridge University Press.

Taylor, S., and Todd, P. (1995). ‘Understanding information technology usage: a

test of competing models.’ Information Systems Research, 6/2: 144–76.

Thompson, P. (1989). The Nature of Work: An Introduction to Debates on the Labour

Process. London: Macmillan.

Triandis, H. C., and Gelfand, M. J. (1998). ‘Converging measurement of horizontal

and vertical individualism and collectivism.’ Journal of Personality and Social

Psychology, 74/1: 118–28.

—— and Suh, E. M. (2002). ‘Cultural influences on personality.’ Annual Review of

Psychology, 53: 133–60.

—— Leung, K., Villareal, M., and Clack, F. L. (1985). ‘Allocentric versus idiocentric

tendencies: convergent and discriminant validation.’ Journal of Personality Psych-

ology, 19: 395–415.

van der Pijl, K. (1998). Transnational Classes and International Relations. London:

Routledge.

Van Iterson, A., Mastenbroek, W., Newton, T., and Smith, D. (eds.) (2002). The

Civilized Organization: Norbert Elias and the Future of Organization Studies. Phila-

delphia: John Benjamins.

Van Maanen, J., and Barley, S. R. (1984). ‘Occupational communities: culture and

control in organizations.’ Research in Organizational Behavior, 6: 287–365.

Vygotsky, L. S. (1962). Thought and Language. Cambridge, Mass.: MIT Press.

—— (1978). Mind in Society. Cambridge, Mass.: Harvard University Press.

Weber, H. (ed.) (1997). The Software Factory Challenge. Amsterdam: IOS Press.

Wertsch, J. V. (ed.) (1979). The Concept of Activity in Soviet Psychology. Armonk, NY:

M. E. Sharp.

—— Tulviste, P., and Hagstrom, F. (1993). ‘A sociocultural approach to agency.’ In

E. A. Forman, N. Minick, and C. A. Stone (eds.), Contexts for Learning: Sociocultural

Dynamics in Children’s Development. New York: Oxford University Press: 136–56.

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 254 20.11.2005 12:34am

254

Paul S. Adler

Wheelwright, S. C., and Clark, K. B. (1992). Revolutionizing Product Development.

New York: Free Press.

Wood, D., Bruner, J., and Ross, G. (1976). ‘The role of tutoring in problem-solving.’

Journal of Child Psychiatry and Psychology, 17: 89–100.

Wright, E. O., Levine, A., and Sober, E. (1992). Reconstructing Marxism: Essays on

Explanation and the Theory of History. London: Verso.

Yates, J., and Orlikowski, W. J. (1992). ‘Genres of organizational communication: a

structurational approach to studying communication and media.’ Academy of

Management Review, 17/2: 299–323.

Notes

1. Gordon and Simon (1992: 234).

2. The literature on professionals and the mutations of professional work is

enormous. An excellent entry point is provided by Eliot Freidson (2001).

3. e.g. McKinlay and Arches (1985); Derber (1982).

4. Greenbaum (1979: 64–5).

5. Gibbs (1994); Lieberman and Fry (2001); Standish (1994).

6. Harter et al. (2000); Clark (1999); Cusumano (2000).

7. On the concept of the software factory and the associated debates, see Cusu-

mano (1991); Swanson et al. (1991); Griss (1993): Weber (1997); Friedman and

Cornford (1989).

8. The general argument for this position is articulated in the ‘contingency

theory’ branch of organization studies—see Burns and Stalker (1961); Lawrence

and Lorsch (1967); Galbraith (1977); Mintzberg (1979). The argument has been

applied in the software development arena by authors such as Crocca (1992);

Bach (1994, 1995); Conradi and Fuggetta (2002); Lynn (1991); Ngwenyama

and Nielson (2003).

9. Marx (1973, 1977); Engels (1978).

10. Markus and Kitayama (1991).

11. Marx, following Hegel, takes contradictions as real—out there, in objective,

independent reality—rather than purely notional, in the mind of the observer.

Contradiction here is a relation between two real forces, not merely a logical

relation between two propositions. As such, contradictions are the source of

change.

12. Marx (1977: appendix); Thompson (1989); Bottomore (1983: 267–70).

13. Engels (1978). My reading of Marx is based on G. A. Cohen’s (1978) presenta-

tion. Cohen’s version has been criticized by, amongst others, Levine and

Wright (1980) and Cohen (1982); see G. A. Cohen’s (1988) reply, also Wright

et al. (1992). This essay takes G. A. Cohen’s interpretation from the general

societal plane into the production process.

14. e.g. Marx (1973: 705; 1977: 1024).

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 255 20.11.2005 12:34am

255

Beyond Hacker Idiocy

15. See also van der Pijl (1998); Engels (1978).

16. Engels (1978: 702).

17. Marx (1977: ch. 13).

18. Marx (1977: 458); Gramsci (1971: 201–2).

19. Markus and Kitayama (1991).

20. Marx (1977: 447).

21. Marx and Engels (1959); Marx (1955).

22. Marx (1973: 704–6).

23. Hyman (1987).

24. Adler (2001).

25. See Cohen (1978); Levine and Wright (1980).

26. Humphrey (2002).

27. Jones (2002).

28. Paulk (1995: 11).

29. Crosby (1979); see Humphrey (2002); a bibliography on the CMM is available

at www.sei.cmu.edu/docs/biblio.pdf.

30. Clark (1999).

31. Harter et al. (2000). Other multi-organization studies include Krishnan et al.

(2000); Herbsleb et al. (1997).

32. For some observers, the bureaucratizing path of the CMM is a dead end, and the

way forward is shown by the open-source movement and ‘agile’ methods. But

close examination shows that these approaches are only feasible in narrow seg-

ments of the software industry. Open source is feasible only where interfaces can

be standardized and systems can be modularized (Kogut and Metiu 2001); and its

cost-effectiveness remains unproven. Agile methods have proven appropriate

only where systems and development teams are small, where the customers and

users are available for frequent consultation, and where requirements and the

environment are particularly volatile—see Boehm and Turner (2003).

33. Autonomy is often presented as a key motivating characteristic of jobs (Hack-

man and Oldham 1980). A similar assumption underlies Ajzen’s (1991) theory of

planned behavior, with its focus on ‘perceived behavioral control.’ In labor

process theory and the broader field of sociology of work too, autonomy is one

of the two defining dimensions of skilled work, alongside complexity (see

Braverman 1974; Spenner 1990). In the Information Systems field, a consider-

able body of research has focused on the role of perceived control and autonomy

as determinants of the use of, and satisfaction with, new techniques and tech-

nologies (see for example Baronas and Louis 1988; Mathieson 1991; Taylor and

Todd1995; Henderson andLee1992; Green andHevner1999). This emphasison

autonomy seems particularly appropriate forprogrammers, who typically mani-

fest low need for social interaction (Couger and O’Callaghan 1994).

34. On the software industry and its components and major players, see Hoch et al.

(2000), and Mowery (1996). Notwithstanding the growth of the personal

computer market and the associated mass-market pre-packaged ‘software prod-

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 256 20.11.2005 12:34am

256

Paul S. Adler

ucts’ industry, the bulk of the rapidly expanding software industry resembles

GCC and its competitors in delivering ‘software services’—creating fully or

partly customized, large-scale systems for specific clients. In 2000, according

to data provided by IDC, software services in the USA accounted for revenues of

$395 billion versus $171 billion for software products. Steinmuller (1996) notes

that both these industry segments are small relative to the software developed

for their own use by firms and public organizations.

35. See Abbott (1988).

36. Kraft (1977: 56).

37. Adler (2001).

38. As described by Meyer and Rowan (1977).

39. Using Marx’s periodization (1977: pt. IV).

40. For discussion of the impact of process maturity on the role of another key staff

function, Configuration Management, see Butler et al. (2001): many of the

same conclusions apply.

41. See for example Sacks (1994); Lave (1988).

42. The metaphor of scaffolding refers to the temporary assistance provided by

teachers/adults to students/children as they strive to accomplish a task in their

‘zone of proximal development.’ The metaphor was originally articulated by

Wood et al. (1976). The concept of ‘zone of proximal development’ is one of

Vygotsky’s best-known contributions: see Griffin and Cole (1984).

43. In offering software development organizations a prescription for their future

that was based on lessons drawn from the industry’s past, the CMM functioned

in precisely the ‘proleptic’ manner described by Cole (1996: 183 ff.).

44. This concern echoed critiques of the ‘top-down’ nature of the scaffolding

metaphor: see Stone (1993); Butler (1998).

45. See Wheelwright and Clark (1992); Smith and Reinertsen (1991).

46. Bandura (1997).

47. On adult socialization, see e.g. Kohn and Schooler (1983); and see Conn (2002)

for discussion of the process of developer socialization in another software

factory. On ‘attraction-selection-attrition,’ see Schneider (1987).

48. Gouldner (1957); Van Maanen and Barley (1984).

49. See Triandis and Gelfand (1998).

50. An alternative—more provocative but also more confusing—formulation

would be to argue that individualism and collectivism are orthogonal con-

structs and the new developers are high on both: see discussion in Oyserman

et al. (2002: 8), and other contributors to that issue; also Kagitcibasi (1997).

51. This shallow view has persisted notwithstanding the strong case made by

Tannenbaum’s work on the ‘control graph’—see, e.g., Tannenbaum (1968);

more recently, Henderson and Lee (1992).

52. On the social-self thesis and other-directedness, see Livingston (2000).

53. See Cohen (1974).

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 257 20.11.2005 12:34am

257

Beyond Hacker Idiocy

54. Engeström (1987, 1990); M. Cole (1996); Vygotsky (1962, 1978); Luria (1976);

Leont’ev (1978). Useful overviews of CHAT and discussion of its variants

include: Engeström et al. (1999); Chaiklin et al. (1999); Wertsch (1979); Black-

ler (1993); Holt and Morris (1993).

55. Leont’ev (1978).

56. It is here that my presentation differs from Engeström: Engeström distin-

guishes rules and division of labor from community itself, whereas I have

subsumed them under the one broader category. This eases the burden of

exposition.

57. Marx (1973: 85).

58. Wood et al. (1976).

Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 258 20.11.2005 12:34am

258

Paul S. Adler

