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Abstract 

Theories of organizations have brought together multiple heterogeneous theories in computational models. In 
addition, in artificial intelligence, there has been an emphasis on the generation of knowledge-based systems that 
include multiple heterogeneous knowledge bases. As a result, increasingly, theory and model developers have 
called for the need to validate these computational models. Unfortunately, there has been only limited attention 
given to validation of multiple knowledge source programs. 

The primary focus of this paper is on the identification of conflict between multiple knowledge bases. The 
existence of conflict is particularly critical in those situations where database evaluations are "averaged". For 
example, what would it mean to average the assessments of supply and demand economists, or surgeons and 
chemotherapists? 

Correlational statistics are used to identify conflict situations. In addition, a new approach, referred to as 
cutpoints, is developed to determine if probability distributions of multiple agents are in conflict. A case study is 
used to illustrate the problems of combining expertise iri multiple agent systems and to demonstrate the approach. 

Keywords: computational models of organizations, multiple agent systems, Bayes' nets, probabilistic systems, 
validation 

1. Introduction 

Theories oforganizations have brought together multiple heterogeneous theories (e.g., Cyert 
and March 1992). As a result, it is probably not surprising that computational models 
representing organization theories (e.g., Cyert and March 1992; Burton and Obel 1984; 
Baligh et al. 1996) also bring together multiple theories. Accordingly, heterogeneous 
knowledge is represented within these models. That heterogeneous knowledge can either 
be maintained as integrated wholes or as heterogeneous knOWledge. 

In addition, increasingly, in artificial intelligence, there has been an emphasis on the 
generation of knowledge-based systems that include mUltiple heterogeneous knowledge 
bases (e.g., Botten et aL 1989; Jennings 1994). For example, researchers (e,g" Gelernter 
1992) are developing multiple knowledge base models of organizations that "mirror" their 
real-world counterparts. These mirror worlds can he used to assist in decision making, to 
make sense out of the large amounts of data that flows into an organization, to anticipate 
the outcome of sets of events, and a variety of other activities. 

Theory and model developers also have called for the need to validate these computa­
tional models (e,g., Cyert and March 1992; Burton and Obel 1984). Since the resulting 
knowledge-based models are software, they ultimately need to be validated as software. 
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Thus, as noted by Adrion et al. (1982) we are concerned with "detennination of the cor­
rectness of the final program or software .... " Unfortunately, there has been only limited 
attention given to validation of multiple knowledge source programs. As a result, the pur­
pose of this paper is to develop approaches that help us validate systems with multiple 
heterogeneous knowledge sources in order to determine their correctness. . 

This paper proceeds as follows. Section 2 provides a brief background on multiple 
knowledge-based systems, including rule-based systems and Belief Network/Influence 
Diagram. Section 3 briefly reviews the previous validation research. Section 4 examines 
the validation of multiple knowledge sources, including issues in ontologies, knowledge 
scope and detail and problems of conflicting knowledge. Section 5 summarizes the case 
study from which the data used in this paper is generated. Section 6 investigates two metrics 
for determining if the distribution estimates associated with two knowledge bases are in 
conflict. Section 7 uses the discussion here to extend the methodology in organizational 
social network research. Section 8 briefly summarizes the paper and its contributions, and 
analyzes some extensions. 

2. Background 

This section provides a brief background on influence diagrams and rule-based systems. In 
addition, it briefly discusses multiple heterogeneous knowledge sources. 

2.1. Rule-Based Systems and Belief Nets 

Rule-based systems and Belief Nets are similar in their structure. In addition, both use 
probabilities, either as weights on rules or directly. Rule-based expert systems represent 
knowledge using "if a then b" rules. Often those systems employ probability measures 
of uncertainty on the rules and inference through the rule base using heuristic approaches. 
Rules are a very robust way to capture knowledge in organizational settings. For example 
as noted by eyert and March (1992, p. 230) 

... theories of rational, anticipatory, calculated consequential action underestimate both 
the persuasiveness and intelligence of an alternative decision logic-the logic of 
appropriateness, obligation, identity, duty and rules. Much of the decision making 
behavior we observe reflects the routine way in which people do what they believe they 
are suppose to do. Much of the behavior in an organization is specified by standard 
operating procedures, professional standards, cultural norms and institutional structures. 
Decisions in organizations, as in individuals, seem often to involve finding 'appropriate' 
rules to follow. 

Belief Nets (also called Bayes' Nets and Influence diagrams) are graphical structures that 
facilitate Bayesian reasoning (Pearl 1988). They are acyclic graphs that are used to represent 
any decision problem that can be captured as a decision tree (most rule-based problems can 
be represented as a decision tree). Roughly the arcs mean that if you know the state of 
the node at one end then you can infer about the node at the other end. Typically, Belief 
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Nets have probabilities associated with each arc, in a manner similar to the probabilities 
or uncertainty factors associated with rules. Probability inference through the network is 
done using Bayes' Theorem or some heuristic approximation. 

2.2. Heterogeneous Knowledge Sources 

Knowledge bases generated from heterogeneous knowledge sources come from more that 
a single source of knowledge and as a result, represent multiple views, multiple situations, 
multiple times of when the knowledge was valid, etc. Representation of these multiple 
heterogeneous knowledge bases can take a number of different approaches, including con­
straints (e.g., Burton and abel 1984), multiple rule sets (Ngwenyama and Bryson 1992), 
multiple rule sets with mUltiple objectives (e.g., O'Leary 1986), multiple sets of weights 
on the same set of rules (e.g., Reboh 1982), and other combinations. 

2.3. Integration ofJudgments in Heterogeneous Knowledge Bases 

Multiple knowledge based systems can combine or choose between the judgments of mul­
tiple knowledge sources at basically two different times: the time the system is built or the 
time the system is run. The first approach uses assessments from multiple agents to estab­
lish a single system. Dungan (1983), and Dungan and Chandler (1985) built a rule-based 
system that integrated the judgments of multiple experts at the time it was built. Weights 
for those rules were gathered from four different sources and then combined into a single 
estimate on each of the rules through a process of averaging. 

The second approach provides more flexibility, allowing for evolving sets of agents. In 
this approach, e.g., the weights or probabilities on the rules would be captured as the system 
was being built and each set of weights would be maintained separately. Then when the 
system was run, the system would combine (e.g., average) the weights at the time or the 
user would chose which weights should be combined. This would permit the ability to 
change one subset of weights or probabilities, without making major changes in the system. 
Such an approach would facilitate an evolutionary system design by allowing developers 
to phase in and out the knowledge of particular individuals. For example, Garvey et al. 
(1981) suggested that the knowledge of specialists, with different information, should be 
integrated in the system. Reboh (1982) used a similar approach, integrating different sets of 
rules. LeClair (1985) developed a system that permitted the user to choose from or average 
different experts represented in the system. 

If the heterogeneous knowledge is maintained separately, then it is possible to determine 
which bits ofknowledge come from different sources for purposes ofcomparing the different 
knowledge sources. Unfortunately, once the multiple knowledge sources are aggregated, 
the knowledge may take a form other than the original intention (figure 1). 

However, if knowledge is kept in its disaggregated, multiple knowledge base format the 
means by which the system aggregates or employs the multiple sources to make its decisions 
will also require validation. If that approach is simple averaging across expert estimates 
then that task is not substantial. However, if the multiple knowledge sources are integrated 
using negotiation or other approaches then the effort can be substantial. 
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The previous validation research relating to validation of models with multiple heteroge­
neous knowledge bases can draw from at least two general lines of research. First, there is 
a substantial literature relating to validation of artificially intelligent and knowledge based 
systems (e.g., O'Keefe and O'Leary 1993). Second, validation of computational models of 
organizations is emerging as an important source of advances (e.g., Burton and Obe11984, 
1995; Carley 1996). In each line of research, the literature has grown around the know­
ledge representation requirements of the models being developed. As a result, in the 
knowledge based systems arena there has been a focus on rule-based systems. Further, the 
knowledge base systems validation literature has begun to address issues in the validation of 
multiple knowledge sources as developers begin to generate more such models. However, 
an analysis of both those literatures reveals that there has been limited, if any, attention 
given to multiple heterogeneous knowledge bases. Thus far the literature has focused on 
two primary topics: using the knowledge representation structure (e.g., rules) to find errors 
in the way the knowledge has been developed and the use of test data. 

Using the Knowledge Representation Structure. If the knowledge is represented in a 
single manner, such as rules, then it is possible to use the structure of the rules to deter­
mine consistency, completeness and correctness of the rules from a "syntactic" perspective 
(O'Leary 1995). Similarly, with knowledge represented as constraints, inconsistency be­
tween knowledge sources can take other identifiable forms such as infeasibility. 

Test Data. Brown et al. (1995) employed a test data approach in order to evaluate hetero­
geneous and competing knowledge bases. Their analysis found that for complex models 
it is difficult to generate test data cases. However, test data was effective in ascertaining 
"gaps" and incorrect knowledge in the knowledge bases. 
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4. Validating Multiple Knowledge Sources 

One of the primary ways of validating a knowledge base is to compare it to some alternative. 
The set of alternative bases of comparison is quite extensive (e.g., O'Leary 1988a) and 
includes other models, other knowledge bases, other experts and a gold standard. If each 
knowledge source is represented separately then they can be compared against each other 
or test sources to facilitate detennination as to the correctness of the knowledge (figure 2). 
If the knowledge is aggregated then the aggregate can be compared to each of the original 
sources to detennine the extent to which it confonns with the original knowledge or it can 
be compared to test sources. 

Comparisons of heterogeneous knowledge sources can yield a number of differences. 
First, there can be differences in ontologies being used by the different knowledge sources. 
Second, there may be different scopes to knowledge, so that one knowledge base has 
additional rules when compared to another knowledge base. Third, the knowledge sources 
may be in conflict. 

4.1. Different Ontologies 

Onologies define a sub language for a specific topic area, thus defining the terms and relations 
that constitute the vocabulary (e.g., Gruber 1993). In order to use mUltiple knowledge 
sources unambiguously each of the knowledge sources must employ the same ontology. 
For example, do all knowledge sources mean measure the same thing when they reference 
the concept "decentralization"? As a result, validation must detennine if the heterogeneous 
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sources use the same ontology or if they are integrated using some other approach. One such 
approach to integrating multiple heterogeneous knowledge sources with different ontologies 
uses brokers. The broker is an intermediary who is able to translate from one ontology to 
another and back again to facilitate communication. Unfortunately, there are a number of 
impediments to the use of explicit ontologies (e.g., O'Leary 1997). 

Determining whether heterogeneous knowledge sources employ the same ontologies is 
not an easy task. However, there are some simple tests that can be employed. First, if there 
are any words used by one knowledge source but not the other then that can signal usage of 
different ontologies. Further, if there are different variables or different values for variables 
then that also can signal different ontologies. Other tests can also be generated. 

In some situations there may be a referenced ontology list or an established ontology. In 
these cases, similarity of ontology can be directly established. 

4.2. Different Knowledge Scope and Detail 

If knowledge sources are heterogeneous then it is likely that they have a different scope. 
For example, one knowledge source may have rules about events that another knowledge 
source does not. Another knowledge source may have greater detail or knowledge fineness 
than other knowledge sources (e.g., O'Leary 1988b). 

However, the scope or detail per se does not make the model valid or invalid. If the 
knowledge sources are heterogeneous then we would expect there to be differences be­
tween them. Such differences may be a signal of model validity or differences may signal 
the quality of one knowledge base compared to another. Again some simple tests can 
provide immediate insight into knowledge scope and detail: How many rules does each 
knowledge base have?; How many values are associated with each of the same variables?; 
How many rules contain each particular concept, e.g., "decentralization"?; etc. Ultimately, 
heterogeneous knowledge bases should be compared to their requirements to determine if 
they comform to those requirements. 

4.3. Conflicting Knowledge 

In heterogeneous mUltiple knowledge base systems it is necessary to determine if multiple 
knowledge sources are nonconflicting or conflicting (unless the purpose is to capture andlor 
model conflict). If the knowledge is nonconflicting, then the knowledge can be combined or 
one of the models can be used without concern with conflict. However, if there is conflicting 
knowledge, then steps can be taken to either choose one judgment, take alternative steps to 
combine the conflicting judgments (e.g., using negotiation) or search out new information 
(perform additional knowledge acquisition). As a result, a critical step in such systems is 
the determination of when the different knowledge bases are in "conflict". 

The determination of conflicting knowledge is an important issue in the development of 
multiple knowledge-based systems for a number of reasons. First, unless such conflicts 
are investigated, system behavior may be affected. The combination of conflicting judg­
ments is likely to result in system behavior that is not sensible. For example, if there are 
two schools of thought as represented by mutually exclusive probability distributions, what 

I 
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does it mean if the system combines them and uses the average. Second, the existence of 
conflicting judgments by multiple experts suggests that the system has been misspecified. If 
the system contains conflicting knowledge, one explanation is misuse or misinterpretation 
of information. If the system has been misspecified in one aspect, then it may be misspec­
ified in others. As a result, it is critical to determine the correctness of those specifications. 
Third, the existence of multiple disparate judgments is likely to result in difficulties when 
the system is validated. Tests of the data at the extreme points (e.g., x and "'-'x) will result 
in different responses from the system and the comparative human experts. Fourth, if a set 
of distributions is found to be conflicting, then the system needs to have abilities to account 
for such differences. For example, the system can have users or developers choose which 
of the conflicting knowledge bases should be used. Alternatively, if the system is provided 
with knowledge about the experts, then it might be able choose the most expert, applicable 
or some other criteria for the knowledge base. 

The previous research in artificial intelligence on the existence ofconflicts is very limited. 
In one of the few discussions on the topics, Reboh (1983) described how the well-known 
expert system Prospector, determines and processes the effect of conflicts. Reboh (1983, 
p. 149) defines rules to be in conflict when there are "conflicting rule strengths". In the case 
of the Prospector system, this meant that the point-estimate Bayesian-based ALIX weights 
(e.g., Duda et aL 1976, 1979) are of different strengths. As noted by Reboh (1983, p. 149), 
" ... when Prospector discovers conflicting rules with identical left- and right-hand sides, 
... .it declares an inconsistency; the knowledge engineer must then resolve the situation by 
talking to the experts .... " However, Prospector was not a multiple agent system, and thus 
did not have conflicts between multiple agents. 

4.4. Determining Conflicting Qualitative Knowledge 

Conflicts between knowledge sources can arise in qualitative or quantitative knowledge. In 
qualitative knowledge, assuming that each knowledge base (KB) employs the same ontology 
and a rule-based structure, a number of different kinds of conflicts can occur 

• Direct Conflicts: KB I "If a then b" and KB 2 "Ifa then "Vb" 
• Indirect Conflicts: KB 1 "If a then b" and KB 2 "If a then e" 
• Subsumed Conflicts: KB I "Ifa then b then e" and KB 2 "If a then e". 

In addition, conflicts can relate to variable values. For example, rules of the following 
type are in conflict: KB I-If a = A then c = rand KB 2-If a = A then e = n. A 
wide range of variable conflicts in qualitative knowledge can be further identified. 

4.5. Determining Conflicting Probability Knowledge 

The primary focus of this paper is on those situations where probability distribution for 
multiple knowledge bases, on the same rules or arcs in Bayes' Nets, might be in conflict. 
Consider a system where two experts have probability judgments of I and 0 for the same 
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event x and 0 and 1 for the other event "'"'x. Such disparate judgments generally would 
signal that the experts have different models of the world. Alternatively, it may signal that 
there is an error in one of the assessments. In either case, combining these judgments, using 
approaches such as averaging, is likely to simply camouflage the disparate nature of the 
judgments. The resulting combination is unlikely to be representative of either knowledge 
base, or the state of the world that the system is trying to capture. Thus, the purpose of this 
paper is to investigate methods for identifying those situations where multiple probability 
judgments are in conflict. 

The remainder of this paper focuses on those situations where probability judgments 
are available from multiple knowledge bases. It is assumed that each knowledge base has 
an estimate of a discrete probability distribution, for each specific rule or Bayes' Net arc. 
As a result, there are no differences in scope of knowledge. Further, discrete probability 
distribution are estimated across a number of "categories". In the example earlier, there 
were probability estimates of x and "'"'x of 1 and 0, and 0 and 1, respectively. Since the 
concern is with predefined categories, there is no discernible ontology problem or scope of 
knowledge problem. 

5. Case Study: Pathfinder 

Pathfinder is a Bayes' Net that uses a large number of disease-feature pairs (related by 
probabilities) to facilitate diagnosis of pathologies of the lymph system. The system reasons 
about approximately 60 malignant and benign diseases oflymph nodes. Pathfinder has been 
discussed in detail, in a number of sources (e.g., Heckerman et al. 1992; Ng 1991). 

According to Heckerman et al. (1992), pathologists apply knowledge about features on 
a slide to d~termine the likelihood of alternative diseases. That diagnosis is then given to 
an oncologist who, based on this recommendation, directs a patient's therapy. Accordingly, 
the therapy is greatly dependent on the accuracy of the diagnosis. 

Pathfinder is a multiple knowledge base system that incorporates the judgment of mul­
tiple pathologists. As such, it provides an organization-like model of diagnosis. Ng and 
Abramson (1994) list the mUltiple probability distributions associated with a single feature 
and kept in the system. Pathfinder contains thirteen node diseases and a number of different 
nodes features. Arcs were used to connect diseases to the features and a probability dis­
tribution was associated with each disease and feature pair. The distributions for thirteen 
different disease-feature "arcs" are summarized in Table 1. 

An examination of the probability distributions in Table I finds that in some cases the 
distributions are very similar, while in other cases they appear to be quite different. For 
example, the distributions for arc 1 appear to be about the same for both experts, while, the 
distributions for arc 9 appear substantially different (in conflict) for each of the knowledge 
bases. However, these are qualitative assessments, quantitative measures of the extent of 
similarity would be helpful in determining when the distributions of the knowledge bases 
are similar and "substantially different". 

The developers choose the approach of generating a single probability for each arc, at 
run time. Thus, the development of the system required the integration of probability 
information from two knowledge bases (or more), by the system. This generally meant 
averaging the probability distributions. Although in many cases the knowledge bases had 



83 VALIDATION OF COMPUTATIONAL MODELS 

Table 1, Complete set of probability assessments." 

Category 

Arc# 2 3 4 5 6 

I. .990 .010 .000 .000 .000 ,000 
1.000 ,000 .000 ,000 .000 .000 

2. ,990 ,010 .000 ,000 .000 .000 
1.000 .000 .000 .000 .000 .000 

3. ,985 .015 .000 .000 .000 ,000 
1.000 ,000 ,000 ,000 .000 .000 

4. .985 .015 .000 ,000 ,000 .000 
1.000 ,000 .000 ,000 .000 .000 

5, .990 ,010 .000 ,000 ,000 .000 
1.000 ,000 .000 .000 .000 .000 

6, .990 ,010 .000 ,000 .000 .000 
1,000 ,000 .000 .000 ,000 .000 

7. .000 .010 .400 .500 ,090 ,000 
.000 .200 .600 .200 .000 .000 

8, .000 ,000 ,000 .000 .000 1.000 
.000 ,000 .600 .200 ,200 .000 

9. .980 .015 .005 .000 .000 .000 
.000 .200 .600 .200 ,000 .000 

10. .900 .090 .010 .000 .000 .000 
1.000 .000 .000 .000 .000 .000 

II. .980 .015 .005 .000 .000 .000 
.900 .100 .000 .000 .000 .000 

12. .900 .090 .010 .000 .000 ,000 
1.000 .000 .000 ,000 .000 .000 

13, .000 .010 .400 .500 .090 .000 
.000 .800 .200 .000 ,000 .000 

Source: Ng and Abramson (1994). 

"For each "arc" the first (second) line corresponds to expert #1 (#2). 

Categories - Lacunar SR: I Absent; 2 = Rare; 3 Few; 4 = Many; 5 

Striking; 6 = Sheets, 


virtually identical distributions, in some cases there was question as to the similarity of the 
judgments. In these cases of conflict, it likely is inappropriate to average distributions. As 
a result, it is necessary to determine if the distributions are disparate, in order to determine 
if one of the distributions should be chosen (e.g., because of greater expertise) or in order 
to determine the need for additional information (e.g., through knowledge acquisition or 
from the user as to their preferences). 

6. Analysis of Knowledge Base Probability Distributions 

The purpose of this section is to investigate methods for identifying whether or not two 
knowledge base probability distributions are in conflict. Two approaches are employed. 
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First, a traditional statistical correlation analysis is employed. Second, an approach based 
on Kolmogorov-Smirnov, referred to as cutpoints, is developed and discussed. These 
approaches are summarized in figure 3. 

6.1. Correlational Analysis 

Assume that for each of two knowledge bases, for each rule or arc, there is a probability 
distribution across a set of n points. We can use the correlation to measure the extent of 
similarity. The statistical significance of the correlation can be used to determine if the 
knowledge bases probability distributions are "in conflict" or are "similar". 

In terms of the case, the Pearson correlation coefficients, between the two distribution 
estimates areas follows: arcs 1-6.999; arc 7, .686; arc 8, -.349; arc 9, -.345; arcs 10-12, 
.995; and arc 13, -.219. In the case of arcs 1-6, and 10-12, the arcs' correlations are 
highly statistically significant, at .03 and .0 I, respectively. Thus, we reject the hypothesis 
that those particular sets of distributions are not correlated. 

The correlation coefficient for arc 7 was not statistically significant. The correlation coef­
ficients for arcs 8,9 and 13 were negative and found not statistically significant. Thus, we re­
ject the hypothesis that there is a correlation between the distributions, for arcs 7,8,9 and 13. 

As a result, this metric signals that the distributions on arcs 1-6 and 10-12 are not in 
conflict. However, the correlation coefficients for arcs 7, 8, 9 and 13 suggest that those 
knowledge base probability distributions are in conflict for those arcs. 
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Unfortunately, the analysis of the statistical significance of the correlation coefficient has 
some limitations in the context of multiple heterogeneous knowledge base systems. First, in 
the generation of most multiple knowledge base systems, the number ofcategories n, will be 
small. However, as n approaches 3 the measure ofstatistical significance approaches 0, since 
the factor (n - 3) is used in the determination of the statistical significance (e.g., Freund 
1971). Second, this test of statistical significance of the correlation coefficient assumes 
a bivariate normal distribution. Unfortunately, that assumption is not always valid (e.g., 
Freund 1971). Third, the probability distributions seem to have a number of zero probability 
categories, which can cause statistical debates. As a result, consider an alternative approach. 

6.2. Cutpoints 

This section presents an approach based on the Kolmogorov-Smirnov (K-S) test (Ewart et al. 
1982). This approach, referred to as cutpoints, requires no distribution assumptions. Basi­
cally, the cutpoint approach compares the cumulative frequencies associated with different 
categories for two discrete distributions being compared. The difference between the prob­
abilities of those two distributions is calculated at each category. If the maximum value 
exceeds a specified level then the hypothesis that the two distributions are the same is 
rejected, and the knowledge base distributions will be said to be in conflict. 

For the discrete probability distributions on the individual arcs, such as those listed in 
Table 1, each category will be referred to as an index number. Some of those indices have 
interesting properties that will help us determine if the distributions of the two experts are 
in conflict. 

Define a maximal cutpoint as an index (in the example ranging from 1 to 6) such that 
the difference in the cumulative probability ("distribution difference"), between the two 
distributions, at that index, that is maximal. For example, in the case of arc 7, at category 
3 the distribution for expert 1 has probability of 0410, while that of expert 2 has probability 
of .800. The difference of .390 is larger than that of any other cutpoint, for n = 1, .... 6. 
The complete set of maximal cutpoints, for the case, is given in Table 2. 

Define a zero cutpoint as an index where the cumulative probability for one distribution 
is zero and the cumulative probability for the other distribution is nonzero. There may 
be more than one zero cutpoint for a distribution. For example, in the case of arc 8, zero 
cutpoints occur at indices 3, 4, and 5. 

Define a double zero cutpoint as a maximal cutpoint, where the nonzero probability 
equals one. In that case, there is an index where all the probability for one expert is on one 
side of the index and all the probability for the other expert is on the other side of the index. 
For example, as shown for arc 8 there is a double zero cutpoint at the index 5. There may 
be mUltiple double zero cutpoints. 

6.3. Use ojCutpoints 

Cutpoints can be useful in the analysis of the similarity of two probability distributions 
on an arc. First, the occurrence of a double zero cutpoint is probably the most critical. 

~-
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Table 2. Maximal cutpoints for the sample of probability assessments. 

Expert #1 Expert #2 

Arc # x x' X x' Location Amount 

1. .990 .010 1.000 .000 .010 

2. .990 .010 1.000 .000 .010 

3. .985 .015 1.000 .000 .015 

4. .985 .015 1.000 .000 .015 

5. .990 .010 1.000 .000 .010 

6. .990 .010 1.000 .000 .010 

7. .410 .590 .800 .200 3 .390 

8. .000 1.000 1.000 .000 5 1.000 

9. .980 .020 .000 1.000 .980 

10. .900 .100 1.000 .000 .100 

II. .980 .020 .900 .100 .080 

12 .900 .100 1.000 .000 .100 

13. .010 .990 .800 .200 2 .790 

Source: Ng and Abramson (1994). 

"Location" refers to category at which maximal cutpoint occurs. 

"Amount" is the absolute value of (Pr(x for expert I) -Pr(x for expert 2)). 


Zero and double zero cutpoints define alternative ways to define the entire distribution, 
with two indices, say x and ~x. That revised distribution, with a double zero cutpoint, 
has zero probability associated with x and ~x for each of the two experts. This implies 
the two experts see certainty of mutually exclusive sets of events. Thus, rather than just 
defining level, there can be implications for structure: A zero probability between two 
events indicates no relationship between events. 

Second, the maximal cutpoint provides insight into the similarity of the distributions of 
the two experts. The maximal cutpoint value provides a measure that allows us to assess the 
point of maximal difference between the experts. One approach would be to suggest that 
a maximal cutpoint of.1O or lower (or .05 or .01, as in classic probability theory) would 
be viewed as similar, while cutpoints with distribution differences larger than .10 would be 
viewed as in conflict. This approach indicates that arcs 7, 8, 9 and 13 would be viewed as 
in conflict at the .10 level. In this case the results are the same as the use of the correlation 
coefficient analysis. 

Third, maximal cutpoinls are useful in describing the index number behavior. In par­
ticular, the maximal cutpoints for a set of arcs provides a distribution of cutpoints. In the 
example, "1" is a max:mal (;utpoinl ten times, "2", "3", and "5", (arcs 7,8 and 13) are each 
cutpoints one time. As a result, we might assert that the comparison of the probabilities 
distributions for arcs 7, 8 and 13 behave differently than the comparison of the other arcs. 
This could suggest that the distributions of the two knowledge bases for those arcs are 
sufficiently different than the other distributions to warrant treatment as a conflict. 
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6.4. More Than Two Distributions 

The approach presented here can be extended to the analysis of m 2: 3 distributions. Since 
the concern is with finding those distributions that are most disparate, the focus is on the 
maximum difference. Thus, the mUltiple distributions can be compared on a pairwise 
basis for all such pairs (i, j). Then, the maximal pairwise cutpoint would be generated by 
determining the maximal cutpoint across all such pairs (i, j). Similarly, the concern with 
zero and double zero cutpoints becomes, "does there exist a pair of arcs for which there is 
a zero or double zero cutpoint?" 

6.5. The Use Cutpoints With Other Multiple Knowledge Base Forms ofInteraction 

Cutpoints can be used with other multiple knowledge base protocols in the development of 
multiple agent systems, such as consensus or negotiations. First, cutpoints can be used to 
indicate that there is a substantial difference between the knowledge bases that needs to be 
resolved. Zero and double zero cutpoints might signal the need for negotiation. Second, it 
can indicate that consensus may not be appropriate as a basis for generating a solution. The 
existence of a double zero cutpoint indicates substantial differences. It can be important to 
resolve those differences prior to generating a consensus judgment. 

7. Extension: Organization Social Network Datal 

Researchers in organizational social network research have addressed a problem that also 
generates multiple databases. For example, researchers like Krackhardt (1990, 1991) collect 
cognitive social structure data in which they ask each respondent, "who (j) would this 
person (i) go to for help or advice at work? (Krackhardt 1990, p. 348)". If the respondent 
indicates that i would go to j then there is an arc in the network from i to j. The result 
is a network of relationships for each respondent, across all the people in the organization. 
These respondent networks can then be compared to what is call the "actual" network that 
has an arc from i to j, if both agree. 

Unfortunately, there is an arc in the network whether someone would ask for help or 
advice once or a thousand times. Rather than an unqualified "who would this person go 
to... " a probability based model could be generated associated with each relationship 
pair. The distribution could measure, e.g., probability of frequency of communications, or 
probability of importance of problems, and provide a more descriptive model. As a result, 
Bayes' Nets could be used to model this problem. In addition, the discussion here regarding 
conflicts could be used to investigate the resulting data to determine which distribution pairs 
were in conflict. 

8. Summary, Extensions and Contributions 

This section briefly summarizes the paper, reviews some potential extensions and discusses 
some of the contributions of the paper. 
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B.l. Summary 

This paper has investigated the issue of when knowledge bases are similar or in conflict for 
purposes of validating a computational model. Particular interest was in identifying those 
situations where probability assessments of mUltiple knowledge bases are in conflict. For 
example, in the situation where knowledge base identifies the probability of x (~x) as 0 (1) 
and another identifies the probability of x (~x) as 1 (0), there is a conflict. Two approaches 
were used to identify conflict: correlation coefficient and cutpoints. Cutpoints are a new 
approach that do not have some of the same limitations of correlation analysis. 

B.2. Other Extensions 

This paper can be extended in a number of ways. First, although the probability distributions 
were used in a Belief Net, the analysis is not limited to that context. 

Second, in some cases we may be able to determine that the sets ofprobability distribution 
assessments come from specific distributions, e.g., binomial. In such a case, rather than 
using traditional statistical approaches to generate estimates of statistical significance, we 
could generate specific distribution-based, distributions of test statistics. 

Third, non parametric approaches could be used to evaluate the statistical significance. 
For example, computer intensive statistics (Efron 1979; Noreen 1989) could be used to 
generate distributions of test statistics in order to assess the statistical significance of a 
particular correlation coefficient. Alternatively, Kendall's tau could be used to measure 
correlation (Hollander and Wolfe 1973). 

Fourth, the concept of cutpoint could be generalized beyond the constraint of assuming 
the indices are ordered. A "generalized" maximal cutpoint sets would be the generation of 
two sets of mutually exclusive indices such that the difference in the probability associated 
with those sets is a maximum. For most arcs it appears that the generalized and original 
definitions of cutpoints will be the same. However, that is not always the case. In the case 
of arc 11 the generalized maximum cutpoint would change from .08 [(1), (2, ... ,6)] to 
.085 [(1,3), (2,4, ... , 6)]. The limitation of this approach is that it ignores the cumulative 
probability distribution. 

B.3. Contributions 

This paper has a number of contributions. First, this paper provides a basis for the validation 
of computational models that employ mUltiple knowledge bases. 

Second, it was argued that probability distributions generated for multiple knowledge 
base systems should not arbitrarily be averaged. If there are substantial differences in 
distributions, then that is likely to indicate that additional knowledge acquisition is required, 
there is an error or there are different models being used. It is up Lo the developer to determine 
which is the case. Alternatively, the model can be structured so that the user is asked to 
choose between disparate probability distributions. 

Third, different metrics were proposed to measure the extent of those differences and try 
to determine the existence of conflict. Correlation coefficients were used to establish the 
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extent to which different discrete distributions provided in two different knowledge bases, 
were related. Cutpoints were used to investigate the similarity of distributions. In one 
situation a double zero cutpoint was developed, indicating that the two distributions could 
be partitioned into two mutually exclusive distributions. Cutpoints appear to be a useful tool 
in the investigation of the similarity of probability judgments for mUltiple agent systems. 

Fourth, these concepts were illustrated in the context of a case study. Fifth, the use of 
Bayes' Nets and conflict analysis discussed here were extended to organizational social 
network problems. 

Acknowledgments 

The author would like to acknowledge the comments of the anonymous referees and 
Kathleen Carley on an earlier version of this paper. An earlier version of this paper was 
presented at the 1995 Spring Workshop on Mathematical and Computational Organizational 
Theory, Los Angeles, April 1995. The author would like to thank the participants for their 
comments on an earlier version of this paper. 

Note 

I. 	 The author would like to thank an anonymous referee for pointing out this application and directing the author 

to this literature. 

References 

Adrion, W., M. Branstad and J. Cberniavsky (1982), "Validation, Verification and Testing of Computer Software," 
ACM Computing Surveys. 14(2), 159-192. 

Baligh. H., R. Burton and B. Obel (1996), "Organizational Consultant: Creating a Usable Theory ofOrganizational 
Design," Management Science. 42(12), 1648-1662. 

Botten, N," A. Kusiak and T. Raz (1989), "Knowledge Bases: Integration. Verification and Partitioning," European 
Journal afOperational Research, 42(1),111-128. 

Brown, c., N. Nielson, D. O'Leary and M.E. Phillips (1995), "Validating Heterogeneous and Competing Knowl­
edge Bases Using a Blackbox Approach," Expert Systems with Applications, 9(4), 591-598, 

Burton, R. and B. Obel (1984). Designing Efficient Organizations. North Holland, Amsterdam. 
Burton, R. and B, Obel (1995), "The Validity of Computational Models in Organizational Science: From Model 

Realism to Purpose of the Model," Computational and Mathematical Organization Theory, I( 1),57-72, 
Carley, K (1996), "Validating Computational Models," Working paper, Department of Social and Decision Sci­

ences, Carnegie Mellon University. 
Cyert. R. and 1. Match (1992), A Behavioral Theory (!l the Firm. Blackwell Business, Cambridge. MA Reprinted 

1994. 
Duda, R" p, Hart and N. Nillsson (1976), "Subjective Bayesian Methods for Rule-Based Inference Systems." 

National Computer Conference, 1075-1082. 
Duda, R., J, Gaschnig and P. Hart (1979), "Model Design in the Prospector Consultant System for Min­

eraI Exploration;' in D. Mitchie (Ed,) Expert Systems for the Microelectronic Age, Edinburgh: Edinburgh 
University Press. 

Dungan. C. (1983), "A Model of Auditor Judgment in the Form of an Expert System:' UnpUblished Ph.D, 
Dissertation, University of Illinois. 



90 O'LEARY 

Dungan, C. and J. Chandler (1985), "Auditor: A Microcomputer-Based Expert System to Support Auditors in the 
Field," Expert Systems, 2(4), 210-221. 

Edgington, E. (1980), Randomization Tests, Marcel Dekker. 
Efron, B. (1979), "Bootstrap Methods: Another Look at the Jackknife," Annals ojSlatistics, 7. 
Ewart, P., J. Ford and C. Lin (1982), Applied Managerial Statistics. Prentice-Hall, Englewood aiffs, NJ. 
Freund, 1. (1971), Mathematical Statistics, Prentice-Hall, Englewood Cliffs, NJ. 
Garvey, T., J. Lawrence and M. fishier (1981), "An Inference Technique for Integrating Knowledge from Disparate 

Sources," Proceedings ofthe Seventh International Joint Conference on Artificial Intelligence, pp. 319-325. 
Gasser, L. and R. Hill (1990), "Coordinated Problem Solvers," Annual Review ofComputer Science, 4, 203-253. 
Gelernter, D. (1992), Mirror Worlds, Oxford, New York. 
Gruber, T. (1993), "A Translational Approach to Portable Ontologies;' Knowledge Acquisition, 5(2), 199-220. 
Heckerman, D" E. Horvitz and B. Nathwani (1992), "Toward Normative Expert Systems: Parts I and II. The 

Pathfinder Project," MethodHif Information in Medicine, 31, 90-105 and 106-116. 
Hollander, M. and D. Wolfe (1973). Nonparametric Statistical Methods. John Wiley & Sons, New York. 
Jennings, N. (1994), Cooperation in Industrial Multiple Agent Systems. World Scientific, Singapore. 
Krackhardt, D. (1990), "Assessing the Political Landscape: Structure, Cognition and Power in Organizations," 

Administrative Science Quarterly, 35, 342-369. 
Krackhardt, D. (1991), "The Strength of Strong Ties," in N. Nohira and R. Eccles (Eds.) Organizations and 

Networks: Theory and Practice, Cambridge MA: Harvard Business School. 
LeClair, S. (1985), "Justification of Advanced Manufacturing Technology Using Expert Systems," in N. Botten 

and T. Raz (Eds.) Etpert Systems, Norcross, GA: Industrial and Management Press, pp. 191-216. 
Ng, K. (1991), "Probabilistic Multi-Knowledge-Base Systems," Ph.D. Dissertation, University of Southern Cali­

fornia. 
Ng, K. and B. Abramson (1994), "Probabilistic Multi-Knowledge Base Systems," journal ofApplied Intelligence, 

4(2), 219-236. 
Ngwenyama, O. and N. Bryson (1992), "A Formal Method for Analyzing and Integrating the Rule Sets of Multiple 

Experts," InjiJrmation Systems, 17(1), 1-16. 
Noreen, E. (1989), An Introduction to Testing Hypotheses Using Computer Intensive Statistics. John Wiley. 
0' Keefe. R. and D. O'Leary (1993), "Expert System Verification and Validation," Artificial Intelligence Review, 

7,3-42. 
O'Leary, D. (1986). "Multiple Criterion Decision Making Evaluation Functions in Expert Systems," The 6th 

International Symposium on Expert Systems and Their Applications, Avignon, France, pp. 1017-1035. 
O'Leary, D. (l988a), "Methods of Validating Expert Systems," interfaces. 18(6),72-79. 
O'Leary, D. (l988b). "Expert System Prototyping as a Research Tool," in E. Turban and P. Watkins (Eds.) Applied 

Expert Systems, North Holland, pp. 17-32. 
O'Leary, D. (1995). "Verification of Multiple Agent Knowledge-Based Systems," International Joint Conference 

an Multiple Agent Systems. San Francisco. 
O'Leary, D. (1997), "Impediments in the Use of Explicit Ontologies for KBS Development," international journal 

a/'Human-Computer Studies, 46,327-337. 
Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference, Morgan­

Kaufman. 
Reboh, R. (1982), "Extracting Useful Advice from Conflicting Expertise," Proceedings (if the Eighth International 

joint Conference on Artificial Intelligence, pp. 319-325. 


