
Artificial Intelligence Review 7, 3--42, 1993.
© 1993 KluwerAcademic Publishers. Printed in the Netherlands.

Expert system verification and validation:
a survey and tutorial

R O B E R T M. O ' K E E F E

Department of Decision Sciences and Engineering Systems,
Rensselaer Polytechnic Institute, Troy, NY 12180-3590, U.S.A.

and

D A N I E L E. O ' L E A R Y

Graduate School of Business, University of Southern California, Los Angeles,
CA 90089-1421, U.S.A.

Abstract. Assuring the quality of an expert system is critical. A poor quality system
may make costly errors resulting in considerable damage to the user or owner of the
system, such as financial loss or human suffering. Hence verification and validation,
methods and techniques aimed at ensuring quality, are fundamentally important.

This paper surveys the issues, methods and techniques for verifying and vali-
dating expert systems. Approaches to defining the quality of a system are discussed,
drawing upon work in both computing and the model building disciplines, which
leads to definitions of verification and validation and the associated concepts of
credibility, assessment and evaluation. An approach to verification based upon the
detection of anomalies is presented, and related to the concepts of consistency,
completeness, correctness and redundancy. Automated tools for expert system
verification are reviewed.

Considerable attention is then given to the issues in structuring the validation
process, particularly the establishment of the criteria by which the system is judged,
the need to maintain objectivity, and the concept of reliability. This is followed by a
review of validation methods for validating both the components of a system and the
system as a whole, and includes examples of some useful statistical methods.
Management of the verification and validation process is then considered, and it is
seen that the location of methods for verification and validation in the development
life-cycle is of prime importance.

ACM Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program
Verification -- Validation; D.2.5 [Software Engineering]: Testing and Debugging; 1.2
IArtificial Intelligence]: Applications and Expert Systems; K.6.1 [Management of
Computers and Information Systems]: Project and People Management -- Life
Cycle.

Key Words: expert systems, knowledge-based systems, verification, validation,
testing, evaluation, credibility, assessment, development, life cycle, statistics.

4 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

1. INTRODUCTION

Expert systems incorporate human expertise in computer programs to allow
these programs to perform tasks normally requiring a human expert. More
formally, an expert system (ES) has been defined as 'a computing system
capable of representing and reasoning about some knowledge-rich domain with
a view to solving problems and giving advice' (Jackson 1986) and 'a computer
model of expert human reasoning, reaching the same conclusions the expert
would reach if faced with a comparable problem' (Weiss and Kulikowski 1984).
Examples of developed and implemented systems include R1/XCON (Bachant
and McDermott 1983), which configures VAX computers for Digital, Exper-
TAX (Shpilberg and Graham 1989), developed by Coopers & Lybrand to give
advice on corporate tax planning, ONCOCIN (Langlotz and Shortliffe 1983),
which helps doctors determine appropriate treatments for chemotherapy patients,
and CLASS (Duchessi et al. 1988), a system that supports commercial loan
decisions in a bank. Reviews of other systemscan be found in Waterman
(1986) and Ernst (1988).

Showing that an ES is in some sense 'correct' is a critical task. An incorrect
system may make costly errors, or may not perform up to expectations. In
either case the decisions generated by the system may be inappropriate or
wrong, and if relied upon, considerable damage such as financial loss or human
suffering may result to the user or owner of the system. For example, expert
medical diagnosis systems and income 'tax systems have encountered imple-
mentation difficulties due to concerns over liability of the system's diagnoses.

It is sometimes suggested that due to their declarative nature and use of high
level programming tools ESs are easy to verify and validate. As discussed by
Fox (1990), this is only marginally true. A small rule-based program, for
example, may be easier to verify that a large FORTRAN program, but large
ESs encounter the same verification problems encountered by any large soft-
ware project, and, as will be discussed, validation can actually be more
problematic than with much traditional software.

The purpose of this paper is twofold: (1) to survey and integrate the litera-
ture on verifying and validating ESs, and (2) provide a tutorial introduction to
the verification and validation of ES. Accordingly, this paper will discuss defini-
tions for verifying and validating ESs, and discuss some of the primary
approaches. Throughout, a fairly liberal interpretation is made of the term
'expert system'; we do not limit ourselves to rule-based systems based upon
identifiable human expertise. However, as many existing ES fall into this
category, a lot of what we discuss has been developed for exactly these type of
systems.

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N

2. VERIFICATION, VALIDATION AND SYSTEM QUALITY

2.1. A hierarchic view of system quality

Verification is defined by Adrion et al. (1982) as 'the demonstration of the
consistency, completeness and correctness of the software'; as noted by O'Keefe
et al. (1987), 'verification means building the system right'. Verification is aimed
at eliminating errors in the system, and making sure that it corresponds to the
specification. Adrion et al. (1982) indicate that 'validation is the determination
of the correctness of the final program or software produced from a develop-
ment project with respect to the user needs and requirements'; O'Keefe et al.
(1987) note that 'validation means building the right system'. Validation is more
concerned with the quality of the decisions made by the system.

Computer professionals concerned with development rarely deal with more
than verification and validation, so called 'V&V', however this is really just the
first stage in ensuring the quality of the system. An issue that determines the use
of the system is that of credibility: the extent to which a system is believable or
users can put credence in the system (Balci 1987). Other issues consider the 'fit'
between the system and the user beyond the correctness of the decisions that
the system makes. These issues (e.g., Buchanan and Shortliffe 1985) are
summarized as assessment (O'Leary 1987), and include the nature of the
discourse between the system and the user, the adequacy and efficiency of the
hardware, the quality of the implementation, and the security of the system.
Evaluation addresses the benefit of the system to the users, project sponsors
and ultimately the organization, and is generally associated with measures of
worth and value for money. In certain applications, issue of ethics and liability
may also be important (Wyatt and Spiegelhalter 1990). Since the validity of an
ES is often the key to its worth, evaluation is frequently misused for validation
(e.g., Chandrasekaran 1983).

The relationship between these five aspects of the quality of a system form a
hierarchy, shown in Figure 1. Essentially, each depends upon the level below it,

Evaluation

Assessment

Credibility

Validation

Verification

Fig. 1. A hierarchical view of system quality.

6 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

and in many cases problems at a lower level will result in problems at a higher
level -- e.g., a system that can not be shown to be valid may have little chance
of being evaluated as worthwhile. Traditionally, different communities have
concentrated on different parts of the hierarchy. Contrasted with V&V in
computing, model building professionals, such as operations research scientists,
have concentrated on validation and credibility. Often managers, project
sponsors and end-users are only concerned with assessment and evaluation of
the end-product.

2.2. Verification, validation and credibility

The types of errors that can occur in software can be regarded, at least partially,
as a function of the technology used to implement the system. Thus with ES, the
knowledge representation scheme and the method of handling uncertainty
establishes much of the basis for verification. Validation generally is regarded as
a more complex task that is not as dependent on the particular technology.
Where a piece of software must perform in a pre-defined manner, such as a
compiler developed for an ISO language standard, measuring validity is rela-
tively straightforward. A compiler that incorrectly compiles any legal code is
invalid. A different view of validation stems from the process of model building,
particularly the construction of statistical, econometric and operations research
models. A model is a representation of reality that will never be 'perfect'.

Landry et al. (1983) provide a conceptual framework for model validation.
They define five types of validity:
1. Conceptual: 'the degree of relevance of the assumptions and theories under-

lying the conceptual mode l . . , for the intended users and use of the model'.
2. Logical: 'the capacity of the formal model to describe correctly and accu-

rately the problem situation'.
3. Experimental: 'the quality and efficiency of the solution mechanism'.
4. Operational: 'the quality and applicability of the solutions and recommenda-

tions'.
5. Data: 'the sufficiency, accuracy, appropriateness, and availability of the data'.
Often model validation is an attempt to measure the generality of the model (for
example, can it perform with different data sets or under differing assumptions).
Typically, model validation is often equated with operational validity -- a model
is judged by the quality of its solutions -- yet as Landry et al. point out, absolute
validity based upon accuracy of solutions is a myth. The intended use of a
model must be taken into account -- a model may be valid for one application
but not for another. Hence conceptual validation, and the criteria by which a
model is judged, are both very important.

Since a model is never absolutely valid (or for that matter, absolutely
invalid), its acceptance is very dependent upon the intended use and user.
Hence model builders have recently started to focus more on credibility (for
instance, Balci 1987; Gruhl 1982). It would be expected that the more valid a
model the more credible it is, but there is no guarantee that a valid model will
be perceived as credible.

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 7

2.3. Assessmen t and evaluation

Although the focus of this paper is on V&V it is important to understand the
rest of the hierarchy. Verity, validity and credibility does not guarantee a
useable, let alone useful, system. A system may be unusable, for example,
because its response time is too slow or the interface is too complex. Such
issues are certainly relevant when assessing an ES, but in general validation
should be considered separately from assessment, not just as part of the
assessment process (for instance, as done by Liebowitz 1986), since it is a pre-
requisite for adequate performance. A poorly validated system rapidly giving
wrong advice through a beautifully designed interface may be dangerous: the
superficial quality of the system may induce unwarranted credibility.

Traditionally, data processing systems have been evaluated purely on a
financial basis, such as return on investment. A feasibility study specifies the
costs and benefits of a system, and development is initiated or otherwise based
upon these projections. Increasingly for many information systems, particularly
decision support systems, the benefits are intangible. The value to an organiza-
tion of improving the decision making process is often very difficult to quantify
(O'Keefe 1989), and hence many" systems are accepted for development, and
subsequently evaluated, in an ad-hoc manner (Keen 1981; Hamilton and
Chervany 1981).

Similarly, the benefits of many ESs are often intangible, and almost impos-
sible to quantify. Hence formal evaluations that address the costs and worth of
an ES are rare, although this may happen implicitly. Further, to this point in
time one of the benefits of many developed systems has been increased fami-
liarity with the technology for both the user group and the developers. Now that
ESs are more pervasive, evaluation has become more stringent, and this in turn
creates a need for more formal V&V (Batarekh et al. 1991).

3. CHARACTERISTICS OF EXPERT SYSTEMS

Different classes of software have particular characteristics that shape the way
V&V is done. The dominant characteristic that makes ES V&V difficult is that
an ES is simultaneously a piece of software and a model (Bellman 1990; Suen
et al. 1990). Like any software, 'bugs' can cause unwanted and unpredicted
consequences, but an ES is also a model of human knowledge and reasoning,
and like all models, as mentioned above, will never be 'perfect'. Even if the
software is completely verified and reliable, the embodied model may be in
error. Divorcing the software and the model is difficult, if not impossible,
although verification will normally concentrate on software aspects, whereas
validation will concentrate on modeling aspects.

Viewing an ES as a model leads to a number of problems that affect V&V.
One of the findings in the development of ESs is that understanding the domain
is critical, as with most model building activities (Waterman 1986). In many
other types of software it is assumed that the program specifications need only

8 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

be turned over to a programmer, who would then produce the code. However,
generally, in order to produce an ES the developer must become a 'near-expert'
in the particular domain (e.g., Lethan and Jacobson 1987). The domain itself
defines what are the critical aspects of an ES developed in that domain:
reasoning and knowledge in one domain may not be the same as that in other
domains. Further, the expertise that is modeled in an ES is generally in short
supply, is expensive, or is not readily available. This is in contrast to other types
of software where there is substantial expertise available, such as some account-
ing systems, but is fairly common in model building activities.

In addition to the problems generated by the model characteristic of ESs,
three other characteristics pose problems for V&V. First, ESs employ both
numeric and symbolic information, rather than just numeric information --
techniques typically used for the validation of numeric information may be
infeasible, and this leads to a need for new validation methods. A purely
quantitative model may produce a number that can be compared against an
actual observation -- the difference between the two is thus an estimate of
accuracy. Contrast this with, for example, a page of textual advic e representing
a tax plan -- comparison against an observed plan would require considerable
expertise, and even then measuring the difference may be difficult. Kulikowski
and Weiss (1982) discuss this problem in the context of the medical diagnosis
system Casnet.

Second, ESs generally are developed using a 'middle-out' design, rather than
a traditional top-down or bottom-up approach. A middle out approach starts
with a prototype and gradually expands to meet the needs of the decision.
Further, ESs have a tendency to evolve over time, as the decisions they model
become better understood. Hence, as discussed later, knowing 'when' to actually
validate an ES can be difficult.

Third, ESs are often used to model tasks for which computer programs have
not been previously developed. Hence it is likely the task is not well-understood
prior to the development effort (at least not by the developers) and thus there is
no pre-established understanding of the problem. Thus defining performance
criteria for the system, or developing a plan for V&V, can both be difficult to
do early on.

4. VERIFICATION

Since construction of an ES is a programming task, traditional software
engineering approaches to verification have a considerable role to play. The use
of test data, the role Of metrics and compliance to any written requirements are
examples of verification issues well documented by others, particularly Adrion
et al. (1982) and Boehm (1981). Here, for sake of avoiding repetition, only
issues specific to ESs are covered. Rushby (1988) reviews software engineering
approaches to V&V from the point of view of knowledge-based systems.

With ESs the primary verification efforts are likely to be aimed at the
knowledge base, for at least two reasons. First, knowledge acquisition and

EXPERT SYSTEM VERIFICATION AND VALIDATION 9

representation can be viewed as specific tasks, so that the knowledge itseff
needs to be verified irrespective of any coding or implementation. Second, in
many cases an ES shell is used to develop the system, and here it is supposed
that the inference engine and other facilities have already been verified by the
shell developer (although, as discussed later, specifications of what the inference
engine actual does are rare). Thus, only the knowledge and its representation
needs verification.

Verification efforts typically try to exploit existing structure where feasible.
Structure is either elicited from the domain (e.g., Davis 1984) or from the
nature of the knowledge representation, and our discussion also will examine
verification in the context of these topics. Since rule-based structures have to
this point dominated ESs, it is no surprise that structural approaches to
verifying ESs have concentrated on rules, particularly weights on rules (e.g.,
O'Leary 1990a) and the structure of the rules (e.g., Nguyen et al. 1987).
Notions of completeness, consistency, correctness and redundancy permeate
verification (Adrion et al. 1982), and hence both domain dependent and
independent approaches have tended to categorize the methods used under
these headings.

4.1. Domain dependent verification

Domain dependent verification employs meta-knowledge from the domain to
examine the verity of the knowledge. The earliest and best known example of
domain dependent verification is the work of Davis on TEIRESIAS, which
verifies the addition of new knowledge to MYCIN (Davies and Lenat 1982).

In order to illustrate domain dependent verification of knowledge consider
the example of a living room. Meta-knowledge could be used to ascertain that
knowledge about a specific living room would be incomplete if the living room
did not contain a couch. Similarly, there may be redundant knowledge if it is
suggested that there are two couches in the living room. In addition, it probably
would be incorrect if the knowledge placed a bathtub in the living room.
Finally, it would be inconsistent if we labeled two physically different items in
the living room with the same name, e.g., calling both a couch and a large chair
the 'couch'.

Domain dependent approaches frequently are embedded in the knowledge
acquisition process and tools that support knowledge acquisition (e.g., Boose
and Bradshaw 1987; Gaines 1987). Such systems often build the user into the
verification process as a source of meta-knowledge. In addition, as the systems
accumulate knowledge about the domain, they can use that knowledge to verify
new knowledge gained as part of the knowledge acquisition process.

Domain dependence has many limitations. First, with a domain dependent
approach, verification must also be made of the meta-knowledge. If humans
furnish a major portion of the recta-knowledge, then problems that are typical
of human users, such as inconsistencies, can permeate the system. Second, the
recta-knowledge may not be stable, and it may not be practical to frequently
update it. Third, in general the development of a recta-knowledge approach

10 R O B E R T M. O ' K E E F E A N D D A N I E L E. O ' L E A R Y

may be quite costly due to the costs of acquiring and maintaining the meta-
knowledge, which may be different for differing systems. For these reasons,
most approaches to verification are domain independent: they analyze structure
independent of knowledge about the domain.

4.2. Domain independent verification

Domain independent approaches are typically based upon the concept of an
anomaly, where an anomaly is an abuse or unusual use of the knowledge
representation scheme. An anomaly can be considered a potential error - - it
may be an actual error that needs correcting, or may alternatively be intended.
Some anomalies simply cause efficiency or maintenance problems. Verification
based upon anomaly detection is a heuristic approach (Miller 1990), rather
than deterministic, for two reasons. First, detected anomalies may not be errors,
and errors may exist that are not related to known anomalies. Second, some of
the methods for detecting anomalies are themselves heuristic, and thus do not
guarantee detection of all identifiable anomalies.

4.2.1. Rule verification: structure
Considerable research has been done on identifying rule-base anomalies,
including Suwa ei al. (1982), Nguyen et al. (1985, 1987), Nazareth (1989) and
Preece et al. (1992), with the result that rule anomalies are now quite well
understood. Thus here we briefly review what we know about rule anomalies,
but avoid the details.

Consistency generally means to call the same attribute by the same name or
the same conclusion by the same name. Since humans have a tendency to make
errors in typing or inconsistently call the same item by different names,
procedures need to be adapted to ensure that names are consistent. Within a
rule-base, consistency is often best implemented by requiring that the developer
establish sets of fists of attributes and conclusions from which rules can be
constructed.

Completeness checks cannot determine that there is complete knowledge in
the system, rather, using some of the structure associated with rules it is possible
to determine some situations where there likely is incompleteness. That struc-
ture includes the fists of attributes and conclusions established to construct the
rules, the fact that each rule must have both attributes and conclusions, and that
each rule must either lead to another rule or a terminal conclusion. Specific
identifiable completeness problems include unreferenced attributes and conclu-
sions, illegal attributes or conclusions, unreachable premises and deadend
conclusions.

Correctness is the identification of the structure of the rtde-based, and
ensuring that none of the structure is violated. Examples include conflicting
rules (where two or more rules have the same if attributes, but come to
contradictory conclusions), subsumed rules (where two or more rules have the
same conclusions, 'but one contains additional constraints on the situations in
which it will succeed', Nguyen et al. 1987), and circular rules (where there

E X P E R T SYSTEM V E R I F I C A T I O N AND V A L I D A T I O N 11

exists a chain of reasoning that starts with some condition and then returns to
that same condition).

Whereas a circular reasoning chain may be detected in execution, and some
shells allow conflicting hales as a way of providing multiple conclusions or
accumulating certainty factors for different conclusions, subsumed rules are
more insidious, and are worth dwelling on (particularly as we will return to
them when we consider hybrid systems). Consider the two rules:

(1.1) P(z) & Q(z) & R(z) ~ S(z)

(1.2) P(x) & O(x) "-~ S(x).

Rule 1.1 is subsumed in rule 1.2 (using the definition of Nguyen et al. 1987),
yet rule-base developers often do this, for at least two reasons. First, particularly
when forward chaining is used, a more specific pattern match should be
attempted first, followed by less specific matches. Rule 1.2 can be interpreted as
'if we don't know R(z), do S(x) anyway'. Second, when uncertainty weights are
used, we may conclude the more specific rule 1.1 with greater certainty.

Redundancy is where two or more rules 'succeed in the same situation and
have the same conclusions' 0'qguyen et aL 1987), or the reasoning chain
contains a redundant rule, such as

(2.1) P(x) ~ O(x)

(2.2) Q(x) -~ R(x)

(2.3) P(x)-* R(x)

where Q(x) does not appear anywhere else in the rule-base. As noted in Suwa
et aL (1982) redundancy has an impact on efficiency, but does not necessarily
cause logical problems.

4.2.2. Rule verification: weights
In systems which attempt to measure uncertainty or strength of association,
using certainty factors, Bayesian probabilities or any other method, it is also
important to verify that the weights are consistent, complete, correct and not
redundant. This can be done by ensuring that each rule that is supposed to have
a weight does have one and that the weights are developed in concert with the
theory on which they are based.

Finding anomalies in the weights in an ES is a process that has received
limited attention, probably due to the limited number of implemented ES that
make extensive use of uncertainty measures. O'Leary (1990a) developed some
verification results using an analytic approach for a Bayesian-based uncertainty
scheme. Applying those results to a number of published papers on ESs with
uncertainty factors found that almost all systems had implemented the approach
in error or had developed weights that were 'unusual'. Lehner (1989) developed
a nonparametric procedure to test the effect of individual nodes in an inference
network on the hypothesis considered by the network. Yager and Larsen (1991)
developed a novel approach which runs the inference 'backwards' so as to

12 R O B E R T M. O ' K E E F E A N D D A N I E L E. O ' L E A R Y

determine the allowable values for required input; where this conflicts with the
developers understanding of the system, errors may exist in the representation
of the weights.

4.2.2.1. The Bayesian approach. Since the Bayesian approach, originally con-
ceived for PROSPECTOR (Duda et al. 1979), and now implemented in a
number of shells (for instance AL/X and Savoir) is common and relatively long
standing, more is known about weight anomalies under this scheme than any
other. In the Bayesian approach knowledge is specified as a set of rules and
weights of the form

if E then H (to degree S, N)

where S and N are numeric values that represent the strength of association
between E and H. S is a sufficiency factor, since a large value of S means that a
high probability for E is sufficient to produce a high probability for H, and N is
a necessity factor, since a small value of N indicates that a high probability of E
is necessary to produce a high probability of H. S and N can be specified
directly, or they can be developed by establishing the probabilities in the likeli-
hood ratios:

S -- P r (E I H) / P r (E I H ')

N = Pr(E' [H)/Pr(E'I H'),

where E ' is 'not E; and H ' is 'not H'. In some implementations, logarithms of
these values are used, referred to as N W and PW, and are scaled between - 1 0 0
to +100.

Given these definitions of P W and NW, it is easy to show that there are
deterministic relationships between the weights. These include:

P W > 0 if and only if N W < O,

P W = 0 if and only if N W = O,

and

P W < 0 if and only if NW > 0.

Anomalies exist if these are violated. A number of systems apparently have
weights that violate these rules (O'Leary 1990a).

In systems where the weights are solicited directly, rather than through the
use of probabilities, relationships between pairs of PW's and NW's could be
developed, whether consciously or unconsciously. Those relationships could
take any of a number of functional forms, including linear, quadratic, etc.
Empirically, it appears that developers have frequently employed a relationship
of P W = --NW. It seems that there is a desire to capture symmetry of
uncertainty of strength of association through symmetry in the weights. Thus, in
this case developers have established a linear functional relationship between
the pairs of weights. Unfortunately, symmetry with the weights expresses an
unusual nonsymmetric requirement on the underlying probabilities. Doing some

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 13

basic analysis we can see that the requirement that PW = - N W implies that

Pr(E I H) - (Pr(E I H)) 2 -- Pr(E [H ') - (Pr(E [H')) 2,

a less than intuitive result. This requires that the probabilities be drawn from
two intersecting lines. Thus, where the weights are likelihood ratios (e.g., PW's
and NW's), such asymmetry can lead to 'unusual' behavior for the underlying
probability.

4.2.3. Statistical investigations
Statistical methods can be a useful static or dynamic verification test. Landauer
(1990) and O'Leary (1988a) suggest that various aspects of rules, such as
attributes and conclusions, be analyzed statistically as part of the verification
process. This can be done statically or dynamically. A simple tally of attribute
occurrences can give insight, for example, suppose that the attribute new_
cash_flow appears 32 times in a knowledge base, and new_cash flows appears
only once. This suggests that either new_cash_flows is a misspelling or is a
different rare attribute. Similarly, suppose that cash_flow appears in a rule with
present_value 10 times, but on its own only once. Either these are linked
attributes and one rule is in error, or cash flow can occur separately.

O'Leary (1988a) suggests statistical analysis of the frequency that rules are
fired or paths are traversed. For example, a priori, it may be expected that a
particular rule or sequence of rules should fire frequently. If analysis of actual
or simulated use of the system provides data that indicates that this is not the
case, then it would be appropriate to examine those rules in more detail.

In some cases we might be able to make certain assumptions about the
weights used to represent uncertainty in ESs. O'Leary and Kandelin (1988)
developed and illustrated some of the verification issues that can be identified
using this approach. For each of these approaches, statistical methods are
developed or discussed. There are theoretic reasons for the likelihood ratios to
be normally distributed, and thus one verification test is to determine if the
weights are normally distributed. On interlinking sets of weights such as those in
PROSPECTOR and many subsequent systems, if one weight changes then so
should the other, and thus we would expect changes in a distribution of PW's
would lead to changes in the distribution of the NW's. Further, if our under-
standing changes from one version of the system to another, then we should
expect to find changes in the distribution of the weights from one version to
another. In O'Leary and Kandelin (1988) the correlation of the PW's and NW's
was explored to find that the system under consideration had a very unusual
correlation, suggesting that the weights were constructed in an inappropriate
m a n n e r .

4.2.4. Hybrid systems
Increasingly, implemented ES employ hybrid tools that use some variation of
object-oriented methods to store attributes and procedural attachments and
provide inheritance. This considerably alters the anomalies that can occur with
rules, and introduces other anomalies that need to be considered.

14 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

Tools such as K E E and N E X P E R T use a hierarchical frame structure, such
that diagrams of frame-based systems take on a tree-like or an acyclic network
structure. The 'top' frame can be referred to as the root frame; the 'bottom'
frames can be referred to as terminal frames. We can consider the meaning of
consistency, completeness, correctness and redundancy in terms of frame
contents and structure.

Consistency of frames refers, in part, to the names and labels given to the
slots and contents. One approach is to require the development of lists of names
for frames, slots and contents. System construction would then require choice
from those lists.

Incompleteness can occur if there is a missing frame, or a missing slot or a
missing link between frames: (1) if a frame is a root frame and there is no path
out then there is a missirlg link, (2) if the frame is a terminal frame and there are
no links into the frame then there is a missing link, and (3) if the frame is an
intermediate frame then it should have at least one link in and at least one link
out. If the frame names, slots and contents are established as lists, as noted
above, then those lists can be used to establish tests of completeness, as with
rules. For example, each name (frame or slot or content) should come from a
list. Further, if it is on a list, then it should be used in some frame, slot or
content, otherwise it is incomplete.

Correctness in a frame system will continue to be mainly dependent upon the
structure of the rules. Inheritance has a major effect on correctness, and thus
anomalies additional to those discussed earlier can be present. This is particu-
larly true with subsumption, where what has been called hierarchical subsump-
tion (Lee and O'Keefe forthcoming) can now occur. Consider the example:

(3.1) t'(x) Q(x) S(x)

(3.2) P(x) & Q'(x) ~ S(x)

where Q'(x) is an instance of Q(x) (for example, Q' may be 'sports car' and Q
is 'car'). Rule 3.2 is subsumed in rule 3.1 since is it less specific, and hence 3.1
can always fire when 3.2 can. This problem can be checked for, and at least one
tool (CLASP, Yen et al. 1991) prohibits this via careful identification of
subsumption relationships.

Redundancy can occur in at least four different ways in frame systems:
redundant frames, redundant slots within a frame, redundant contents within a
frame and redundant connections with other frames. Redundant frames could
be determined by a straight comparison of the contents of frames with each
other. Redundant slot~ can be determined by comparing slots within a frame to
each other, and redundant contents can be determined by investigating contents
for such redundancies. Redundant connections can be determined by examining
the connections to other frames, from a given frame (O'Leary 1990b).

In the same sense that weights, attributes or rule firings can be investigated
statistically, so can characteristics of frames. For example, slot contents can be
analyzed for frequency of appearance as single items or paired with other slot
contents. The frequency that particular frames are employed could be dynami-

EXPERT SYSTEM VERIFICATION AND VALIDATION 15

cally accumulated; if a frame is used much less than expected then that could
indicate a problem in the tree structure of the knowledge base.

4.3. Errors in the inference mechanism

Particularly when using a shell, the developer normally assumes that the
inference mechanism is 'correct', i.e., behaves as expected. This assumption may
not always be warranted, particularly for newly introduced versions of a shell.
For critical applications, faith in the inference mechanism should be established
via testing. Where a developer is building an inference mechanism, or enhancing
an existing one, then this will have to be verified separately from the knowledge
base. This should normally occur before verification of the knowledge base.

Conflict resolution procedures, and tools such as OPS5 that provide a
number of different conflict resolutions strategies, can be a source of problems.
If the developer does not fully understand the procedure, then although the
static knowledge-base is verifiable, the system may perform in an unexpected
manner. Inheritance also presents difficulty, since with tools that provide for
multiple inheritance the exact course of inference can be difficult to ascertain.
Standards are necessary here, so that a named method can be guaranteed to
perform in a certain way (Harrison and Ratcliffe 1991). Further, many iden-
tified anomalies, and automated tools that search for those anomalies, discussed
below, make stringent assumptions about inference.

4.4. Automation

More than other software, ESs offer possibilities for automating the verification
process. This is because the separation of inference and knowledge means that
the knowledge base should exhibit completeness and consistency irrespective of
the inference mechanism. Current automated tools analyze a knowledge base by
either filtering knowledge through meta-knowledge (domain dependent), or by
converting the knowledge base to an intermediate representation, such as a
table or graph, and searching for anomalies (domain independent).

The best example of the meta-knowledge approach is the Expert systems
Validation Associate (EVA) (Chang et al. 1990), developed as a front-end ES
verification shell at Lockheed. EVA interfaces with a standard ES shell, such as
KEE, and facts and rules are translated into EVA format. Then, EVA verifies
the ES using a structure-checking algorithm and previously developed meta-
knowledge. As an example, EVA provides a meta-predicate called incom-
patible. The meta-knowledge

incompatible (party(X), at(bob, X), at(wife_of(bob), X))

states that "bob and his wife can not be at the same party". The major problem
with EVA is how to categorize subjects and reduce the meta-knoweldge base:
without meaningful context, the meta-knowledge base may become larger than
the actual knowledge base.

Early domain independent approaches employed condition/action tables,

16 R O B E R T M. O ' K E E F E A N D D A N I E L E. O ' L E A R Y

which separate rules' condition and action parameters. Algorithms then examine
the existence of relationships among the rows and columns. Examples include
the Expert System Checker (ESC) (Cragun and Steudel 1987) and the Rule
Checking Program (RCP) (Suwa et al. 1982). On the other hand, Nguyen et al.
(1987) uses a dependency chart to detect a circular rule chain. The CSRV
(Cross Reference, Style & Verification) toolset for the CLIPS shell developed at
NASA (Castore 1987) provides similar support via cross referencing of
parameters and relations in the rule base. VALIDATOR (Jafar and Bahill
1990) provides some of the statistical analysis checks discussed earlier.

Preece's COVER system (Preece 1989, 1990; Preece et al. 1992) improves
considerably on table-based methods by constructing a graph representation of
the rule base directly from the rules. This has the advantage of detecting
anomalies across numerous rules, rather than between pairs of rules, as is com-
mon with the table-based approaches. KB-Reducer (Ginsberg 1988; Ginsberg
et al. 1988) is also a major advance over table construction methods: rules are
transformed into a logical form, and so called labels are generated that express
the conditions under which each hypothesis is true. As each label is generated a
truth maintenance approach is used to check for redundancy, contradictions
and inconsistency (Zlatareva 1992, gives an extensive review of the actual
methods). Theoretically, KB-Reducer can detect all potential contradictors in
an object-attribute-value rule base for an inference mechanism that is (1)
monotonic, (2) does not use any conflict resolution strategy, and (3) is data-
driven in the sense that any required data is available in working memory.

Present automated tools are all limited to 2-valued logic production systems
that employ certain reasoning, and, as discussed above and identified for KB-
Reducer, make stringent assumptions about inference. With the development of
more hybrid systems, advances are necesary to take account of object-oriented
representations. One recent development that attempts to address the order in
which rules are fired (and thus makes less assumptions about inference and
conflict resolution) is approaches based upon Petri nets (Agarwal and Tanniru
1992; Liu and Dillon 1991). Groups of rules can be represented as a Petri net,
which can then be tested for completeness using existing methods. It is also
suggested that this approach can handle temporal relationships between rules.
However, conversion of a rule base into a Petri net is a non-trivial task.

Another problem with domain independent approaches is that they face a
combinatorial explosion as the number of attributes increase: Ginsberg (1988)
reports that KB-Reducer took 40 cpu seconds on an Explorer II to analyze a
base of 30 rules, but 10 cpu hours to analyze a base of 370 rules. Attempts to
overcome this include partitioning the rule base, as is done in ESC, and the use
of heuristics, as is done in COVER.

4.4.1. The value of automated tools
A lot of research effort has been put into the design and development of
automated tools, and thus it is worth dwelling on their value and impact.
Whether or not they become commonly used is debatable, but one school of
thought suggests that knowledge engineers should aim to design correct con-

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 17

sistent knowledge bases rather than rely on automated tools to weed out the
errors in poorly designed bases.

To this end, a number of shells provide built in verification checks, par-
ticularly concerning attributes and attribute values. For example, some shell
languages require that attributes be declared and the rule compiler will signal
undeclared attributes. This greatly reduces the number of consistency and
completeness anomalies that can occur, but can have the effect of making the
shell language appear more like a third generation language than a symbolic
tool. Another common feature is the ability to specify mutually exclusive
attribute values, for example to state that an attribute PREGNANT can not be
true if the object has an attribute MALE which is also true. This, and other
facilities, can be viewed as simple steps towards the incorporation of meta-
knowledge for verification. Facilities in this area are likely to increase in future
generations.

Another allied development is means to partition a rule base, mainly based
upon between rule distance measures, such as Jacob and Froscher's (1990)
method. These can result in errors and side-effects being localized, and hence
far easier to control. Alternatively, partitioning also makes use of an automated
tool easier, as discussed above overcoming combinatorial problems.

5. THE STRUCTURE OF VALIDATION

As discussed earlier, validation is inherently more complex than verification,
dependent upon the criteria on which the system is to be judged and its
intended use. Hence the validation process should be properly structured: the
means whereby the system will be declared as valid or otherwise should be
established at the outset of the process. This is an important part of any
specification (Batarekh et al. 1991).

This paper uses a framework, based on the theory of research methods, to
investigate the structuring of validation efforts. The framework covers establish-
ing criteria for validation, criterion vs. construct validity, maintaining objectivity
and reliability.

5.1. Establishing criteria

5.1.1. Level o f expertise
The simplest approach to establishing the criterion or criteria for validating a
system is to define the output level of expertise that the system should perform
at. It may be required that a system performs at the level of an expert, better
than an expert, or at the level of a good trainee. For example, the performance
of both ONCOCIN and MYCIN were shown to be reasonably close to experts
at the Stanford medical center where the systems were developed (Hickam et al.
1985; Yu et al. 1979a, b); it is sometimes stated that the mass spectrometer

18 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

analysis program DENDRAL, also developed at Stanford, performed at the
level of an organic chemistry Ph.D. (Buchanan et al. 1969).

In some instances it will be required that the system perform better than an
expert. This may be achievable, for example, by the system being more
consistent, not tiring, being able to deal with more data, being able to solve
problems more quickly, etc. Hence criteria concerning consistency, speed, etc.
may dominate criteria concerning, for instance, quality of solutions. A good
example of this is the R1/XCON system (Bachant and McDermott 1983),
where previous human performance was very mixed and introduction of the
system established some much needed consistency. Finally, in other situations,
in order for the system to be usable it must function at least at some minimal
level of performance. One view of that minimal level is that of a trainee or some
other nonexpert level.

Two suggested methods for defining the level of expertise of a system require
mention if only so that they can be subsequently disregarded. The first method
is to get the expert on whose knowledge the system is based to 'sign-off' on the
system, stating that it performs at their level. This is obviously convenient from
the viewpoint of legal liability: whether it validates a system is very debatable.
The second is to get the system to sit an exam, since many professions, such as
accounting and medicine, have entrance exams that test basic competence. Such
exams, however, generally test breath, whereas most systems developed so far
are intentionally narrow in their specialty domain. In addition, typically such
exams are minimal levels of performance rather than measures of expertise
within those professions.

5.1.2. Performance range
A convenient approach to measuring the level of expertise of a system is to
judge its success in solving problems. The system will not necessarily perform at
the expert level, although it might, but perform within some range. The
performance acceptable to users and sponsors is called the acceptable perform-
ance range; if a minimum level of competence is defined, this is sometimes
called the acceptable level of performance or ALP.

Many developed ES have explicitly used level of performance as an evalua-
tion criterion. Typically, a number of case studies are presented to the system,
and the number of 'correct' answers, compared to those of an expert, are tallied.
The system is then determined to be, for example, '90% correct' or '95%
perfect'. Such figures may be meaningless: they are simply a function of the
cases presented to the system. What is more, in many instances a large number
of cases dealt with by an expert are 'standard', and the leverage of the expert is
determined by the difficult and obscure problems that are faced.

As an example, consider the case of a system designed to evaluate firms for
whether or not they will go bankrupt. Typically the success of such a system
should be in its ability to find those relatively few firms that will go bankrupt. In
any given year in the US, roughly 95 to 98% do not go bankrupt, and hence it is
conceivable that a system may correctly categorize 95% of the total without
being able to determine any of the firms that actually went bankrupt.

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 19

5.1.3. Builder's~user's risk
A more formal way to specify criteria for a performance range developed by
Balci and Sargent (1981) is based upon the standard statistical concept of Type
I and Type II errors, as shown in Figure 2. A Type I error results if a system is
rejected as invalid when it is in fact valid; a Type II error results when an invalid
system is accepted as valid. The probability of the first is builder's risk, since the
effect is to prolong development of an acceptable system, and perhaps even
abandon development. The probability of the second is user's risk, since the
effect may be dramatic for the user who accepts incorrect results, such as loss of
life or large sums of money.

Action

Accept as valid

State of the expert system

System is valid System is invalid

Correct decision User's risk
(Type II error)

Declare invalid Builder's risk
(Type I error)

Correct decision

Fig. 2. Type I and Type II errors in validation.

For many ESs it will be impossible to quantify either risk. However, for all
systems it should be possible to consider the relative importance of each risk.
For example, with R 1 / X C O N a high user's risk was acceptable, due to the
relatively poor performance of the 'human predecessors', but with medical
systems user's risk must be shown to be virtually zero. This is, of course, very
difficult to do. For systems with a limited set of outcomes, such as many
straightforward classification systems, relative risks can be expressed at the level
of actual outcomes. Suppose that an ES produces a classification as A, B or C.
It may be that certain variations in performance are acceptable, but others are
not. For example, an incorrect classification of A as B may be acceptable, but
A as C may not. Hence in validation it must be shown that prob(A C) is zero,
but prob(A ! B) can be greater than zero.

5.2. Criterion vs. construct validity

All of the various approaches to establishing criteria discussed above are in fact
variations of what social science model builders call criterion validity. 'Criterion
validity is studied by comparing test or scale scores with one or more external
variables or criteria, known or believed to measure the attribute under study'
(Kerlinger 1973). The attribute is expertise; the criteria is some variation of
performance range. An alternative type of validity is construct validity: valida-
tion against the theory on which the system is based. As noted by Kerlinger

20 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

(1973) 'the significant point about construct validity that sets it apart from other
types of validity is its preoccupation with theory and theoretical constructs'.

With the majority of ESs the developer elicits the knowledge base in a purely
empirical manner, where knowledge is treated as something to be iteratively
discovered without reference to any underlying theory to guide the investiga-
tion. Hence criterion validity has dominated ES validation, and will likely
continue to do so. Construct validity may have an increasing role to play,
however. Recent developments in qualitative and causal reasoning have resulted
in systems based upon 'first principles' derived from an understanding of the
causality in the domain being examined (for example, Bratko et al. 1989; Davis
1984).

There are at least three potential validation comparisons associated with
construct validity: (1) the comparison between the system and the first prin-
ciples, (2) the comparison of the first principles to an expert, and (3) the
comparison of the system to the human expert. Since (1) and (2) can be difficult
to do, (3) is normally preferred; one elegant way to do this, as used by Bratko et
al. (1989) and Pearce (1988), is to induce a shallow model from the deep
model using induction techniques, and then compare both the structure and
performance of the shallow model to the expert.

5.3. Maintaining objectivity

Verification investigates aspects that are not open to subjective appraisal, so
objectivity is generally not an issue (although interpreting when an anomaly is
an error can be subjective). On the other hand, objectivity in validation is
critical, since the measurement of validity against established criteria may be
open to interpretation. Ideally, validation tests are built into the software,
similar to automated verification tests, and particular procedures are imple-
mented without intervention. For all but the simplest of validation criterion, this
is impossible to do; hence it is necessary to check the objectivity of the human
validator.

Typically the knowledge engineer is continually verifying and validating the
system, based on skills that are brought to the system and gained during system
development. However, those efforts may be less than objective due to a
number of factors. If the developer is short on time or budget, the validation
effort may be cut, since it may be seen as an overhead function. If the developer
has a vested interest in the system, then letting the programmer instigate the
only V&V procedures is somewhat analogous to letting the 'fox guard the
henhouse': there is a potential for substantial violations of objectivity. In order
to mitigate such violations, typically research methods emphasize the impor-
tance of the independence of the validator.

With conventional software, software engineers often use an acceptance test
by the sponsor or end user as the final step in the validation process. If valida-
tion criteria are well established, as discussed earlier, then a validation by the
sponsor or end user provides evidence that at least the system meets those
criteria. Unfortunately, if a system changes substantially, then the notion of an

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 21

acceptance test may be difficult to implement. Further, as noted in O'Leary
(1987), in some cases the end user or sponsor may have insufficient expertise to
validate the system. Hence the developers have to establish validity, and then
build system credibility by professionally reporting the details of the validation
process.

To overcome these problems, an attractive approach is to get 'third-party'
experts, i.e. experts not involved with the development effort or not even part of
the sponsoring organization, to validate the system. Some researchers, for
example Buchanan and Shortliffe (1985), have reported that in some cases
external validators may be biased in their validation of a system if they know
that the problem solution was generated by a computer. They may expect less
from the system, or more likely have unreasonable expectations of performance
(this is called 'the super-human fallacy' by Chandrasekaran 1983). Other biases
may also influence evaluators. If a human investigator finds that a problem
solution is from a rival expert, or simply one from another 'school of thought',
then that could have an impact on the quality they attribute to the solution.
Clearly, this means that blinding techniques must often be used to mitigate
violations of objectivity.

5.4. Reliability

In addition to performing within an acceptable range, a system must be a
reliable representation of the expert's knowledge. The expert's knowledge is
captured by the knowledge engineer, who then casts his representation of that
knowledge into a computer program. There are two possible interpretations of
reliability here. In the first, total reliability occurs when the knowledge 'reported'
by the expert and the actual knowledge of the expert are the same. In the
second, total reliability occurs when the knowledge 'reported' by the expert and
the knowledge in the computer program are the same. One perspective on this
notion of reliability is that the uncertainty of capturing knowledge cascades
from one representation to another.

Based on this concept, O'Leary (1988b) developed an analytic Bayesian
model to investigate the impact of cascaded reliability on weights in uncertainty
measures. In this case the concern is with the relationship between an actual
event, a report of the event and the corresponding weights in an ES that relate
to the evidence. A conclusion from this work is that even a small loss in
reliability can result in the weights in the system being considerably different
from the evidence. Thus mitigation of the cascade effect is crucial if the ES is to
be a valid representation.

6. VALIDATION METHODS

Once criteria have been established, the goals of validation determined and the
various problems addressed, appropriate methods have to be chosen. The
criteria, existence of a theory and pragmatic issues such as the availability of

22 R O B E R T M. O ' K E E F E A N D D A N I E L E. O ' L E A R Y

experts, case studies, time and money will determine the appropriate methods.
ESs can be validated by either examining the individual components, such as
the rules, weights or frames, or by examining the operation of the system as a
whole. In the later case it can be treated as a black box simply to determine if it
is making the fight decisions, or it can be opened up to determine if the line of
reasoning is correct, i.e., it is making the right decisions for the right reasons
(e.g., O'Leary 1988a).

6.1. Component validation

6.1.1. Rule validation
A common method of component validation is to directly examine the knowl-
edge base so as to assess the accuracy, representativeness and validity of
individual rules. The process of direct examination is facilitated by the manner
in which some ES shells allow the user to access the knowledge.

Where the knowledge base is too large for a complete direct examination,
approaches can be used to choose which rules are more important to examine
(O'Leary 1988a). For example, those rules that have the most costly con-
sequences or largest profit generally should be investigated. When using an
uncertainty measure, those rules with either the larger or smaller weights should
be examined, since they have the greatest impact on the solution generated by
the system. Another approach is to determine which rules fire the most (or the
least) in simulated paths through a rule-base, and examine these for their
quality, since they either are frequently or rarely in the solutions generated.

The value of any sort of rule validation is debatable. If elicitation was based
around generating suitable rules, then their correct representation in the rule-
base should have been asserted as part of the verification process. Performance
problems are more likely to arise from missing rules or unforeseen interactions
between rules.

6.1.2. Heuristics
An ES, particularly a rule-based system, can be viewed as a collection of
heuristics or a single large heuristic. A single rule may be a sensible heuristic in
its own fight, or, more likely, a combination of rules can be considered as a
complete separate heuristic producing a solution given input. A modular system
may be composed of a number of such heuristics.

Previous work in validating mathematical heuristics, reviewed by Eglese
(1986), provides a method for validating knowledge-based heuristics. Many
mathematical heuristics are used where existing optimization methods are too
inefficient for solving problems on a regular basis or in real time. In these cases
the results from a heuristic can be compared against the optimum solution, and
deviation from the optimum can provide a measure of the 'goodness' of the
heuristic. Similarly, where an ES works on a problem where complete enumera-
tion of the state space or an optimization method can provide an optimum
result, this comparison can be made. Some constraint reasoning systems, such

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 23

as those developed to produce production plans and schedules (for example,
Ow and Smith 1987), fall into this category. A pit-fall here is the 'scale up'
assumption -- typically a comparison will be made based upon small versions of
the problem, and it is assumed that validity scales up to larger versions. This is
reasonable, but by no means certain.

Heuristic validation also uses a concept called worst case analysis, which is
the maximum deviation from the optimum that can ever occur. For some
mathematic heuristics the worse case can be proved; for knowledge-based
heuristics this is unlikely to be possible, but experimentation with numerous
problems, or a detailed analysis of the search mechanisms, and comparison
against known results may provide an estimate of the worst case.

A complicating factor in knowledge-based heuristics is uncertainty measures
where an uncertain estimate input by the user or produced by another heuristic
affects the outcome. If the outcome is itself a measure of uncertainty, then this
will vary over some range depending upon the estimates input. For example, as
the input varies from - 1 to +1, the output will itself vary over all or some part
of the range , 1 to +1. Langlotz et al. (1986) show how this situation can be
regarded as a distribution sampling simulation, where san)ples of the input
produce a distribution for the output. This can then be used to aid investigation
of the validity of the heuristic.

6.1.3. Meta-models
A meta-model expresses the relationships between the elements of a model: it is
a model of a model. Where a knowledge base becomes large it can be useful to
have a model of the constructs and concepts present: this can then be used to
determine conceptual validity. Rushby (1988), following Pearce (1988), sug-
gests that a rule base should be generated from a causal model, or at least that a
causal model should be maintained in parallel with the rule base. Expressed in
diagrammatic form, a causal model can then be used by developers and experts
to check for completeness of the knowledge base. Unlike the previously
discussed automated verification tools, which relate rules to each other, a causal
diagram relates the concepts that are expressed as rules; as an example, Figure
3 shows two rules concerning automobile fault diagnosis and an associated
causal link.

Meta-models are very useful for understanding large rule-bases, but if

if car will not start battery dead
and or run down
lights are dim

then check bat tery

if car won' t start
and
starter motor turns slowly

then check bat tery

car won' t start

Fig. 3. Using a causal diagram to express concepts in rules.

24 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

validation focuses on the intermediate causal representation, then errors in its
implementation at the rule level may be missed.

6.2. System validation

6.2.1. Test cases
Based on a survey of ES developers (O'Leary 1991), using test cases seems to
be the present dominant method for the systematic validation of ESs. Cases
previously solved by an expert are run through the system, or new cases are
presented to both expert and system, and the solutions are compared.

There are at least four guidelines that should be followed when selecting test
cases. First, the problems to be encountered by the system should be reflected
in the cases (Chandrasekaran 1983). Using terminology from software verifica-
tion, this implies that there should be a prescribed input domain: the boundaries
of the input that the system will receive should be specified. Second, a sufficient
number of test cases is necessary to elicit the range of parameters necessary to
test the system and to be able to establish some statistical measures of signifi-
cance. However, as noted by O'Keefe et al. (1987) 'the issue is the coverage of
the test data -- that is, how well they reflect the input domain', not the number
of cases that are used. A sufficient variation in the test problems is necessary to
test the range of parameters in the system.

Third, the nature of the problems investigated by the system should help
establish the characteristics of the cases. Returning to the example of a system
designed to investigate bankruptcy, in any one year roughly 2 to 5% of US firms
go bankrupt. Thus, if a system wag given test data in proportions to the
occurrence of bankruptcy in the actual population (e.g., 96% not bankrupt and
4% bankrupt) the non bankrupt firms would flood the system to result in a high
success rate.

Fourth, in some domains expert decisions may precipitate actual outcome.
O'Keefe et al. (1987) gives an example: 'suppose that a bank uses a perform-
ance prediction when deciding whether or not to support company X finan-
cially. If an expert had decided a year ago that the financial position of company
X would be poor in a year's time and thus implemented withdrawal of financial
support, the present poor financial position of company X might be due in part
to that previous expert position'. Choice of test cases is thus difficult, if not
impossible, in such domains. King and Phythian (1992) present a case of a
system that supports the decision to determine whether or not to tender a bid
for a contract, where being awarded the contract on past cases can not be used
as an indicator of success since quite obviously the company would not obtain
any contract unless they bid for it.

A problem with using test cases is an assumption that the expert against
which the system is being compared is always correct, i.e. if the system differs
from the expert then it is 'wrong'. This, quite obviously, is not always the case.
One of the authors was involved in the development of a personnel selection
system, which underwent extensive validation, where it was realized that in a

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 25

number of the test cases the previous 'expert' had missed or misinterpreted
something, and hence made an incorrect decision. When the system made a
correct decision in these cases, the credibility of the system was greatly
enhanced. Another potential problem is that in many instances test cases will
not be available. Synthetic cases can be produced, but this is dangerous, and
demands considerable objectivity on behalf of the validators. There is a tempta-
tion to make the cases reflect the known strengths of the system.

Despite the above problems, case testing has tremendous appeal. Small or
limited cases can be useful early on in development, and the case load can be
broadened as the ES matures. Extensive alterations to the ES can be tested for
side-effects by running cases through it that were previously solved. In this way,
case testing nicely fits the evolutionary development method common to so
many ES.

6.2.2. Turing tests
In the classic Turing test (Turing 1950), a third-party has access to the output
from both machine and human, and has to determine which is which. As a
validation tool, a Turing test refers to a third-party expert comparing the results
from an ES with those from a human expert. To overcome the objectivity
problems discussed earlier, the process should be blinded so that it is not clear
which is the computer's and which is the human's.

Test cases are necessary for Turing tests, and the discussion above equally
applies. Now, however, there is no assumption that the human expert is correct:
the third-party expert can compare, rank or criticize as deemed appropriate.
For many ESs, Turing tests are the most appropriate validation method. They
are particularly useful when (1) it is difficult for the developer to assess output
on a case study as correct, or otherwise, or make judgments about how it differs
from a human expert (this is often the case when output is holistic, and difficult
to quantify), or (2) the system must be validated against multiple experts and
there is variation between the performance of the experts.

MYCIN was validated using a Turing test methodology (Yu et al. 1979b;
Buchanan and Shortliffe 1985). Ten cases were developed and analyzed by 10
'experts', including the system. These 100 case results were then evaluated by 8
evaluators, using one of three alternatives on a rating system, to establish a level
of performance for each expert. The rating system alternatives were 'equivalent'
(i.e., the evaluator would have done the same thing), 'acceptable alternative', or
'not acceptable'. Hickam et al. (1985) discuss a similar Turing test validation of
the chemotherapy advisor ONCOCIN.

Hansen and Messier (1986) discuss a test of the auditing ES EDP-XPERT,
and a second more extensive test is reported in Messier and Hansen (1992).
EDP-XPERT provides a certainty measure for the electronic data processing
controls in computerized accounting systems, producing three measures repre-
senting confidence in the supervisory, database management and application
controls. In each test, expert auditors and the system produced a measure, and
these were compared by the developers. Interestingly, the experts then had the
opportunity to produce a second measure given the output from the system. In

26 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

the first test, where the 'experts' were low level computer audit specialists (in
the second test they were senior experienced specialists), a significant number
changed their answer. This may be a useful approach to validating systems that
will be used in a supporting role.

Despite its power, the Turing test methodology may be difficult to implement
in practice: (1) it requires more expert time, and ideally these experts should not
have been involved in the development of the original system, (2) comparison
against multiple experts can be difficult to measure, and (3) blinding the outputs
from computer and human expert, which normally has to be done by putting
them into a common form, can be very time consuming. For these reasons, a
Turing test is normally a 'one-off' procedure near the end of development just
prior to release.

6.2.3. Simulation
In some instances, an analogy to case testing is connecting the system to a
simulation model. Each simulation run is a 'test case' and different scenarios
with various parameter settings can produce a number of different runs (Hall
and Heinze 1989). For simple deterministic simulation models, validation via
simulation is very powerful. For complex domains, however, a major problem
arises: the simulation is itself a model, not perfect, that performs within an
acceptable range. Hence modeling problems, such as accuracy and reliability,
cascade. An ES that performs well with a simulation can not be guaranteed to
perform as well with the real system.

Where simulation comes into its own is with real-time control ES. Here it is
important to validate the performance of the ES over time, and typically control
of the real system will be not possible until the ES has proved performance, or
in any case will not generate example results quickly enough. Sets of decisions
made when controlling a simulation run can be mapped against time and the
simulation output parameters, and compared to expert decisions or investigated
for consistency and accuracy. Radwan et al. (1989) present a verification of a
traffic signal control system called SCII that makes extensive use of a simulation
model.

6.2.4. Control groups
Many ESs rely upon the combination of human user and system to solve
problems, and hence the system can not be validated alone. Where this is the
case, a Turing test can be combined with a control group methodology. Cases
are presented to two separate groups: those with the system, and those without.
The validation process then proceeds as before, although now it is anticipated
that the group with the system out performs the control group.

This approach, unfortunately, contains many pit-falls. The two groups may
have performed differently irrespective of one group having access to the
system, and a small number of case studies may not show up this inherent
difference. Complexities in the system may mean that performance with it may
only improve over time, or that its effect on performance is negligible until
fully institutionalized. Hence a control group approach is normally seen as an

EXPERT SYSTEM VERIFICATION AND VALIDATION 27

evaluation tool used after implementation. For an example of using a control
group as an evaluation tool see Hamilton and Chervany (1981); for an extensive
discussion of evaluation using control groups, and other so called quasi-
experiments, see Adelman (1991).

6.2.5. Sensitivity analysis
Where no case studies are available, the validation process is far more difficult.
Often developers will verify the system, and then simply use credibility as a
complete surrogate measure: is the system credible to the expert, the devel-
opers, and the potential users? Yet a few validation methods are applicable
where no or few case studies exist, in particular sensitivity analysis.

Assume there exists a single case C where intermediate results, the line of
reasoning and the final results are all known to be perfect (or, more likely, are
judged by an expert to be reasonable). If C uses inputs il, /2 . . . , in, then each
can be systematically altered (either individually, or in sensible combinations),
and the change in output from the system assessed as reasonable or otherwise
by an expert. Graphs can be drawn to depict the input/output relationship. In
many instances, it is easy to generate tests where the output should not change
given changes in input. For example, if in a financial analysis ES it is known that
a particular figure should have no effect on the results (perhaps since the
situation is dominated by other concerns), then the system should be run with
this figure set at its extreme values.

One major pit-fall with sensitivity analysis is that starting with a few cases
and altering them is unlikely to cover a large part of the input domain. Working
from the attributes in the knowledge base, it may be more useful to generate
synthetic test cases that give good coverage, for example using Miller's generic
test method (Miller 1990), and then perform sensitivity analysis with variations
of these.

6.2.6. Comparison against other models
In some instances a different type of model, such as an optimization or
statistical model, may already exist. Comparison of the system against this
model can provide useful insights, for example, Moninger et al. (1988) compare
a weather forecasting ES against a regression model to assess the comparative
accuracy of the system. Typically it might be expected that a knowledge-based
approach will be able to handle odd or different cases better due to use of
specific knowledge.

The availability of induction algorithms in many shells, such as Quinlan's ID3
(1979), means that induction of a rule set be quite easy to do. Although the
induced set may be very limited compared to the rule set crafted by hand
following knowledge acquisition, due to lack of examples or limitations in the
algorithm used, it does provide an alternative that can give insights into the
validity of the acquired set.

6.2.7. Line of reasoning
When validating many systems it is also necessary to show that the line of

28 R O B E R T M. O ' K E E F E A N D D A N I E L E. O ' L E A R Y

reasoning is correct. There are two reasons for this: (1) if the user investigates
the line of reasoning via facilities built into the shell, then it must be credible,
otherwise the result will be disregarded, and (2) if the system is to be developed
further than the reasoning process must be capable of being 'scaled up' to a
larger domain (Chandrasekaran 1983). Line-of-reasoning can be used as
evidence in a Turing test, however, this requires that human experts articulate
their reasoning and that it can be presented to third-party experts in a form
similar to the explanation facilities of the shell being used.

A more complex approach is to compare aspects of the reasoning process,
such as the relative time taken to reason, the amount of data used, or the
number of hypotheses established and rejected. Meservy et al. (1986) derived
knowledge from experts using protocol analysis, and then the expert's percent-
age of time spent performing specific processes, such as 'cognitive processes'
(e.g., assuming, conjecturing, evaluating and questioning) was compared to that
of the system.

6.3. Statistical methods

Although many validations will be entirely qualitative in nature, in other
instances a quantitative approach using a statistical model is warranted. Such an
approach will almost certainly be necessary when comparing the system to one
or more human experts.

Essentially, the validation process can be viewed as the following hypothesis
test (O'Keefe et al. 1987):

H0: the ES is valid for the acceptable performance range under the
prescribed input domain

where the alternative hypothesis is that the system is invalid. Hence, until the
acceptable performance range has been established, and the type of problems
the system will handle defined (and thus the future input domain prescribed)
then statistical tests can not be formally employed. This test has been criticized
by Hilden and Habbema (1990), who suggest that the onus should be on the
developer to disprove the alternative hypothesis, i.e. prove the system is good
rather than assume that 'the system is good as long as not proven bad'. However
things are phrased, use of statistics should be preceded by an attempt to
formalize what is being tested.

This section gives something of the flavor of the use of statistics. In any given
situation, one particular approach from the vast array of statistical techniques
may be better than others; Mosteller and Rourke (1973) covers many methods.
If detailed statistic analysis is used, the validation team should include a
statistician: misuse of statistical measures can be worse than no analysis.

6.3.1. Continuous results
Where a system produces a single result on a continuous scale (for example, a
certainty factor representing an estimate of the financial state of a company),

EXPERT SYSTEM VERIFICATION AND VALIDATION 29

then comparison against an expert estimate is quite straightforward. If the
system's result is Xi, and that of the human expert is Y,., then the difference
between them will be D i = Xi - Y~. For n case studies, there will be n
observed differences D 1 to D n. The confidence interval for the difference
between system and expert is thus:

d -- tn_l, a/2 Sd / fn , d + tn_~, a/2 S d / f n

where d is the mean difference, Sd the standard deviation, and tn_l,a/2 the
value from the t distribution with n degrees of freedom. If zero lies within the
interval, then there is no significant difference between the system and the
expert. Note that the acceptable performance range will dictate the specification
of a.

A typical problem with this method is that a small number of case studies
will generally give rise to a large confidence interval half-width, due to the small
number of degrees of freedom, so any conclusions have to be carefully inter-
preted. Further, it is assumed that D i is reasonably normally distributed.

Where a single result is not produced, this method can still be used if the
output can be assessed as a whole. For example, in a Turing test, if the output of
both system and expert are assessed by a third-party expert on a continuous
scale of 1 to 10, then X i and ~ will be the absolute assessed performance
measure. Where multiple results are produced, simultaneously applying a paired
t-test to each result is inappropriate since the results may be correlated.
O'Keefe et al. (1987) give an example of the correlated multiple response
problem: 'in a medical diagnosis system prescribing drug treatment . . . two
types of drug can be validly prescribed if each is separately considered as
independent -- yet that combination of drugs may be unacceptable'. Hence it is
necessary to produce simultaneous confidence intervals. How this can be done
is shown in Balci and Sargent (1984).

6.3.2. Categorical results
Many ES, particularly classification systems, produce categorical results. These
can be attributes, such as the name of a drug or tax form, or categorical
measures, such as 'good', 'poor', etc. In a Turing test, evaluators are likely to use
a Lickert scale or similar technique to assess a solution.

Originally developed to determine the consistency between raters using
categorical scales, such as legal judges, consistency measures prove a useful tool
when the system and known results or an expert are considered as two
independent raters. Consistency measures are covered in detail in Fleiss (1981)
and the discussion here uses the same notation.

The most useful consistency measure is the kappa statistic, originally devel-
oped by Cohen (1960), which measures agreement on a single category. The
weighted kappa (Cohen 1968) measures overall agreement across all categories,
and was used by Hickham et al. (1985) in the ONCOCIN validation. The study
in King and Phythian (1992) makes extensive use of it. To explain the use of the
weighted kappa, Table 1 shows the agreement between an expert and a system
on twenty case studies with three result categories called A, B and C. Each

30 R O B E R T M. O ' K E E F E A N D D A N I E L E. O ' L E A R Y

Table 1. Agreement between system and expert on 20 cases with 3
categories.

Expert

System A B C Total

A 0.5 0.1 0.05 0.65
B 0.1 0.1 0.05 0.25
C 0.05 0 0.05 0.1

Total 0.65 0.2 0.15 1.0

entry shows agreement as a proport ion of the total cases, for example, the
expert and the system both classified 50% of the cases as A.

The weighted kappa k is defined as:

k = Po -- Pe
1 - - Pe

where Po is the overall proport ion of observed agreement, and Pe is the overall
proport ion of chance expected agreement, i.e. the agreement that would be
expected to occur at random. A value of -t-1 for k indicates perfect agreement,
and a value of 0 indicates that agreement occurs no more than would be
expected by chance; a value less than 0 obviously indicates disagreement.

Po is the sum of the agreement proportions, so here

Po = 0.5 + 0.1 + 0.05 = 0.65,

and Pe is the product of the total classifications by rater, thus

Pe = (0.65 X 0.65) + (0.2 X 0.25) + (0.15 X 0.1) = 0.4875.

hence k = 0.3171, which suggests that agreement does not vary much from
what it would be by chance.

This can be formally tested. Fleiss (1981) gives an expression for the
standard error of the kappa, s.e.o(k). This example gives s.e.o(k) = 0.1962, and
thus a z statistic can be calculated as

k 0.3171
z - - = = 1.6163

s.e.o(k) 0.1962

and compared against a standard normal distribution. This is not significant
given that the z value for a = 0.05 is 1.96.

6.3.3. Large sample comparisons
In a few instances, particularly when connecting an ES to a simulation model, it
is possible to generate very large amounts of data. Although the above methods
can be used, an alternative (less stringent) test is:

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 31

H0: under the prescribed input domain, the distribution of results
from the ES is equivalent to that of the comparative method

We typically can use a Chi-Square test to test for distribution equivalence, and
this works particularly well for categorical data. However, even with a large
sample, the Chi-Square is only valid if at least 5 data points are in each
category. Norman and Naveed (1990) attempt to use this method to validate a
cement kiln control ES, but then reduce their test to an ad-hoc comparison of
proportions due to the lack of data points in some categories.

6.3.4. Multiple experts
For many ES, dealing with comparison against multiple experts is a major
headache (Shaw and Woodward 1988). The weighted kappa can be used to
measure agreement between n raters. Again using the notation of Fleiss (1981),
if there are k categories and m ratings, the weighted kappa k is:

2
n m - -

k - - 1 - i=1 /=1
k

nm(m - 1) }~ /)1.(1 - pj)
/ = i

Producing a kappa for multiple experts prior to validation of the system is a
useful measure. If agreement between human experts is good, then the system
can be compared against the joint agreement of all other experts using a statistic
developed by Williams (1976). If they do not agree, decisions have to be made
regarding validation criteria. Kappa comparisons across each pair of experts,
and each expert and the system, can be used to indicate who agrees with whom.

7. T H E M A N A G E M E N T OF V E R I F I C A T I O N A N D V A L I D A T I O N

As with all aspects of ES development, V&V must be appropriately managed.
O'Keefe and O'Leary (forthcoming) state that managing V&V is more than per-
forming the necessary tests -- it is equally the process of planning what will be
done where, and acting upon the results of any testing. Such actions may be diffi-
cult decisions, for instance delaying the implementation of a system until further
development and testing and complete, or even terminating its development.

Management decisions regarding the process and outcomes of V&V will
interact with the development process throughout the software life-cycle
(Harrison 1989). Although many ESs are developed without an explicit
development methodology, and hence their life-cycle is not well formed,
fundamental development stages are likely to be identifiable, including knowl-
edge acquisition, prototyping and implementation and maintenance (O'Keefe
and Lee 1990). Some development models for ESs that specifically include
V&V have been proposed, and three are very briefly reviewed here.

32 R O B E R T M. O ' K E E F E A N D D A N I E L E. O ' L E A R Y

7.1. Location in the life-cycle

The position of validation in the life-cycle has been discussed in detail in
Gaschnig et al. (1983). Recently, Benbasat and Dhaliwal (1989) have con-
sidered the location of methods in the life cycle as a substantial portion of the
basis of the choice of validation methods.

There are a number of reasons why the life cycle has an impact on deter-
mining the type and extent of V&V. First, it is critical to verify the programmed
knowledge base before substantial validation efforts are begun. If validators find
errors in the knowledge base due to inappropriate implementation of particular
technologies, then substantial doubt may be cast on the ability of the developers
to develop a correct system. The credibility of the system may be damaged.

Second, some approaches to the validation of ESs compare portions of the
knowledge base at different stages of the life cycle (for example, O'Leary and
Kandelin 1988). The expected relationships between information is compared
to the actual relationships, in order to gauge the extent of further validation
efforts. Third, V&V efforts required in the initial stages of development are
likely to be different than those required later in the process. Initial efforts may
concentrate on direct examination of components of the knowledge, while later
efforts are likely to be aimed at validation of the system as a whole.

7.1.1. Knowledge acquisition
There has been an increasing emphasis on validation during knowledge acquisi-
tion (Shaw and Woodward 1988; Enand et al. 1990), particularly when the
acquisition processes is automated. An early commitment to verification in
knowledge acquisition, as a preventive approach, can help knowledge engineers
maintain the integrity of knowledge and reduce the iterative development cycle
(Benbasat and Dhaliwal 1989). As with other software, catching problems early
will save considerable effort downstream.

Boose (1986) and Gaines (1987) suggest that knowledge engineers prepare
diagrams representing a summary of the problem solution process and give it to
the experts for verification. These can be influence diagrams, activity graphs,
decision tables, or classification hierarchies. The visual interaction can enhance
mutual understanding of the problem and lead the domain expert to more struc-
tured reasoning.

Verification facilities in an automated tool can provide real time verification
of expert knowledge: many automated knowledge acquisition tools now provide
some method of automated verification, frequently a mechanism for checking
for inconsistency or conflicts. For example, KNACK (Klinker et al. 1987)
checks contradictions amongst incoming knowledge and eliminates ambiguities
in input terminologies when acquiring knowledge from multiple sources, and
ETS (Boose 1986) and ACQUINAS (Boose and Bradshaw 1987) maintain
consistency by presenting knowledge in multiple forms to experts who can
validate the knowledge.

E X P E R T SYSTEM V E R I F I C A T I O N AND V A L I D A T I O N 33

7.1.2. Prototyping
Much of the validation effort can be done at the prototype stage, and need not
be left until a full system is developed. As noted in O'Leary (1988c), prototypes
can be an important validation tool, since " . . . prototypes provide an oppor-
tunity to test assumptions about the knowledge base, inference strategies of the
expert and other characteristics of the system."

Incremental prototypes can serve as the source of requirements and enhance
the developers' understanding of the system objectives and the users' expecta-
tions, as well as the system functionalities. Each prototype system, however,
should be formally validated to gain the advantages of prototyping. O'Leary
etal. (1990) present a methodology for formally validating a prototype. It
combines face validation (where the prototype is assessed 'at face value') with
sub-system (i.e., component) testing and system validation via case or Turing
tests.

7.1.3. Implementation and maintenance
For systems that have a very low user's risk, it may be possible to 'field test' the
system: put it in place, and let the users find errors. Cochran and Hutchins
(1987) provide an insightful discussion of the problems of field testing based on
experiences with a diagnosis system called MENTOR. Field testing is only
possible if a user can determine when an error has occurred (for example, a
piece of equipment still does not work after being mended under advice). For
many systems, this will not be possible. When user's risk is high, a formal
validation of the system prior to implementation is virtually obligatory (Hickam
etal. 1985).

As an ES evolves over time there is a need to build the validation process
into the maintenance of the system. This often means that it must be the respon-
sibility of someone to validate new knowledge, alterations to existing knowl-
edge, enhancements to the system, etc. In the O'Leary and Watkins (1991)
survey, at least one company employed a knowledge base manager. That
manager was responsible for a particular ES, ensuring that any new knowledge
added to the system was verified and validated. Typically, a knowledge base
manager will be someone with less technical understanding of the software but
possibly more domain expertise.

ES maintenance systems have become increasingly important as systems
grow in size and complexity. Such systems have varying capabilities, but
verification is normally one of the primary concerns in order to ensure that the
knowledge added to the system is consistent. Shatz et al. (1987) present one
such system. Further, it is becoming evident that production of a system that is
maintainable should be one of the major criteria for V&V, and this is particu-
larly true for large ES (O'Neil and Glowinski 1990). Measures of rule base
structure, such as in Jacob and Froscher (1991), and methods such as the
RIME approach to engineering and modularizing XCON (Soloway et al. 1987)
are thus of increasing importance.

If case studies have been previously used to validate a system, then they may
be used to revalidate a system. Hence regression testing, checking that an ES can

34 ROBERT M. O'KEEFE AND DANIEL E. O'LEARY

still perform as previously observed after alteration, is important for many
implemented systems. Often, unfortunately, this is not possible, since changes to
knowledge, information, or organization operating procedures will make the
cases outdated.

7.2. The costs of validation

Implicitly and explicitly, cost assessments permeate virtually all system develop-
ment and validation efforts since there are always resource or time constraints.
Hence the attention given to any part of the life-cycle is to some extent
dependent upon the perceived benefit of validation in that part of the process.

The survey summarized in O'Leary (1991) found that validation efforts
rarely exceed budget, and generally are allocated significantly less of the total
system budget than is normally planned. Validation efforts are often driven out
of the life-cycle by the production process of developing the ES, or perhaps
are simply not done properly. Further development and enhancements are often
perceived as more important than validation. Additionally, the costs and
benefits of different validation methodologies are likely to depend on their
location in the development process. For a system at the prototype level there
may not be a detailed user interface, and as a result, it may prove quite costly to
have the expert, end-user or sponsor involved directly in any validation efforts.

7.3. Formality and standards

Virtually all the factors discussed in this paper have an impact on the cost of
validation of an ES. However, generally the formality of the validation effort
will be the major factor in the determination of the cost of the validation,
specifying who performs the validation, when the validation is performed and of
what the validation consists.

In informal validation, the process is left to the developers and programmers,
and possibly subsumed into other parts of the life-cycle. In formal validation,
the cost of the validation will include the time of any experts (perhaps third-
party), the time of the project sponsor, and the cost of acquiring or generating
case studies or a simulation. A formal validation of the system is likely to take
place at the conclusion of one of the major prototypes, and as a result, substan-
tial up-front effort is likely to be made to ensure that the system meets the
demands placed on it. Finally, in a formal validation, the process is likely to
require a considerable amount of interaction with the system and include a
specified sequence of tests, such as a Turing test.

In some organizations, it is likely that standardized and mandated tests will
formalize the V&V process (Harrison and Ratcliffe 1991). This is commend-
able as long as the required tests are appropriate. The specter of inadequate but
formal procedures driving necessary tests out of the development process exists.

E X P E R T S Y S T E M V E R I F I C A T I O N A N D V A L I D A T I O N 35

7.4. Life-cycle models

If a formal development life-cycle is used, then V&V will have to fit into
existing development stages, or new stages that focus on V&V will have to be
designed. Weitzel and Kerschberg (1989) present a common solution to this
problem: separate development stages representing testing and validation are
added to the development model (in fact they split testing into two separate
stages, one for reasoning and one for knowledge). This presents a problem if
each, as is traditional with conventional systems, is located at the end of the
cycle. The benefits of V&V that can be obtained by early commitment,
discussed above, will not be obtained. In their Knowledge-Based System
Development Life Cycle (KBSDLC), however, each stage is a process that can
be activated as necessary, and hence testing and validation can be activated and
performed at any time during development.

Miller (1989) presents a formal waterfall life-cycle, designed to fit into the
reporting requirements of US Department of Defense projects. The process is
driven by the system requirements from which an initial prototype is developed.
Requirements are respecified following the evaluation of the prototype, and a
system is developed and evaluated. This cycle repeats until the system is
evaluated as ready for delivery. V&V occur at each system evaluation, and are
more formally performed on the delivery system.

Whereas a formal waterfall method is often followed in projects where
specific deadlines and deliverables must be met, and considerable documenta-
tion must be maintained, for many organizations a less formal approach will be
more appropriate. O'Keefe and Lee (1990) present a variation of Boehrn's
spiral model. Requirements analysis is followed by knowledge acquisition and
prototyping. After each knowledge acquisition stage the acceptable level of
performance for the system can be specified, and this will become firmer and
more detailed each time around the spiral. As a prototype evolves into a
production system, verification (perhaps using mechanical automated methods)
gives way to validation using test cases. When the acceptable level of perform-
ance is very clearly defined then statistical tests can be used.

8. SUMMARY AND CONCLUSIONS

ES V&V is less well developed than other aspects of the knowledge engineering
process, particularly knowledge acquisition and knowledge representation. As
more ESs have become developed and implemented, increasingly more atten-
tion has been given to all aspects of V&V, and as the development of ESs has
become more formalized then the position of V&V in the life cycle has become
important. Despite this, according to a recent survey of ES V&V practice
(Hamilton et aI. 1991), much V&V is ad-hoc and not closely integrated with
development.

The different interpretations given to V&V, and also to assessment, credi-
bility and evaluation, has made generalization difficult. Despite the efforts to

36 R O B E R T M. O ' K E E F E AND D A N I E L E. O ' L E A R Y

define and identify the important aspects of V&V (this paper included) different
definitions and interpretations will likely continue. A developer using a shell to
construct a system solely based upon expert knowledge will typically concen-
trate on verifying the knowledge and validating the performance of the system,
using an overall approach more akin to validation in the model building
disciplines than to software validation. Conversely, a developer working with a
specification and a symbolic language to build a system only loosely based upon
expert knowledge faces a software testing problem more akin to that found in
traditional software development.

Table 2 summarizes the approaches to verification discussed in this paper. It
should be remembered that software engineering approaches, not covered here,
also plays a big role in many projects. The most popular approach is no doubt
that centered on the concept of an anomaly -- a potential error. For rule based
systems, and some methods of handling uncertainty, a lot is known about

Table 2. Methods for ES verification, and examples of automated tools.

General approach Specific approach Example automated tools

Domain dependent Meta-knowledge EVA, CLASP, various
• represent meta-facts about domain, use knowledge acquisition tools

these to detect inconsistencies in
knowledge base

Domain independent Anomaly detection
• detect and identify anomalies in

knowledge base (rules and weights)

Statistical investigations
• measure, e.g., attribute instances (static)

and use of inference chains (dynamic)

Inference mechanism/conflict resolution
• compare execution to specification or

(if it exists) standard

Table based: e.g., ESC, RCP
Graph based: COVER
TMS based: KB-REDUCER

identifiable anomalies; for hybrid systems, let alone new approaches to develop-
ment such as case based reasoning, a lot less is understood. Of the various tools
developed to automatically detect anomalies, two stand out: COVER, the graph
based domain independent tool, and EVA, which employs domain dependent
meta-knowledge. Such tools are useful for large systems; for small ES with a
limited rule set, perhaps than 200 rules, a cross reference checker such as
CRSV and some common sense may be adequate.

Table 3 summarizes the approaches to validation discussed in the paper. The
table shows the normal time that they can be used appropriately within the
development life-cycle, and hence the approaches can be related to the life-
cycle discussion. Many, if not most, ESs are validated using test cases, some-
times in the form of a Turing test where the performance of the system is
compared against the performance of experts in a blinded evaluation. Statistical

EXPERT SYSTEM V E R I F I C A T I O N AND V A L I D A T I O N

Table 3. Methods for ES validation, and timing in the life-cycle.

37

General approach Specific approach Normal timing
(early, middle, late)

Component

System

Rule validation Early
• manually investigate important rules

Heuristic Middle
• compare performance to optimum
• worst case analysis
• distribution sampling

Meta-models All
• construct and maintain conceptual

model of the knowledge base

Case testing All
• ES solves cases, performance

compared to expert

Turing test Late
• ES and experts solve cases,

performances evaluated by third-party

Simulation Late
• ES controls simulation model,

performance evaluated

Control group
• ES implemented for test group,

performance compared to control group

Sensitivity analysis All
• cases altered and input/output

relationships evaluated

Other model Late
• another model, e.g. quantitative or induced,

constructed and performance compared to ES

Line of reasoning Middle
• line of reasoning on test cases compared to

elicitation material or expert

Very late

measu re s can aid the process . C o m p o n e n t va l ida t ion , which involves look ing at
specific rules and heur is t ics and p e r h a p s cons t ruc t ing a m e t a - m o d e l of the
k n o w l e d g e base , can also be useful, pa r t i cu la r ly for large systems.

A d v a n c e s in a u t o m a t i o n of all aspec ts of V & V , and thei r in tegra t ion into
every aspec t o f k n o w l e d g e engineer ing, will con t inue to deve lop . Twen ty years
f rom now, the E S d e v e l o p e r will l ikely use an e lec t ronic w o r k b e n c h that
suppor t s V & V of k n o w l e d g e using r ec t a -knowledge and s t ruc tura l checks,
manage r s test cases, and p r o v i d e s suppor t ing stat is t ical tools. D e sp i t e this
technology , the re will no d o u b t still be ESs that m a k e un fo re seen and unp re -
d ic ted er rors .

38 ROBERT M. O 'KE E FE AND D A N I E L E. O 'LEARY

ACKNOWLEDGEMENTS

This paper arose f rom tutorial presentat ions at the 1989 Internat ional Joint
Confe rence on Artificial Intelligence and the 1991 and 1992 I E E E Confe rence
on Artificial Intelligence Applicat ions. We are grateful for the comments
provided by Alun Preece (Concord ia University, Montreal , Canada) and Sunro
Lee (Rensselaer Polytechnic Institute, New York, U.S.A.).

REFERENCES

Adelman, L. (1991) 'Experiments, Quasi-experiments, and Case Studies: A Review of Empirical
Methods for Evaluating Decision Support Systems', IEEE Transactions on Systems, Man, and
Cybernetics 21: 2, 293--301.

Adrion, W., Branstad, M. and Cherniavsky, J. (1982) 'Validation, Verification and Testing of
Computer Software', ACM Computing Surveys 14: 2, 159--192.

Agarwal, R. and Tanniru, M. (1992) 'A Petri-net Approach for Verifying the Integrity of Produc-
tion Systems', International Journal of Man-Machine Studies 26,447--468.

Bachant, J. and McDermott, J. (1983) 'R1 Revisited: Four Years in the Trenches', A1 Magazine 5:
3,21--32.

Balci, O. (1987) 'Credibility Assessment', in Balci, O. (ed.), Proceedings of the 1987 Eastern
Simulation Conference, the Society for Computer Simulation, La Jolla, CA.

Balci, O. and Sargent, R. (1981) 'A Methodology for Cost Risk Analysis in the Statistical
Validation of Simulation Models', Communications of the ACM 24: 4, 190--197.

Balci, O. and Sargent, R. (1984) 'Validation of Simulation Models Via Simultaneous Confidence
Intervals', American Journal of Mathematics and Management Sciences 4: 3&4, 375--406.

Batarekh, A., Preeee, A. D., Bennett, A. and Grogono, P. (1991) 'Specifying an Expert System',
Expert Systems with Applications 2,285--303.

Bellman, K. L. (1990) 'The Modeling Issues Inherent in Testing and Evaluating Knowledge-based
Systems', Expert Systems With Applications 1: 3, 199--216. '~

Benbasat, I. and Dhaliwal, J. (1989) 'A Framework for the Validation of Knowledge Acquisition',
Knowledge Acquisition 1,215--233.

Boehm, B. W. (1981) Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ.
Boose, J. and Bradshaw, J. (1987) 'Expertise Transfer and Complex Problems Using Aquinas as a

Knowledge Acquisition Workbench for Expert Systems', International Journal of Man-
Machine Systems 26, 3--28.

Boose, J. H. (1986) Expertise Transfer for Expert System Design, Elsevier, New York.
Bratko, I., Mozetic, I. and Lavrac, N. (1989) KARDIO: A Study in Deep and Qualitative

Knowledge for Expert Systems, MIT Press, Cambridge, MA.
Buchanan, B. and Shortliffe, E. (1985) Rule-Based Expert Systems: The MYCIN Experiments of

the Stanford Heuristic Project, Addison-Wesley, Reading, MA.
Buchanan, B., Sutherland, G. and Feigenbaum, E. A. (1969) 'Heuristic DENDRAL: A Program

for Generating Explanatory Hypotheses in Organic Chemistry', in Michie, D. (ed.), Machine
Intelligence 4, Elsevier, NY.

Castore, G. (1987) 'Validation and Verification for Knowledge-based Control Systems', Proceed-
ings of the First Annual Workshop on Space Operations, Automation and Robotics, NASA,
pp. 197--202.

Chandrasekaran, B. (1983) 'On Evaluating AI Systems for Medical Diagnosis', AI Magazine 4: 2,
34--37.

Chang, C. L., Combs, J. B. and Stachowitz, R. A. (1990) 'A Report on the Expert Systems Valida-
tion Associate (EVA)', Expert systems With Applications 1: 3,217--230.

Cochran, T. and Hutchins, B. (1987) 'Testing, Verifying and Releasing an Expert System: The

EXPERT SYSTEM V E R I F I C A T I O N AND V A L I D A T I O N 39

Case History of Mentor', Proceedings of the Third IEEE Conference on AI Applications, pp.
163--167.

Cohen, J. (1960) 'A Coefficient of Agreement for Nominal Scales', Educational and Psychological
Measurement 20, 37--46.

Cohen, J. (1968) 'Weighted Kappa: Nominal Scale Agreement with Provision for Scaled Dis-
agreement or Partial Credit', Psychological Bulletin 70: 4,213--220.

Cragun, B. and Steudal, H. (1987) 'A Decision-table-based Processor for Checking Completeness
and Consistency in Rule-based Expert Systems', International Journal of Man-Machine
Systems 25: 5,633--648.

Davis, R. and Lenat, D. B. (1982) Knowledge-based Systems in Artificial Intelligence, McGraw-
Hill, New York, NY.

Davis, R. (1984) 'Reasoning from First Principles in Electronic Troubleshooting', International
Journal of Man-Machine Studies 24, 347--410.

Duchessi, P., Shawky, H. and Seagle, J. P. (1988) 'A Knowledge-Engineered System for Commer-
cial Loan Decisions', Financial Management 17: 3, 57--65.

Duda, R., Gaschnig, J. and Hart, P. (1979) 'Model Design in the Prospector Consultant System
for Mineral Exploration', in Michie, D. (ed.), Expert Systems in the Microelectronic Age, Edin-
burgh University Press, pp. 153--167.

Eglese, R. W. (1986) 'Heuristics in Operational Research', in Belton, V. and O'Keefe, R. M.
(eds.), Recent Developments in Operational Research, Pergamon Press, Oxford, UK, pp. 49--
68.

Enand, R., Kahn, G. S. and Mills, R. A. (1990) 'A Methodology for Validating Large Knowledge
Bases', International Journal of Man-Machine Studies 33, 361--371.

Ernst, C. J. (ed.) (1988) Management Expert Systems, Addison-Wesley, Reading, MA.
Fleiss, J. L. (1981) Statistical Methods for Rates and Proportions, John Wiley, NY.
Fox, M. S. (1990) 'AI and Expert System Myths, Legends, and Facts', 1EEE Expert 5: 1, 8--20.
Gains, B. R. (1987) 'An Overview of Knowledge Acquisition and Transfer', International Journal

of Man-Machine Studies 26,453--472.
Gaschnig, J., Klahr, P., Pople, H., Shortliffe, E. and Terry, A. (1983) 'Evaluation of Expert

Systems: Issues and Case Studies', in Hayes-Roth, F., Waterman, D. A. and Lenat, D. B. (eds.),
Building Expert Systems, Addison-Wesley, Reading, MA, pp. 241--280.

Ginsberg, A. (1988) 'Knowledge-based Reduction: A New Approach to Checking Knowledge
Bases for Inconsistency and Redundancy', Proceedings of AAAI '88, AAAI, Menlo Park, CA,
pp. 585--589.

Ginsberg, A., Weiss, S. M. and Politakis, P. (1988) 'Automatic Knowledge Base Refinement for
Classification Systems', Artificial Intelligence 35, 197--226.

Gruhl, J. (1982) 'Model Credibility and Independent Evaluation: Three Case Studies', Omega 10:
5,525--537.

Hall, D. L. and Heinze, D. T. (1989) 'The Use of Simulation Techniques for Expert System Test
and Evaluation', ISA Transactions 28: 1, 19--22.

Hamilton, D., Kelley, K. and Culbert, C. (1991) 'State-of-the-practice in Knowledge-based System
Verification and Validation', Technical Report, NASA/Johnson Space Center, Houston, TX.

Hamilton, S. and Chervany, N. L. (1981) 'Evaluating Information System Effectiveness -- Part I:
Comparing Evaluation Approaches', MIS Quarterly 5: 3, 55--69.

Hansen, J. and Messier, W. (1986) 'A Preliminary Investigation of EDP-XPERT', Auditing: A
Journal of Theory and Practice 6: 1,109--123.

Harrison, P. R. (1989) 'Testing and Evaluation of Knowledge-Based Systems', in Liebowitz, J. and
De Salvo, D. A. (eds.), Structuring Expert Systems, Prentice-Hall, Englewood Cliffs, NJ, pp.
303--329.

Harrison, P. R. and Ratcliffe, P. A. (1991) 'Towards Standards for the Validation of Expert
Systems', Expert Systems WitJ~ Applications 2, 251--258.

Hickam, D. H., Shortliffe, E. H., Bischoff, M. B., Scott, A. C. and Jacobs, C. D. (1985) 'The
Treatment Advice of a Computer-based Cancer Chemotherapy Protocol Advisor', Annals of
Internal Medicine 103,928--936.

40 ROBERT M. O ' K E E F E AND D A N I E L E. O ' L E A R Y

H.ilden, J. and Habbeman, J. D. F. (1990) 'Evaluation of Clinical Decision Aids -- More to Think
About', Medical Informatics 15: 3,275--284.

Jackson, P. (1986) Introduction to Expert Systems, Addison-Wesley, Reading, MA.
Jacob, R. J. K. and Froscher, J. N. (1990) 'A Software Engineering Methodology for Rule-based

Systems', IEEE Transactions on Knowledge and Data Engineering 2: 2, 173--189.
Jafar, M. J. and Bahill, A. T. (1990) 'Validator, A Tool for Verifying and Validating Personal

Computer Based Expert Systems', in Brown, D. E. and White C. C. (eds.), Operations
Research and Artificial Intelligence: The Integration of Problem Solving Strategies, Kluwer
Academic Press, Boston, MA.

Keen, P. W. (1981) 'Value Analysis: Justifying Decision Support Systems', MIS Quarterly 5: 1,
1--15.

Kedinger, F. (1973) Foundations of Behavioral Research, Holt, Reinhart & Winston, New York.
King, M. and Phythian, G. J. (1992) 'Validating an Expert Support System for Tender Enquiry

Evaluation: A Case Study', Journal of the OperationalResearch Society 43, 203--214.
Klinker, G., Bentolila, J., Genetet, S., Grimes, M. and McDermott, J. (1987) 'KNACK -- Report-

Driven Knowledge Acquisition', International Journal of Man-Machine Studies 26, 65--79.
Kulikowski, C. A. and Weiss, S. H. (1982) 'Representation of Expert Knowledge for Consultation:

the Casnet and Expert Projects', in Szolovits, P. (ed.), Artificial Intelligence in Medicine,
Westview Press, Boulder, CO, pp. 21--56.

Laudaner, C. (1990) 'Correctness Principles for Rule-based Systems', Expert Systems With
Applications 1: 3,291--316,

Landry, M., Malouin, J.-L. and Oral, M. (1983) 'Model Validation in Operations Research',
European Journal of Operational Research 14, 207--220.

Langlotz, C. P. and Shortliffe, E. H. (1983) 'Adapting a Consultation System to Critique User
Plans', International Journal of Man-Machine Studies 19,479--496.

Langlotz, C. P., Shortliffe, E. H. and Fagan, L. M. (1986) 'Using Decision Theory to Justify
Heuristics', in Proceedings of AAAI '86, AAAI, Menlo Park, CA, pp. 215--219.

Lee, S. and O'Keefe, R. M. 'Subsumption Anomalies in Hybrid Knowledge-bases ~, International
Journal of Expert Systems (forthcoming).

Lehner, P. (1989) 'Toward an Empirical Approach to Evaluating the Knowledge Base of an
Expert System', IEEE Transactions on Systems, Man and Cybernetics 19: 3, 658--662.

Lethan, H. and Jacobsen, H. (1987) 'ESKORT -- An Expert System for Auditing VAT
Accounts', Proceedings of Expert Systems and their Applications, Avignon, France.

Liebowitz, J. (1986) 'Useful Approach for Evaluating Expert Systems', Expert Systems 2: 3, 86--
96.

Liu, N. K. and Dillon, T. (1991) 'An Approach Towards the Verification of Expert Systems Using
Numerical Petri Nets', International Journal oflntelligent Systems 6, 255--276.

Meservy, R., Bailey, A. and Johnson, P. (1986) 'Internal Control Evaluation: A Computational
Model of the Review Process', Auditing; A Journal of Theory and Practice 6: 1, 44--74.

Messier, W, F. and Hansen, J. V. (1992) 'A Case Study and Field Evaluation of EDP-XPERT',
International Journal of Intelligent Systems in Accounting, Finance and Management 1: 3,
173--186.

Miller, L. A. (1989) 'A Comprehensive Approach to the Verification and Validation of Knowl-
edge-Based Systems', in Proceedings of the 1989 AA_AI Workshop on Verification, Validation
and Testing of Knowledge-Based Systems, AAAI, Menlo Park, CA.

Miller, L. A. (1990) 'Dynamic Testing of Knowledge Bases Using the Heuristic Testing
Approach', Expert Systems with Applications 1: 3,249--269.

Moninger, W. R., Stewart, T. R. and McIntosh, P. (1988) 'Validation of Knowledge-Based
Systems for Probabilistic Reasoning', in Proceedings of the 1988 AAAI Workshop on Verifica-
tion, Validation and Testing of Knowledge-Based Systems, AAAI, Menlo Park, CA.

Mosteller, F. and Rourke, R. E. K. (1973) Sturdy Statistics, Addison Wesley, Reading, MA.
Nazareth, D. (1989) 'Issues in the Verification of Knowledge in Rule-Based Systems', Inter-

national Journal of Man-Machine Studies 30, 255--271.
Nguyen, T., Perkins, W., Laffery, T. and Pecora, D. (1985) 'Checking an Expert Systems

EXPERT SYSTEM V E R I F I C A T I O N AND V A L I D A T I O N 41

Knowledge Base for Consistency and Completeness', Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 374--378.

Nguyen, T., Perkins, W., Laffery, T. and Pecora, D. (1987) 'Knowledge Base Verification', AI
Magazine 8: 2, 65--79.

Norman, P. and Naveed, S. (1990) 'A Comparison of Expert System and Human Operator
Performance for Cement Kiln Operation', Journal of the Operational Research Society 41:11,
1007--1019.

O'Keefe, R. M. (1989) 'The Evaluation of Decision-aiding Systems: Guidelines and Methods',
Information and Management 17, 217--226.

O'Keefe, R. M. and Lee, S. (1990) 'An Integrative Model of Expert System Verification and
Validation', Expert Systems and Their Application 1: 3,231--236.

O'Keefe, R. M. and O'Leary, D. E. 'Managing and Performing Expert System Validation', in
Grabowski, M. and Wallace, W. A. (eds.), Advances in Expert Systems and Artificial
Intelligence for Management, JAI Press (forthcoming).

O'Keefe, R. M., Balci, O. and Smith, E. (1987) 'Validating Expert System Performance', IEEE
Expert 2: 4, 81--89.

O'Leary, D. (1987) 'Validation of Expert Systems', Decision Sciences 18: 3,468--486.
O'Leary, D. (1988a) 'Methods of Validating Expert Systems', Interfaces 18: 6, 72--79.
O'Leary, D. (1988b) 'On the Representation and the Impact of Reliability on Expert System

Weights', International Journal of Man-Machine Studies 29: 6,637--646.
O'Leary, D. (1988c)'Expert System Prototyping as a Research Tool', in Turban, E. and Watkins,

P. (eds.), Applied Expert Systems, North-Holland, Amsterdam, pp. 17--32.
O'Leary, D. (1990a) 'Soliciting Weights or Probabilities from Experts for Rule-Based Systems',

International Journal of Man-Machine Studies 32, 293--301.
O'Leary, D. (1990b) 'Verification of Frames and Semantic Networks', in Gaines, B. (ed.),

Proceedings of the Fourth Annual Workshop on Knowledge Acquisition, Banff, Canada.
O'Leary, D. (1991) 'Design, Development and Validation of Expert Systems: A Survey of

Developers', in Verification, Validation and Testing of Expert Systems, Jolm Wiley, New York,
NY, pp. 3--19.

O'Leary, D. and Kandelin, N. (1988) 'Validating the Weights in Rule-based Expert Systems',
International Journal of Expert Systems 1: 3,253--279.

O'Leary, D. and Watkins, P. (1989) Expert Systems in Internal Auditing, Research Monograph,
Institute of Internal Auditors.

O'Leary, T. J., Goul, M., Moffitt, K. E. and Radwan, A. E. (1990) 'Validating Expert Systems',
IEEE Expert 5: 3, 51--58.

O'Neil, M. and Glowinski, A. (1990) 'Evaluating and Validating Very Large Knowledge-based
Systems', MedicalInformatics 15: 3,237--252.

Ow, P. and Smith, S. (1987) 'Two Design Principles for Knowledge-based Systems', Decision
Sciences 18: 3,430--447.

Pearce, D. A. (1988) 'The Induction of Fault Diagnosis Systems from Qualitative Models',
Proceedings of AAAI '88, AAAI, Menlo Park, CA, pp. 353--357.

Preece, A. D. (1989) 'Verification of Rule-based Systems in Wide Domains', in Shadbolt, N. (ed.),
Research and Development in Expert Systems VI, Cambridge University Press, pp. 66--77.

Preece, A. D. (1990) 'Towards a Methodology for Evaluating Expert Systems', Expert Systems 7:
4,215--223.

Preece, A. D., Shinghal, R. and Batarekh, A. (1992) 'Verifying Expert Systems: A Logical
Framework and a Practical Tool', Expert Systems With Applications 5, 421--436.

Quinlan, J. R. (1979) 'Discovering Rules by Induction from Large Collections of Samples', in
Michie, D. (ed.), Expert Systems in the Microelectronic Age, Edinburgh University Press, UK,
pp. 168--201.

Radwan, A. E., Goul, M., O'Leary, T. J. and Moffitt, K. (1989) 'A Verification Approach for
Knowledge-based Systems', Transportation Research-A 23A: 4, 287--300.

Rushby, J. (1988) Quality Measures and Assurance for AI Software, NASA Contract Report
4187, Washington DC.

42 ROBERT M. O 'KE E FE AND DANIEL E. O 'LEARY

Shatz, H., Strahs, R. and Campbell, L. (1987) 'ExperTAX: The Issue of Long-Term Maintenance',
Proceedings of the 3rd International Conference on Expert Systems, pp. 291--300.

Shaw, M. and Woodward, J. (1988) 'Validation in a Knowledge Support System: Construing and
Consistency with Multiple Experts', International Journal of Man-Machine Studies 29: 3,
329--350.

Shpilberg, D. and Graham, L. E. (1989) 'Developing ExperTAX: An Expert System for Corpo-
rate Tax Accrual and Planning', in Vasarhelyi, M. A. (ed.), Artificial Intelligence in Accounting
and Auditing, Markus Weiner, New York, NY, pp. 343--372.

Soloway, E., Bachant, J. and Jensen, K. (1987) 'Assessing the Maintainability of XCON-in-RIME:
Coping with the Problems of a Very Large Rule-base', in Proceedings of AAA1 '87, AAAI,
Menlo Park, CA.

Suen, C. Y., Grogono, P. D. and Shingahl, R. (1990) 'Verifying, Validating and Measuring the
Performance of Expert Systems', Expert Systems With Applications 1, pp. 93--102.

Suwa, M., Scott, A. and Shortliffe, E. (1982) 'Completeness and Consistency in Rule-Based
Expert Systems', AI Magazine 3: 4, 16--21 (see also Buchanan and Shortliffe (1985), Chapter
8).

Turing, A. M. (1950) 'Computing Machinery and Intelligence', Mind 59.
Waterman, D. A. (1986) A Guide to Expert Systems, Addison-Wesley, Reading, MA.
Weiss, S. M. and Kulikowski, C. A. (1984) A Practical Guide to Designing Expert Systems,

Rowman, and Allenhead.
Weitzel, J. R. and Kershberg, L. (1989) 'Developing Knowledge-Based Systems: Reorganizing the

System Development Life-Cycle', Communications of the A CM 32,482--487.
Williams, G. (1976) 'Comparing the Joint Agreement of Several Raters with Another Rater',

Biometrics 32: 2, 619--627.
Wyatt, J. and Spiegelhalter, D. (1990) 'Evaluating Medical Expert Systems: What to Test and

How?', Medical Informatics 15:3,205--217.
Yager, R. R. and Larsen, H. L. (1991) 'On Discovering Potential Inconsistencies in Validating

Uncertain Knowledge Bases by Reflecting on the Input', IEEE Transactions on Systems, Man
and Cybernetics 21: 4, 790--801.

Yen, J., Neches, R. and MacGregor, R. (1991) 'CLASP: Integrating Term Subsumption Systems
and Production Systems', IEEE Transactions on Knowledge and Data Engineering 3: 1, 25--
31.

Yu., V., Buchanan, B., Shortliffe, E., wraith, S., Davis, R., Scott, A. and Cohen, S. (1979a)
'Evaluating the Performance of a Computer-based Consultant', Computer Programs in
Biomedicine 9: 1, 95--102.

Yu., V., Fagan, L., Wraith, S., Clancey, W., Scott, A., Hanigan, J., Blum, R., Buchanan, B. and
Cohen S. (1979b) 'Antimicrobial Selection by Computer', Journal of the American Medical
Association 242: 12, 1279--1282 (see also Buchanan and Shortliffe (1985), Chapter 31).

Zlatareva, N. P. (1992) 'Truth Maintenance Systems and Their Application for Verifying Expert
System Knowledge Bases', Artificiallntelligence Review 6: 1, 67--108.

