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Abstract: Researchers have developed artificially intelligent (AI) and expert systems (ES) to assist in the 
formulation, solution and interpretation of generic mathematical programs (MP). In addition, re­
searchers also have built domain-specific systems either modeled around a mathematical program or 
which include a mathematical program module. In these systems, the specificity of the domain allows 
researchers to extend the interpretation or formulation beyond that available from the generic set of 
assumptions about mathematical programming. Further, researchers have begun to investigate the use of 
mathematical program formulations of expert systems. The purpose of their research has been to, e.g., 
understand the complexity of the expert systems and also to examine the feasibility of mathematical 
programming as an alternative solution methodology for those expert systems. This paper surveys and 
extends some of that literature that integrates AIlES and MP, and elicits some of the current research 
issues of concern. 
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1. Introduction 

The purpose of this paper is to investigate the 
interface between Mathematical Programming 
(MP) and Expert Systems (ES) and Artificial In­
telligence (AI). There are at least four facets of 
that interface. First, AIlES can be used gener­
ally to facilitate the use of MP. For example, 
AIlES can be used to formulate and interpret 
MP. Second, MP can be used to ensure that 
AIlES systems generate good solutions. MP ap­
proaches generate optimal solutions that might 
be used to solve parts of problems faced by 
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general AIlES problems. Third, in some cases 
AIlES can be formulated as MP. This may have 
benefits such as understanding about the com­
plexity of the AIlES system or getting solutions 
faster. Fourth, it may be that formulation of parts 
of MP algorithms as ES I AI problems could facil­
itate the computational quality of MP algorithms. 

1.1. Coupling ES I AI and MP 

Winston (1984, p. 2) noted that "one central 
goal of Artificial Intelligence is to make comput­
ers more useful". In that sense, there is substan­
tial need for artificial intelligence in the use of 
mathematical programming. Often the formula­
tion and interpretation of mathematical programs 
is too time consuming or too costly to impact 

0377-2217/93/$06.00 © 1993 Elsevier Science Publishers B.V. All rights reserved 

http:0377-2217/93/$06.00


2 R.D. McBride, D.E. O'Leary / Integrating MP and AI / ES 

decision making. Further, the use of much MP 
software requires substantial expertise in opera­
tions research and the particular software. Thus, 
often times operations research just is not used 
(e.g., Fabozzi and Valente, 1976). Given this per­
spective there is substantial need for AI in opera­
tional research to make mathematical program­
ming 'useful'. 

This can be done by using AIlES to formu­
late, solve and analyze MP, in order to facilitate 
use of MP. Both domain-independent and do­
main dependent approaches are discussed in this 
paper. In addition, AIlES can be used in other 
facets of using MP models, such as model man­
agement. 

1.2. Using MP in AlI ES models 

Not only can AIlES assist in the use of MP 
models, but the reverse can also be true. AIjES 
models typically employ heuristic approaches to 
solve problems. However, in some cases various 
subproblems might be effectively and efficiently 
solved as MP problems. This would guarantee 
optimal solutions to those portions for which 
optimal solutions could be developed. 

1.3. Formulating ES I Al as MP 

There is another side to the relationship be­
tween AIlES and MP. MP has been established 
for a number of years. As a result, many facets of 
the complexity of particular problems have been 
established. For example, it has been established 
that the traveling salesman problem is a very 
complex problem (NP-complete). Thus, if it could 
be shown that an AIlES issue is equivalent to a 
traveling salesman problem then that would indi­
cate that it is an equally complex problem. 

Further, many special formulations of MP 
problems have been made to solve specific prob­
lems, for example, shortest path problems or min­
imum cutset problems. Thus, if there is a map­
ping that allows us to view AIjES as mathemati­
cal programs, then we can make use of those 
formulations to solve analogous problems. 

In addition, assuming that we can establish a 
mapping between MP and ES then those situa­
tions when it may be preferable to solve the 
problem from an MP perspective or an ES per­
spective could be explored. 

1.4. Formulating MP solution algorithms with AlI :1 

ES 

Probably the most neglected aspect of coupling 
AIlES into or with MP is integrating AIlES into 
making MP algorithms more effective. When re­
searchers first were unsuccessful in their ability to 
duplicate the results of Karmarkar's well-known 
algorithm for linear programs, it was rumored 
that part of the success of Karmarkar's algorithm 
was Karmarkar. It was rumored that Karmarkar 
'assisted' the algorithm with his expertise at criti­
cal points in the solution process. Whether or not 
this was true is not the issue to be discussed here. 
However, it does raise the question: (How) can 
expertise be integrated into algorithms to assist 
the algorithms? If so, then AIlES can be used to 
improve existing algorithms. Since little has been 
developed on this question, it will not receive 
further discussion in this paper. 

1.5. Plan of this paper 

This paper proceeds in the following manner. 
Section 2 investigates some of the issues involved 
with coupling of AIlES and MP. In addition, 
that section provides a brief review of some AI 
concepts. 

Section 3 discusses intelligent systems using 
MP that are domain independent. Some research 
issues are discussed as a summary for that sec­
tion. Section 4 examines the implications of build­
ing intelligence into domain-dependent applica­
tion system that either are built around mathe­
matical programming systems or mathematical 
programs that are built into AIlES. This section 
examines some of the implications of computeriz­
ing the knowledge of the operational research 
expert and those implications of using a mathe­
matical programming approach as opposed to a 
heuristic approach. It also discusses the unique 
aspects of development and implementation re­
quired for establishing the example systems with 
the embedded mathematical programs. 

Section 5 discusses MP representations of 
AIlES, and their use to better understand AIlES 
applications and the potential use of those MP 
formulations rather than AIlES approaches to 
solve those problems. Section 6 provides a sum­
mary of the paper. 
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1. Coupling AI / ES and MP 

Although most of the research done to date 
has focused on expert systems and MP this paper 
does not limit itself to ES. Instead, a broad-based 
approach is used, focusing on a number of com­
ponents of AI. The purpose of this section is to 
briefly review some key concepts in AIlES and 
the nature of coupling AIlES and MP. 

2.1. Background: AI and ES 

Newell and Simon (1972, p.6) have defined AI 
as " ... the part of computer science devoted to 
getting computers (or other devices) to perform 
tasks requiring intelligence". Two areas of AI 
appear to be of substantial use in coupling with 
MP, expert systems and case-based reasoning. 

ES are a branch of AI that have received 
substantial attention. There are a number of defi­
nitions of ES. The most narrow of those defini­

. tions focus on the need for the system to be a 
rule-based system ('If A, then B'), based on 
knowledge gathered from an expert, that func­
tions at the level an expert would function. Other 
defulitions allow alternative forms of knowledge 
representation (e.g., frames), other sources of 
knowledge acquisition (e.g., text books), and other 
levels of performance (e.g., 'satisfactory'). 

Case-based reasoning (CBR) involves the pro­
cess of making decisions based on specific exam­
ples of what has occurred in the past, rather than 
a set of rules. Previous cases or plans are stored 
for use in solving future problems. In addition, 
means of adapting previous decision making· 
problems are saved. By making previous solutions 
available to decision makers, the decision maker 
can anticipate variables of concern and alterna­
tive solutions. In addition, past mistakes can be 
avoided, while short-cuts can be made available. 
As noted by Hammond [1988, p.17], the ideas 
behind case-based planning rise out of the simple 
principle: 
If it worked, use it again, and a corollary; 
if it works, don't worry about it. 

The refinements of the basic idea come out of 
a second, equally simple principle: 
If it didn't work, remember not to do it again, to 
which is added: 
If it doesn't work, fix it. 

2.2. Insight, not numbers 

MP, in general, and linear and integer pro­
gramming, in particular, have been some of the 
most successful operations research methods to 
solve a wide range of constrained optimization 
problems. Although much of the research and 
many of the headlines are aimed at generating 
faster algorithms, as noted by Geoffrion (1976), 
"the purpose of mathematical programming is 
insight, not numbers". 

In order to build such insight into the systems 
that use MP, there have been at least two basic 
trends. First, some researchers have investigated 
AIlES .approaches to have the system formulate, 
solve, debug and interpret output from the sys­
tem, while assuming relatively generic domains 
(domain independent). Second, other researchers 
have made more detailed assumptions about the 
domain in which the application is based (domain 
dependent). These assumptions generally allow 
the researcher to develop systems that formulate 
programs based on general inputs from the user 
and they allow the researcher to be more specific 
in the investigation of output and interpretation 
of the meaning of that output. 

2.3. Shallow versus deeply coupled systems 

Kitzmiller and Kowalik (1987) distinguish be­
tween shallow and deeply coupled systems. A 
coupled system is any system linking both nu­
meric and symbolic processing. Such a distinction 
may be useful in the analysis of coupling of 
AIlES and MP. In the case of shallow systems, 
the MP is treated as a 'black box'. The AIlES 
portions of the system have little knowledge about 
what goes on in the use of MP. On the other 
hand, in deeply coupled systems, the AIlES por­
tion of the system has extensive knowledge about 
MP. For example, it may be able to formulate or 
interpret the system. 

As will be seen later in the paper, most of the 
systems developed so far coupling AIlES and 
MP have been deeply coupled. Since most of 
these systems are research systems designed to 
explore the relationship between AIjES and MP 
this is not unexpected. In those systems cost and 
development time typically are not a factor. How­
ever, this seems to ignore the potentially cost 
effective approach of shallow coupling. As a re­
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suit, it is probably not unusual that the one 
shallow coupled system found in the litterature 
was a system developed for an actual business 
setting. 

Deeply coupled systems likely are more robust 
(Kitzmiller and Kowalik, 1987), with respect to 
the use of the system's results. This occurs be­
cause the AIjES portion is aware of the limita­
tions of the use of MP and what MP requires. 
Unfortunately, these systems are not often 'user­
proofed' with respect to those limitations of MP. 
If the system formulates, solves and interprets the 
solution, the user may not know if the problem is 
an appropriate use of the system. 

2.4. Other implications of coupling AI j ES and MP 

There are at least two implications of coupling 
a mathematical program in an AljES system. 
First, coupling MP and AIjES indicates that the 
expertise of the operation research analyst can be 
captured in a computer program. This suggests 
that the design, formulation, interpretation and 
management of those MP can be formulated as a 
program. Initially, it was unclear as to the ability 
of developers to accomplish that task. As seen in 
Sections 3 and 4, there should be no question 
regarding that task. This also indicates that there 
probably is no more need to develop prototypes 
simply to test the ability to develop programs of 
this sort. 

Second, building MP components into an 
AIjES indicates that the developer expects an 
advantage with MP. Those advantages could in­
clude that an analytic approach rather than a 
heuristic approach yields a faster solution time or 
better solutions. Whether or not those advan­
tages can be realized is an empirical issue, and is 
discussed later in the paper. 

2.5. Development methodologies for coupled AI j 
ES and MP 

A prototyping approach typically is promul­
gated for expert systems (e.g., Hayes-Roth et aI., 
1983) However, researchers recently have sug­
gested the use of more traditional software engi­
neering processes (Bull et aI., 1987). The develop­
ment of coupled MP and AIjES systems has not 
pointed in any new directions or in anyone 

direction. Most of the systems appear to have 
been developed using a prototyping approach, 
although that is not clear. In addition, the possi­
ble existence of unique development methodolo­
gies deriving from such coupled hybrid systems 
also is not clear. 

3. Domain-independent analysis of mathematical 
programs 

The most general approach to deriving insight 
from a mathematical program is to make no 
assumptions about the specific domain, in effect, 
draw only on the knowledge of mathematical 
programming and mathematical programming 
technical knowledge for system intelligence. Re­
search in this area can focus on how to accom­
plish particular tasks in this process, what tasks 
can or should be automated, and to what extent 
these efforts can remain domain-independent. 

Systems have been developed with intelligence 
to 

• choose which algorithm is required to solve 
the particular problem and solve the problem, 

• formulate problems as mathematical pro­
grams, and 

• interpret and debug problems. 

3.1. Algorithm choice and solution 

Schittkowski (1985, p.2) developed a system 
that the author called " ... the first implementa­
tion towards an expert system for mathematical 
programming". Various options are available in 
the system for the formulation of various linear 
and nonlinear functions. The intelligence of the 
system comes from its ability to choose a suitable 
linear or nonlinear mathematical programming 
algorithm to solve the program. The system then 
writes a FORTRAN source program that will 
solve the problem. That program is then executed 
and the numerical results are stored in a database, 
available for further processing, retrieval or mod­
ification. 

3.2. Problem formulation 

AIjES can be used to assist in the formulation 
of MP. The research that has been done to-date 

,'--­
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has focused on general aspects of the formulation 
process. For example, there must be a process to 
generate variables and constraints in an intelli­
gent manner in order to facilitate problem forma­
tion. As will be seen latter, if additional assump­
tions are made about the domain, then greater 
model specificity can be obtained in the formula­
tion process, since the domain dictates certain 
problem features. There have been at least two 
approaches toward the development of intelligent 
systems designed to assist users in the general 
formulation of MP. 

LPFORM 
In a sequence of papers, Murphy and Stohr 

(1986), Stohr (1988), Murphy, Stohr and Ma 
(1988), Murphy, Stohr and Asthana (1989), and 
Ma, Murphy and Stohr (1989a,b) describe an 
intelligent system, LPFORM, designed to formu­
late linear programming problems. As will be 
seen latter in this paper, LPFORM also facili­
tates domain-dependent problem formulation. As 
noted in Stohr (1988) there are three major com­
ponents to that system. 

First, LPFORM supports three generic classes 
of inputs: row orientation ('the total tons of prod­
uct produced in each factory has to be less than 
certain limits'), activity orientation ('we have buy­
ing and selling activities in each of our ware­
houses') and transportation structures. These 
classes of inputs are used to define different 
objects of interest. 

Second, LPFORM allows the definition of 
problems using icons to represent objects being 
modeled, such as warehouses, transportation 
flows, etc. This object-oriented approach to rep­
resenting knowledge allows hierarchical arrange­
ment of objects so that lower level objects inherit 
properties of higher level objects. Once an object 
is defined and related to other objects, inheri­
tance limits the number of properties that must 
be defined at the level of individual objects. This 
hierarchal structure also is used to structure the 
graphics used in LPFORM. An algebraic repre­
sentation is generated as an artifact of the formu­
lation of the problem in terms of its objects. 

Third, LPFORM also provides for a relational 
database for data required in the problem. Fur­
ther, LPFORM allows the storage and recall of 
model components that have been stored previ­
ously. Users can recall all models using a given 

resource or all with a common activity. There is 
more discussion on LPFORM in Section 4. 

NETSYS 
McBride and O'Leary (1993) discuss another 

system aimed at the generic formulation of gener­
alized network models, a class of mathematical 
programming problems. Many problems can be 
formulated as generalized networks: transporta­
tion, shortest path, assignment and transshipment 
models. 

Generalized network models can represent 
machine efficiencies, sewage treatment, and many 
other processes. When network multipliers are 
interpreted as transforming one good to another, 
then generalized networks can be used to model 
manufacturing, blending, production, and a broad 
range of other processes. 

Since the scope of the system is limited to 
network problems, this allows the system to per­
form formulation, data editing, etc., based on the 
assumption of a generalized network structure. 
The structure assumption also allows the system 
to perform a number of infeasibility checks, and 
present information on those infeasibilities, so 
that the user can address those problems. 

NETSYS also uses an object-oriented ap­
proach that is facilitated by the development en­
vironment, Microsoft's Windows. The system uses 
network models, built by creating node sets, and 
taking cross products and 1-1 mappings with 
subsets of the node sets to create the arc sets. 
This approach requires minimal user effort to 
build substantial models. 

The system does a minor amount of interpre­
tation of the solution. The system also provides a 
sensitivity analysis of the problem. 

3.3. Model interpretation and debugging 

In one of the first systems to integrate AIlES 
and MP, Greenberg (1983) described a system 
called ANALYZE. That system was designed for 
the linear programming expert, to assist in the 
investigation of solutions of linear programs. The 
system has the ability to investigate issues such as 
feasibility, redundancy and sensitivity analysis at 
a general level. 

Greenberg (1983, 1985) describes a later ver­
sion of ANALYZE as forming (Greenberg, 1983, 
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p.333) " ... one fundamental component of an 
intelligent mathematical programming system". 
In that revised version, an English language dis­
course version of the earlier system is developed 
and extended. Greenberg's (1983) system is de­
signed for use after the system has been formu­
lated, however, it can be used during model im­
plementation. As a result, it might be used in 
conjunction with those systems discussed above 
for formulation. 

Such a system is dependent on knowing the 
structure of the constraints to ensure that it can 
debug and interpret the system. For example, it 
needs to know the type of equations that it can 
expect. Given those expectations and a user sup­
plied set of tables that correspond to those equa­
tions and variables, the system uses that structure 
to analyze and 'interpret' the resulting tableau. 

3.4. Implementation characteristics 

The implementation of these systems has cer­
tain generic concerns including: the use of graph­
ics and knowledge representation. 

Graphic interfaces 
One of the most comprehensive discussions of 

the use of graphics in any of the above systems is 
Ma, Murphy and Stohr (1989a). The primary fo­
cus of that graphic interface is to provide the user 
with a different representation that allows them 
to depict their problems in a graphic, rather than 
mathematical form. Important empirical issues 
are 'does it make a difference' and 'what are the 
best approaches'. Ma (1988) has initiated addi­
tional research in this area. 

Knowledge representation 
Consistent with the Kitzmiller and Kowalik 

(1987), the dominant form of knowledge repre­
sentation appears to be objects. Generally the 
user chooses or generates an object that meets 
their needs and the system generates equations 
that correspond to that object. In addition to 
their correspondence to graphic structures, it 
seems that the hierarchical nature of objects is a 
very convenient approach to store knowledge for 
such systems. Further, recently developed pro­
gramming vehicles, such as WINDOWS, are ob­
ject-oriented, furthering the ability to develop 
such systems. 

3.5. Model management 

An important issue is the reusability of previ­
ous model parts or templates. Generally, this is 
referred to as model management. 

An approach that employs AI for model man­
agement would likely use a case-based approach 
to capture and retain knowledge about previous 
models that have been generated. That knowl­
edge could be used to assist in generating new 
models or modifying existing models. 

In a domain-independent environment, there 
are a number of characteristics that can be used 
to structure the cases. These include: who devel­
oped the application, when it was developed, who 
was the client of the application, size of the 
model, and many other characteristics. In addi­
tion, hierarchical relationships within a given 
characteristic can also be pursued. 

The use of case-based reasoning to manage 
models has received limited attention. As a re­
sult, additional research is needed to focus on 
what are the appropriate characteristics used to 
capture previous models, how well the case-based 
approach works in the choice of previous MP 
models, and a variety of other systems issues. 

This model management issue has behavioral 
and design aspects that are facilitated by investi­
gation of a case-based approach. From a behav­
ioral perspective, to what extent would users and 
designers employ parts of previous systems? What 
do expert model designers do? From a design 
perspective, what is the best way to store, recall 
and use previous model templates? In addition, 
what characteristics distinguish those templates 
that receive frequent re-use - are they domain­
dependent? Further, how do we store parts of 
models for further use? Whenever there are more 
than a few core models or core users such issues 
become very important. 

3.6. Selected additional research issues 

There are additional research issues in both 
the behavioral analysis of the integration of 
A1/ES and MP and in the design of these sys­
tems. This section summarizes some of those 
issues. 

Although the goal of these systems is to help 
people solve problems, little, if any empirical 
work has been done to examine the extent to 

" 
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which the models developed aid in problem solu­
tion. Related work on the impact of using domain 
dependent systems is discussed in the next sec­
tion. 

Virtually all of the systems discussed in this 
section at some point began to draw on domain 
knowledge. Focusing only on MP structures is a 
focus primarily on syntax (e.g., Greenberg, 1987). 
Generally, the introduction of semantics occurs 
with the investigation of a specific domain. Un­
fortunately, there is little research that studies 
'how far' we can go in the development of these 
systems without assuming domain knowledge. 
Murphy, Stohr and Ma (1988) is an exception. In 
that paper, there are some formal results that 
indicate what can be accomplished with syntacti­
cal knowledge and what requires semantic knowl­
edge. Although the development of systems pro­
vides an empirical frontier of the ability to model 
between semantic and syntactical, such theoreti­
cal results provide important guidelines to future 
system development efforts. 

4. Domain-specific analysis of mathematical pro­
grams 

There have been a number of domain-specific 
systems that have integrated MP and AIlES. In 
most situations, it appears that the focus is the 
MP and the AIlES has been designed to facili­
tate the development or interpretation or use of 
the system. In at least one case discussed below, 
the AIlES was the focus, but MP was used to 
provide a better solution to one component of the 
AIIES system. 

Domain knowledge can facilitate the integra­
tion of AIlES in MP. The domain provides the 
opportunity for increased specificity in the analy­
sis of the input or output of the program. For 
example, if it is known what the output variables 
represent, then it is possible to develop rules to 
analyze the output, including the solution and the 
dual variables, just as a human analyst might do. 

4.1. Applications 

There have been a number of domain-specific 
applications that employ at least a linear pro­
gramming module. These applications range from 
production models to finance models to strategy 

models to personnel models. It appears that the 
most research in this area has been done in 
production and related models. Some of the ap­
plications discussed in this section are domain­
based applications of some of the literature' dis­
cussed in the previous section on domain-inde­
pendent models. 

Most of the models in this section appear to be 
deeply coupled models. That is, most of these 
models are intelligent formulators and inter­
preters of MP for domain-specific problems. 

Production management 
Binbasioglu and Jarke (1986, p.215) made 

heavy use of domain specific knowledge to gener­
ate a prototype system for the " ... conceptual 
development and symbolic (as contrasted to nu­
meric) formulation of the model" for production 
management problems. The model combines the 
use of syntactic knowledge about linear program­
ming and semantic knowledge about the produc­
tion management. The system is a prototype that 
has not been deployed for actual use. The focus 
of the prototype was to bypass the potentially 
lengthy and ambiguous development process typi­
cally involved in operational research projects. As 
a result, the system was designed so that the 
manager could formulate a model directly. 

Knowledge in the system is represented as 
frames. Accordingly, the system allows for unique 
characterization of individual products and re­
sources, and hierarchies in the relationships of 
machines used in the production of different 
products. 

The system has a linear programming knowl­
edge base and an application knowledge base. 
The linear programming knowledge uses two dif­
ferent knowledge bases. One contains knowledge 
about naming and selecting variables, problem 
types and other issues. Another contains knowl­
edge about obtaining and interpreting parameter 
values. The system's knowledge about the domain 
covers a large range of problems, including the 
allocation of resources to products, relative com­
position and contribution of products, etc. 

Widget production management 
In the discussion of LPFORM, a number of 

different models are discussed to exemplify the 
concepts and gain additional meaning through 
semantic knowledge. Stohr (1988) discusses a pro­
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duction management problem that produces wid­
gets and then ships them to warehouses. Murphy 
et aI. (1988) discuss a problem of shipping grain, 
Ma et aI. (1989a) investigate capital capacity, and 
Ma et aI. (1989b) investigate a problem of trans­
porting energy. 

In order to formulate the problem, the user 
needs to specify the basic structure of the prob­
lem, using the graphic interface. In the widget 
example, the user specifies a relationship be­
tween Factories and Warehouses and between 
Raw Materials and Widgets. At the basis of these 
applications is a 'definition of production' activity 
provided to the system. This definition includes a 
declaration of inputs and outputs, upper bounds 
lower bounds, coefficient definitions, activity 
name, and other information. In the case of wid­
get production that means defining raw materials 
as inputs, widgets as outputs, activity name as 
'product mix'. Then the user needs to specify the 
"'fu%~~\'\~\.\,.~,weviously established sets Facto­
ries, Warehouses, Widgets and Raw lVlaterl'fu."s. 

Production scheduling via transportation model 
Using the version of the transportation model 

developed by Bowman (1956) for production 
scheduling, O'Leary (1986) designed an expert 
system to analyze the output from that mathemat­
ical program. That analysis exploited three as­
pects of the formulation. First, the transportation 
problem provides knowledge that the right-hand 
side. quantities are sources and requirements, 
while the solutions to the problem define the 
amount of a shipment from a source to a destina­
tion. Second, the context of production schedul­
ing further defines those constants as forecasted 
sales and necessary production. Third, the further 
detail of production scheduling establishes the 
sources of production and the costs as inventory, 
regular time wages and overtime wages. All of 
this domain information provides additional in­
sights over and above the notion that the problem 
is a generic linear program. Thus, this informa­
tion can be used to interpret the MP solutions, 
using a rule-based ES. 

<;.~" t\'Ib: Qlanning and interface to strateirc plan­
ning 

Lee and Lee (1987) develop a system that 
analyzes the results from a short-term product 
mix model with a rule-based system to determine 

if the short-term results and long-term objectives 
are congruent. The output of the analysis by the 
rules can include a set of changes that should be 
made to the linear programming model to have 
consistency in the short- and long-term goals. 

Often linear programming is criticized for its 
focus only on the long run or only on a given 
objective. This type of application can be use to 
mitigate many of those criticisms, by introducing 
additional analysis into the results to answer some 
of those criticisms. 

Intelligent aggregate planning 
Lee and Kang (1988) developed a rule-based 

system to assist in the consideration of additional 
qualitative factors in aggregate production plan­
ning problems (e.g., Holt, Modigliani, Muth and 
Simon, 1960). In particular, issues such as em­
ployee morale and customer goodwill are not 
directly included in such models. Thus, a rule­
based system was developed to facilitate consid­
erauon ot 'Th~'e\"h~~'\."",\t.~w.. the context of the 
MP. 

The rule-based system evaluates the minimum 
cost solution in terms of its impact on employee 
morale and customer goodwill. If any of the qual­
itative goals related to these issues is unsatisfac­
tory, then trade-offs can be made via new or 
different constraints for the MP. 

Additional extensions and discussions of re­
lated models are provided by Lee (1991). For 
example, similar approaches are discussed for 
scheduling crude oil delivery. In addition, an ap­
proach is discussed for formulating such MP (Lee 
et aI., 1989). 

Aggregate production planning 
Donnelly et al. (1991) develop a system, AG­

PLAN-LP, that combines a mathematical pro­
gramming model with heuristics to generate a 
production plan. Holt, Modigliani, Muth and Si­
mon (1960) formulated the production planning 
problem as a quadratic program. Although this 
means that an optimal solution can be developed 
for the formulated problem, the disadvantages of 
U~\l\~ such an approach include that management 
may not be comfortable with the m'Afuematics 
and the model requ\1.'~"1. ~\. '<\.~~tOximation, 
which may not accurately reflect the actual pro­
cess. 

-------------------------------------------.....-.,. 
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In a test of the quality of using an ES/MP 
approach, Donnelly et aL (1991) compared an 
expert system based entirely on heuristics to AG­
PLAN-LP. The traditional expert system has 
roughly 500 rules distributed in four modules 
(data acquisition, data modification, initial pro­
duction plan and final production plan). AG­
PLAN-LP was created by removing the 25 rules 
in the initial production plan module, and substi­
tuting them with 40 rules and a link to a linear 
programming model. 

The authors do a detailed analysis of the qual­
ity of the two systems. Apparently, not only was 
AGPLAN-LP able to generate more inexpensive 
solutions than the expert system, but it also was 
able to generate solutions that were more accept­
able to the planner. They also found that AG­
PLAN-LP had more acceptable solutions than 
those generated solely by a linear program. 

Cash management 
In a sequence of papers, McBride, O'Leary 

and Widmeyer (1989a,b, 1990), discuss an intelli­
gent system for using linear programming to solve 
cash management problems. Like the Binbasioglu 
and Jarke (1986) system, CASHMANAGER is 
designed for a domain user not the operation 
research expert. Knowledge in the system is stored 
in frames and rules. 

With CASHMANAGER, the user generates a 
problem by choosing from the set of available 
financial instruments represented as templates, 
with corresponding sets of equations. The user 
must only specify time frame over which the 
system is operative and the costs and returns 
associated with the instrument. The system was 
developed to formulate and solve the problem of 
choosing the optimal portfolio. In addition, the 
system then can assist the user in understanding 
the results, e.g., by analyzing the dual variables. 

CASHMANAGER does more than just a con­
ceptual formulation of the problem: it also inves­
tigates the formulation for feasibility. In addition, 
since the system is aimed at relatively naive users, 
the user is integrated into the process of making 
sure that the system is feasible. Infeasibilities are 
displayed to the user in a manner that relates to 
the instruments and the corresponding dollar 
flows. 

The system assumes an underlying generalized 
network structure to the cash management prob­

lem. That approach allows the generation of inte­
ger solutions in a timely manner. 

Debt advisory system 
Dempster and Ireland (1988, 1989) have devel­

oped a system called MIDAS. The system is an 
intelligent debt management decision support 
system, which supports planning for a Canadian 
utility. As noted by Dempster and Ireland (1988, 
pAlS), the conceptual design of the system 
" ... provides for selected models appropriate to 
the decision process; configures and solves the 
models on user request; explains, interprets and 
refines their results interactively and assists the 
user in evaluating alternative borrowing plans". 

In terms of the specific mathematical program­
ming module this system is relatively unique, since 
it focuses on a stochastic programming model. 
Once output is received from the model it is 
refined by the system based on rules developed 
jointly with an experience corporate treasurer 
and professional underwriters. 

The knowledge in MIDAS falls into four main 
categories: corporate knowledge (goals, planning 
constraints, evaluation criteria); financial! eco­
nomic knowledge (debt sources, types of debt 
available, future rate expectations); modeling 
knowledge (variables and their explanations, 
mathematical functions); and system and input/ 
output objects (to handle I/O functions). As with 
a number of other systems, the frames allow for a 
parsimonious way to store knowledge, because of 
the hierarchical relationships that can be estab­
lished. 

Manpower allocation 
Berger and Huttinger (1986) describe an appli­

cation that is a combination of linear program­
ming and expert systems to solve manpower allo­
cation issues. The ES is used to formulate the 
MP. 

That system has three distinct modules. The 
first module ranks tasks in terms of cost-benefit 
ratios, where cost is measured in person-years 
and benefit is measured as the fraction of an 
organization's objective that is accomplished by 
the task. The expert system uses rules and heuris­
tics to convert the input allocations to a set of 
constraints. Then the linear programming module 
allocates manpower, subject to the constraint set 
generated by the ES. 
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Developing financial statements 
Back (1992) developed an expert system that 

integrated a rule-based approach and a MP ap­
proach to assist in the development of financial 
statements. In Finland the development of finan­
cial statements is a complex process with many 
interacting rules and choices to be made. It gen­
erally is so complex that even experts are likely to 
make the wrong decision. Thus, potentially this 
system can provide the user with the appropriate 
decision support to help generate the financial 
statements. 

Back (1992) is one of the few researchers to do 
behavioral experiments to determine whether the 
use of the system that she developed actually 
made a difference. Her analysis found that the 
use of the system led to correct answers in 94 out 
of 96 questions whereas traditional support, using 
a text book to determine if answers were correct, 
led to only 53 correct answers out of 120 possible 
problems. The system makes a difference. 

Auditing judgement 
Kellyet al. (1987), Willingham and Ribar (1988) 

and Ribar (1988) describe one of the largest 
financial-based expert systems developed to date. 
The system was designed to assist public account­
ing auditors in their analysis of the collectability 
of loans. As developed by Peat, Marwick, Main 
and Co., 'Loan Probe' has over 3000 rules. As 
noted in Willingham and Ribar (1988), it also has 
an embedded integer programming module. 

The integer programming module was devel­
oped in an iterative manner. As noted in Willing­
ham and Ribar (1988, p. 183), 
"Initially, we attempted to solve this problem by 
investigating the methods used by practitioners. 
This attempt resulted in a large, that is, approxi­
mately 1000 rule subsystem which generally 
yielded only a good first approximation. This 
approach was eventually abandoned and the 
problem reformulated as an integer programming 
problem". 
The user does not know that the system contains 
an integer programming module. Instead, the re­
sults from the programming module are directly 
integrated into the system. 

This system is different from the others dis­
cussed in this section since the focus is not on 
using an ES to either formulate or interpret the 
results of the MP. Instead, MP is used to solve a 

subproblem in and ES, which then feeds into the 
rest of the system. This system's use of MP is 
probably best described as shallow, yet very cost 
effective. It is likely that more applications of this 
type will be generated if developers of ES do not 
limit themselves to a particular type of problem 
solution approach, whether that is rules or linear 
programming. 

4.2. Advantages and disadvantages 

There are some potential advantages and dis­
advantages of using a coupled AIlES and MP 
approach in application domains. 

Replacing the operational research analyst 
Coupling a mathematical programming mod­

ule in an AIlES replaces some of the role that 
the operational research analyst might play. In­
stead of the analyst gathering information from 
the user, formulating the problem, solving the 
problem and interpreting the solution, systems 
have been developed to perform those tasks. 
Thus, the time and the cost required to develop a 
model, within the domain of the system, and a 
solution likely will be substantially smaller. 

However, there also may be some drawbacks. 
Because it is a computer system, it is likely to be 
locked into a limited number of views of the 
world. Typically, such systems are rigid and sel­
dom are able to provide unique or creative solu­
tions to unusual problems. The environment may 
change causing a change in the optimal decision 
process, yet current generation AI and expert 
systems rarely are designed to change in response 
to those environmental changes. The systems dis­
cussed apparently do not have any such sensing 
mechanisms to note when there is a change in the 
environment. Thus, an important research issue 
is how to develop systems that know when they 
are likely to not be useful and how to develop 
systems that change in response to environmental 
changes. 

Optimality 
The use of optimization models, with rule­

based approaches, has certain advantages and 
disadvantages. In the case of linear programs, 
algorithms typically rapidly find 'optimal solu­

1..___ 
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tions'. However, in the case of integer or nonlin­
ear programs, depending on the processing capa­
bilities, optimal solutions may take substantial 
amounts of time and intermediate solutions may 
not be feasible. 

Further, although MP provides an optimal so­
lution, it may suffer from being a single dimen­
sional optimality. It is only optimal for the given 
objective function, and in the case of integer 
solutions, heuristics aimed to move it slightly 
away from that solution may provide substantially 
worse solutions. 

Further, the solution derived by an optimiza­
tion model is 'optimal' for the world for which it 
has been constructed. This is a limited view of the 
world, where precision at the 12th decimal place 
is important. Thus, systems like those of Lee and 
Kang (1988) that assist in the analysis of qualita­
tive factors might be extended to account for 
other 'realism factors.' Additionally, it could be 
important to study the use of multiple criterion 
decision making (MCDM) MP and AIlES. 

Feasibility 
The use of mathematical programs introduces 

the problem of feasibility. For example, one po­
tential problem with the Donelly et al. (1991) 
approach is that the system just stops whenever 
there is an infeasible solution to the linear pro­
gram. As noted by other researchers (e.g., Mur­
phy and Stohr, 1986), this is not a desirable 
approach for supporting decision making. Thus, 
research needs to be done on how users react to 
infeasibilities and different system responses, how 
relatively naive users can be asked to fix such 
infeasibilities and what intelligence the system 
needs to attack those infeasibilities. 

Explanation 
As noted in Swartout (1981, p.815), "to be 

acceptable, expert programs must be able to ex­
plain what they do and justify their actions in 
terms understandable to the users". With MP 
there generally is no 'explanation' as to 'why' the 
model chose certain results. Even when an expla­
nation can be generated it is limited to expression 
in terms of the MP structure, e.g., constraints. 
Although Kosy and Wise (1984) provide a means 
of interpreting some fundamental accounting 
equations, the use of MP leads to substantially 
more difficult explanation situations. 

ES have a tradition of 'explanation' with solu­
tion. If MP are to be coupled with AIlES then in 
order to maintain that tradition, research needs 
to be done in the area of explanation of why·one 
MP formulation was arrived at and why one solu­
tion is preferred over another. Some research has 
been done by Greenberg (1983, 1985, 1987); how­
ever, additional research is necessary. 

4.3. Additional issues in systems design and devel­
opment: Knowledge acquisition, system develop­
ment, testing 

Coupling of AIlES and MP leads us to ques­
tion whether or not there are any unique require­
ments or approaches for the design and develop­
ment of such coupled systems. 

Knowledge acquisition 
There has been little investigation into the 

necessity of alternative forms of knowledge acqui­
sition for systems that are either shallowly or 
deeply coupled AIlES and MP systems. How­
ever, there has been some initial research into 
knowledge acquisition from experts for generic 
analytical representation (Fischhoff, 1989). Un­
fortunately, that study did not deal explicitly with 
the case of MP. As a result, knowledge acquisi­
tion in coupled systems of the type discussed in 
this paper remains a research area. 

Development 
Piaget (1973) noted that "all mathematical 

ideas begin by a qualitative construction before 
acquiring a metrical character". Piaget also noted 
that by moving too rapidly from the qualitative to 
the quantitative can impact the ability to under­
stand the mathematics underlying a given pro­
cess. In terms of systems development this can 
mean that unless there is an initial explicit effort 
to include a mathematical program in the overall 
system, that the mathematical programming na­
ture of subsystems is likely to be iteratively dis­
covered. As noted above, Loan Probe was devel­
oped in concert with those notions. Two rule­
based versions were developed before the mathe­
matical programming-based version was devel­
oped. 

Testing 
There are at least two basic testing questions 

that need to be addressed. First, does the ap­
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proach with a coupled AIlES and MP system do 
as well as or better than only an AIlES approach 
or only an MP approach. This is the critical 
problem of establishing a bench mark discussed 
by, e.g., Hayes-Roth (1989) and others. Second, 
what unique approaches must be used in the 
verification and validation of coupled AIlES and 
MP systems (Cohen and Howe, 1989). 

In the first case where there are MP and 
non-MP versions of the system, as in the case of 
the Loan Probe or the aggregate production plan­
ning problem, previous versions offer a unique 
benchmarks to verify and validate the output 
from the coupled system. For example, solutions 
provided by non-MP versions can be used to test 
MP versions, where ideally, later versions with 
the MP are at least as good, based on a single 
criteria, as the heuristic-based system. 

In the second case, there are substantial bod­
ies of literature in the areas of verification and 
validation of AIlES (e.g., O'Leary, 1987). Those 
efforts usually are aimed at the overall perfor­
mance of the system or take advantage of unique 
knowledge base structures. 

However, structural analysis of knowledge 
bases rarely considers more than a single form of 
knowledge representation at a time. Although 
there have been investigations into verification 
proceedures for different representations (e.g, 
rules), there has been little research into hybrid 
types of systems such as the coupled AIlES and 
MP systems discussed in this paper. Systems that 
couple MP and AIlES add additional complexity 
to the testing process, since they include multiple 
forms of knowledge. This coupled form of knowl­
edge appears to have received only limited re­
search to this point (e.g., O'Leary, 1988), and is 
an area where research is ongoing. 

5. Using MP instead of an AIlES formulation 

Probably the most recent use of MP and 
AIlES is to use MP as an alternative formulation 
to the AIlES formulation typically either for 
solution purposes or to better understand charac­
teristics of the AIlES formulation (e.g., Jersolow, 
1988). In these cases the MP is formed either 
based on a network representation of the knowl­
edge base or as a set of logical propositions. 

5.1. Network representations 

Many forms of knowledge representation are 
either formulated as a networks or can be repre­
sented as networks. For example, the knowledge 
representation format, semantic networks, are 
network or tree representations of knowledge 
(e.g., Rich, 1983); frames are linked in either a 
network or tree format (e.g., Winston, 1984); in­
fluence diagrams (e.g., Howard, 1989) are 
Bayesian network representations of knowledge; 
and rules can be represented as a network (e.g., 
O'Leary, 1990). For example the rule 'if a, then 
b' can be viewed as a variable Xa,b' 

Since optimization problems in networks can 
be represented as MP, this indicates that opti­
mization issues in the areas of knowledge bases 
can be investigated using MP formulations. This 
allows the introduction into AIlES, of a wide 
range of problems that have already been solved 
in MP. For example, Glover and Greenberg (1988) 
and O'Leary (1990) develop MP formulations for 
verification of rule-based knowledge bases, e.g., 
detecting circular reasoning. 

MP formulations also can be used to study 
characteristics of problems in knowledge bases. 
For example, O'Leary (1990) formulates the 
problem of ordering rules in a knowledge base as 
a traveling salesman problem. This suggests that 
level of complexity of a problem in knowledge 
basis can be found by finding equivalent MP 
problems. 

5.2. Logic operators 

Dhar and Ranganathan (1990) view knowledge 
as a set of logical propositions. Since Dantzig 
(1963) showed how logical propositions can be 
modeled in an integer programming approach, 
the extension from knowledge bases to MP is 
clear. For example, the clause 'Xl or not orx 2 

X3' can be written as the following inequality: 

Xl + (1 -x2 ) +x 3 ~ 1, 

where the values of true and false are denoted as 
1 and O. This approach is discussed in more detail 
in Hooker (1988). Dhar and Ranganathan (1990) 
provide an empirical comparison between the 
expert system approach and the integer program­
ming approach. 

~-------------------~--~~~--------.I'L.__-­
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Dhar and Ranganathan (1990) found that us­
ing an integer programming approach yielded 
unpredictable decision times, varying from a few 
minutes to a few days. In contrast, the expert 
system's time was less volatile. Consistently the 
solution time required between one and two hours 
on a SUN-3. In addition, in contrast to the inte­
ger programming approach, if the expert system 
could not find a solution, it generated a partial 
solution, if there was one. The integer program­
ming approach consistently was unable to find 
feasible solutions after many hours of running 
time. This has two difficulties: length of time and 
the impact of not have any feasible solution after 
all that time. This can prove additionally inconve­
nient when alternative plans or approaches need 
to be established. 

The integer programming approach typically 
generated solutions that were judged at least 
partially inappropriate by a human expert for 
three primary reasons: single objective limita­
tions, compiled knowledge limitations and global 
optimization limitations. 

The objective function in a linear program has 
a single goal. However, as researchers in multiple 
criteria decision making argue, human experts try 
to respond to multiple goals. In addition, single 
objectives, by their very nature of excluding other 
objectives, sometimes lead to unsatisfactory solu­
tions. Some steps can be taken to account for 
multiple objectives, such as objectives as addi­
tional constraints. 

Compiled knowledge refers to the sensitivity of 
MP to cost coefficients. As noted by Dhar and 
Ranganathan (1990, p.332), "the basic problem 
with the cost coefficients is that they incorporate 
a lot of compiled knowledge about preferences, 
flexibility and trading criteria which makes the 
behavior of the system somewhat unpredictable". 
Further, in some cases, knowledge may be diffi­
cult to express in the structure of constraints. For 
examples, anomalies in processes that are used in 
some situations and not in others can be difficult 
to model. 

Global optimization limitations refers to the 
basic tendency of MP to move to the lower bounds 
or upper bounds on the variables and the general 
inability to explain why a particular solution was 
chosen. 

Thus, in a comparison of MP and AIjES it 
appears in somecases the local optimality ap­

proach of ES is better received by users of the 
system and by those for on whom implementation 
of the system depends. Although MP provides a 
global optimum, that optimum often is for a 
different representation of the problem than the 
one for which an ESIAI approach could be for­
mulated. 

6. Summary 

This paper has surveyed some of the coupled 
AIlES and MP systems. The general capabilities 
of these systems range from formulating mathe­
matical programming problems from limited raw 
data, to interpreting output from the systems, to 
extrapolating changes in the mathematical pro­
grams based on the output to deciding how to 
solve these systems. 

This approach to decision making has some 
apparent advantages. To a certain extent, these 
systems are aimed at replacing operational re­
search analysts, in order to improve the cost and 
time required to develop a solution to a decision 
problem that includes a constrained optimization 
problem. Further, mathematical programs exploit 
the decision making technology to the advantage 
of the user of such systems. 

However, this approach is not without limita­
tion. Such systems may lock decision makers into 
decision models that are inappropriate. Similarly, 
systems that include a mathematical program­
ming module are likely to furnish few explana­
tions for why a given solution was pursued. 

The development of systems that include such 
a module may be part of a gradual movement 
from the qualitative to the quantitative that oc­
curs with understanding a process. However, by 
integrating multiple forms of knowledge process­
ing (numeric and symbolic) into a given system 
testing of the resulting system may be compli~ 
cated further. Finally, implementation of such 
systems is facilitated by software that allows the 
user to access such models outside the basic 
software. 
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