
FINANCIAL PLANNING WITH 0-1 
KNAPSACK PROBLEMS, PART I: 
DOMINATION RESULTS 

Daniel E. O'Leary 

ABSTRACT 

The 011 knapsack problem provides an important model for financial planning. It 
is used to determine what subset of items provides the greatest return. Typically, 
it is used in situations such as budgeting, where there are only enough funds to 
sponsor a subset of projects. This paper provides results that allow us to determine 
when one project "dominates" another, that is, when some project is always 
preferable to another. Those results are useful since they allow us the ability to 
reduce the number of variables and the overall budget constraint. This leads to a 
smaller, more tightly constrained problem. In some cases, establishing domination 
results leads to a complete solution of knapsack problems. 

I. INTRODUCTION 

The 0-1 knapsack problem has been used extensively in the structuring 
of financial planning problems, such as budgeting (e.g., Weingartner, 
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1962). Typically, the firm faces the problem ofchoosing among a subset 
of a portfolio of projects from a set X = (x l' ... ,x ). For example, a firm n
must choose a set ofcapital investments from the set proposed. Typically, 
the firm is assumed to have a budget constraint limiting the number of 
projects, of $b. Each project Xi has a return c, and a cost ai . The problem 
then becomes one of choosing the projects that maximize return, subject 
to the budget constraint. This problem is an integer programming prob
lem, known as the 0"1 knapsack problem. 

A. 0-1 Knapsack Problem 

It is assumed that the variables, Xi' can take only values of 0 or 1. In 
addition, it is assumed that the concern is with maximizing return subject 
to a single constraint. In particular, the mathematical programming 
version of the problem can be written as follows: 

1/ 

n 

L arYj ::;; b, Xi = 0 or 1. 
(I) 

1=1 

where, 

c· 
b. If.-!.. 

al 

c. cj> ai and b are positive integers, 

n 

i=l 

There are a number of versions of the problem. One alternative is to 
permit the variables to take on a larger set of values (e.g., all integers). 
Another alternative formulation is to choose a portfolio of minimum cost 
activities that provide a cumulative benefit that exceeds a particular 
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benefit parameter. A variety offonnulations have found use in financial 
planning problems (e.g., Weingartner, 1962, and others). 

Since Problem (1) is an integer programming problem it is difficult to 
solve. As a result, there is interest in finding ways to improve solution 
processes in order to facilitate financial planning processes. This paper 
presents a basic approach referred to as "domination." In some cases 
conditions can be developed where it can be detennined it is always 
preferable to use one variable as opposed to another. This is referred to 
as a domination relationship. Those domination relationships can be used 
to assist in the solution of problems formulated as (1). In particular, using 
the results of this paper, the dimension n, of the problem and the value 
ofbcan be reduced. Further, in some cases, those reductions lead directly 
to a solution to Problem (I). 

B. This Paper 

This paper has two parts. Part I is concerned with the reduction of n 
and b in (\), illustrating the approach. Part II of the paper provides an 
analysis of the use of the domination results in the solution of knapsack 
problems with a variety of algorithms. 

This paper proceeds as follows. Section II develops the domination 
results. Section III uses the results of Section 11 to provide additional 
results on the reduction of the problem size of (I ). Section IV illustrates 
the approach using an example. Section V discusses some empirical 
results of the impact of reduction. Section VI briefly discusses some 
extensions and summarizes the paper. 

Part II of this paper uses the domination results from Part I in a number 
of different ways. Section VII extends the use of domination results 
beyond problem reduction to branch and bound algorithms to solve 
Problem (1). Similarly, Section VIII uses the domination results to reduce 
the computations in dynamic programming solutions. Section IX inves
tigates the use of domination in E approximate algorithms. Finally, 
Section X briefly discusses some extensions and summarizes Part II of 
the paper. 

II. DOMINATION RESULTS 

This section presents the principle results of the paper. These results are 
based on the notion that in a given problem one variable is always at least 
as desirable as some other variable, that is, one variable dominates 
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another. This variable domination results in a partial ordering of the 
variables that can aid in the search for optimal solutions to Problem (l). 

Definition 

If there exists an optimal solution to Problem (J), where, for i <j, 

Xi == 0 implies Xj == 0 and 

Xj == 1 implies Xi == 1, then 

Note that if Xi ~ Xj then Xi ~ Xj . Using this observation, transitivity is 
an immediate consequence. 

Theorem 1 (Transitivity). 

There are three different approaches to establishing domination, based 
on the relationship between parameters associated with each pair 
Xi and Xt In particular, either: ci ~ Cj and a i S; aj : or ci ~ cj and ai ~ aj : or 
Ci S; cj and ai S; aj . The following theorems relate to these cases, respec
tively. 

Theorem 2. 

Proof 

Suppose in some optimal solution Xi == O. If ci > cj , then Xj == 0 or the 
solution is not optimal. If ci =Cj and Xj =I, thenxi can replace Xj to form 
at least as good a solution. 

Let yj == {i I ci ~ cj and ai S; (lj} and A; == {j I c i S; Cj and (Ii ~ aj}' yj is 
the set of variables dominated by Xi' through Theorem 2. A; is the set of 
variables that dominate Xi through Theorem 2. 

Theorem 3. If i <j and 

ke y'
) 
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ke 1~ 
J 

Proof 

Since assumptions (b), (c) and (d) hold, this means 

~ Cj + L CkCi 

key'
! 

krn' 
I 

ai 5: (lj + L ak 

key' 

k i. 1;
) 

If Xj == I, then xk == I for k E Yj, in some optimal solution or else 
Xj':f. 1. Either Xi = I or Xi O. In the later case Xi can replace Xj and xk' k 
E Yj' k ~ t, to form at least as good a solution. Thus if )';j = I in some 
optimal solution then Xi = I. 

If Xi == 0 then either Xj == 0 or Xj = I and x/.: == I for k E 'Y}. In the later 
case Xi can rep] ace Xj and x/.:,k E Yj, k ~ t to form at least as good a 
solution. As a result ifxi= 0 then xj == 0 in some optimal solution. Thus, 

Xi ---7 Xi' 

Theorem 4. Let 6.;* be a subset of 6.;. If i <j and there exist k such 
that 

b A; C A;*• u,J _ u,/ 

I.e 6' 
! 

.. __..... ---
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Proof 

Since assumptions (c) and (d) hold this means 

Cj +L ck ~ cj 

kE 

ke fl~ 
J 

and 

Qi + L Qk $ Qj 

kE fl" 
I 

ke fl; 

If Xj= 1 and xi =0, then for all k in Il;*, Xk =O. But xi and xk for k E 

6.~* could be set equal to 1 and Xj set to 0 to produce at least as good a . 
solution. Thus, Xi =1. If xi =0, then either Xj = 0 or Xj = 1. If Xj = 1, then 
as above xi and some xk for k E 6.;* could be set to 1 in some optimal 
solution. Thus, ifXi =0, then Xj = 0 in some optimal solution. As a result, 
xi -7 xj • 

This section has provided a means for determining a domination 
relationship in all pairs of variables xi and ....} The results of Theorems 3 
and 4 mirror Theorem 2 with the assumptions (c) and (d) in each case. 
In addition, Theorems 3 and 4 are "dual-like" results since Theorem 3 
uses y7 and yj, while Theorem 4 uses Il~ and Ilj. 

III. IMPLEMENTATION OF THE DOMINATION 

RESULTS 


The domination results in Theorems 2, 3 and 4 can be implemented to 
reduce. the problem size of (1). 

A. Reduced Domination Network 

A reduced domination network can be constructed to facilitate sum
marizing each of the domination relationships. A "reduced domination 
network" can be constructed as follows. 

a. For xi a variable, let i be a node. 
b. If xi -7 Xj let there be an are, aij' from node i to node j. 
c. If aij' Qik' and Qjk are arcs, remove Qik from the network. 
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The resulting network preserves the domination results in the following 
sense. Ifxi ~ Xj' then there is a path from ito j. In addition, the network 
maintains the property that it is acyclic. 

At each node in the network, the sum of all the cj and ai parameters 
associated with each variable x; (or node i in the network) can be 
computed and used to assess whether or not a variable should be in some 
optimal solution, given a specific b value. In particular, the theorems of 
the next subsection can be used to generate decisions as to whether one 
variable should be a 0 or a 1. 

B. Determining Variable Values 

If some variable dominates "enough" other variables, then for a given 
value ofb, that variable can be valued at ] in some optimal solution. On 
the other hand, if some variable is dominated by enough variables, then 
that variable can be valued at 0 in some optimal solution. This section 
provides results to establish both decisions. 

Let)'; = {j I Xi~Xj} and .::1i = {j IXj~Xi} 

Letlo={i! xi=O},JI={i1 xj=l}andP [i I ill (l°ul l )}. 

TheoremS. Ifa j + !:jE 'Y aj>bthenxi=O in some optimal solution. 
j 

Theorem 6. If !:je (t1vlo) aj $. b thenx; = I in some optima] so]u
tion. 

I 

Theorem 7 consolidates the information in Theorems 5 and 6 to present 
a reduced form of Problem () ). 

Theorem 7. Problem (1) can be reduced to 

max ICfX;+ IC i 

i E )2 i E II 

b - (I ai) ~ I afXi 
i E II i E r2 
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C. Implementation of Theorems 2, 3, and 4 

Theorem 2 is easy to implement, requiring 2( (n-l) + ... + I) compari
sons. Theorem 3 would only be done for those variables for which 
c j ~ Cj and a j ~ aj" Theorem 3 would use the domination results computed 
under Theorem 2 for the entire set of variables D.j that dominate xj" 

However, Theorem 4 applies to subsets of variables that xi dominates. 
The enumeration of the set of subsets potentially could be computation
all y expensi ve. As a result, for implementation purposes, only sets ofsize 
one are used, where the element chosen is that with the smallest index t. 
Alternatively, the smallest at could be chosen. 

D. Example 

Consider the example discussed by Kolesar (1967) and others. 

max 60x1 + 60x2 + 40x3 + IOx4 + 20x5 + lOx6 + 3x7 

100 ~ 30x1 + 50x2 + 40x3 + IOx4 + 40x5 + 30x6 + 10X7 

xi = 0 or I 

a. By Theorem 2, 

b. By Theorem 3, 

c. By Theorem 4, 

X4 ~ x5 (using x4 and x6) 

The set of relationships from Theorem 2 are summarized in Figure I. 
The entire set of relationships are summarized in Figure 2. Finally, the 
reduced domination networks, with cumulative Ci and ai parameters for 
each i, are summarized in Figure 3. 

Given the domination results, a smaller problem can be constructed. 
By Theorem 5, x5 = x6 = O. By Theorem 6, Xl = 1. 
The example problem has thus been reduced to, 

._--_.... _-
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Figure 1. Example Application of Theorem 2. 

Figure 2. Example Application of Theorems 2, 3 and 4. 

/.2 (1~g) '. 
~ --"''-''-. 

1(~6)-'-3 (1~g) -~ 5 (~~~) 

Figure 3. Reduced Domination Network for Example. 
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Thus, the dimensionality was reduced from 7 to 4 and the state space 
from 100 to 70. 

IV. EMPIRICAL RESULTS 

The effectiveness ofthe ability of domination to reduce problem size was 
investigated empirically and found to have a substantial impact on 
reducing the problem size. An algorithm version of the results of this 
paper was generated. The algorithm integrated the results of Sections II 
and III of this paper. Test problems were generated using a random 
number generator and the algorithm was used to determine the extent to 
which the problem size could be reduced. 

A. Test Problems 

A total of 80 knapsack problems were generated using the system, (0, 
1) uniform random number generator. The problems were developed so 
that four sets of 20 problems were investigated. Problem size was either 
10 or 20 variables. In each set of problems ci was allowed to take on 
integer values from 1-100. Then, for the two problem sizes, a i was 
allowed to take on integer values from 1-20 and 1 00. The b value was 
varied as INT(a· Lj~1 a) with a taking the values .1, .3, .5, .7, and .9, 
where INT(x) = Awhere A;:; x < A+ I and A is integer. The results are 
contained in Table 1. The average reduction in the number of variables 
varied from a low of 37.50% to a high of 82.50%. 

B. Reduction Algorithm 

An algorithm was programmed and used on the test problems to 
determine the number of variables that could be reduced from the 
problems. The algorithm consisted of sequentially generating the prob
lem and then using Theorems 2, 3,4,5 and 6. Then another problem was 
generated, and so forth. 

-._.----_ .. _-
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C. Findings 

The findings are summarized in Table 1. Up to 82.5% of the variables 
were reduced, with the smallest reduction being 37.5%. Thus, reduction 
can be substantial. 

The results were found to be a function of at least two different 
parameters. First, the relative value of b had a significant impact on the 
number of variables reduced. It was found that if b was either small or 
large compared to the total sum of the ai values, a larger number of 
variables could be reduced. For example, the largest reduction in problem 
size occulTed when ex was.] and .9. The least reduction occulTed ifb was 
close to the sum of the Q j values, divided by two. 

Second, the range of the values ci anda i influenced the number of 
variables reduced. For example, only two of the ten categories of prob
lems (e.g., n = 10 and ex =.1) resulted in greater reduction when the range 
was large (1-100) compared to when it was small (1-20). 

Table 1. Reduction Results 

Problems Average 11//II/ber Al'erage 11 limber 
comple/fly of variables of l'l1rillblt's Al'erage percent 

n a. l1i soil'fd redllced reductioll 

10 .1 1-20 8 8.2 1.8 82.00 

10 .3 1-20 4 6.3 37 63.00 
10 .5 1-20 0 5.05 4.95 50.50 
10 .7 1-20 3 6.1 3.9 61.00 
10 .9 1-20 4 7.2 2.8 72.00 
20 .1 1-20 1 13.75 625 6/l.75 
20 .3 1-20 0 9.7 10.3 48.50 
20 .5 1-20 0 8.65 11.35 43.25 
20 .7 1-20 0 10.5 9.5 52.50 
20 .9 1-20 14.85 5.15 74.25 
10 .1 1-100 7 8.25 175 82.50 
10 .3 1-100 1 4.7 5.3 47.00 
10 .5 1-100 0 3.75 6.25 37.50 
10 7 1-100 0 4.75 5.25 47.50 

10 .9 1-100 5 7.45 2.55 74.50 
20 .1 1-100 0 12.2 7.8 61.10 
20 .3 1-100 0 7.65 12.35 38.25 
20 .5 1-100 0 7.55 12.45 3775 
20 .7 1-100 0 10.75 9.25 53.75 
20 .9 1-100 14.55 5.45 72.75 
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In some cases, the reduction process was able to completely solve the 
problem. In 35 out of 400 problems (80 * 5 parameter variations on the 
b value) complete solutions were found. 

V. SUMMARY AND EXTENSION 

This section briefly summarizes and discusses an extension to the results 
in Part L 

A. Summary 

This paper has provided results on how to determine domination in 0-1 
knapsack problems. Results are provided for each of the three cases 
where ~ cj and aj ::; aj ; c j ~ cj and aj ~ aj ; and ai ::; aj and ci ::; ci Theci 
domination results are used to determine which variables must be I and 
which must be O. Those result in reduced versions of the Problem (1) 
where band n can be smaller. 

B. Extension 

Other domination results can be developed. The primary extension is 
for the case where the variables are not constrained to 0 and I, but can 
take on any integer value. In those situations, an alternative approach to 
domination can account for the larger variable solutions. 

Suppose that the requirement that Xi = 0 or I is dropped from the 
formulation (1). The following Theorem would replace Theorem 2. 

Theorem 2' 
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