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26 Markov chain Monte
Carlo methods in
corporate finance

arthur korte weg

This chapter introduces Markov chain Monte Carlo (MCMC) methods for empirical corporate
finance. These methods are very useful for researchers interested in capital structure, invest-

ment policy, financial intermediation, corporate governance, structural models of the firm and other
areas of corporate finance. In particular, MCMC can be used to estimate models that are difficult
to tackle with standard tools such as OLS, Instrumental Variables regressions and Maximum Like-
lihood. Starting from simple examples, this chapter exploits the modularity of MCMC to build
sophisticated discrete choice, self-selection, panel data and structural models that can be applied to
a variety of topics. Emphasis is placed on cases for which estimation by MCMC has distinct benefits
compared to the standard methods in the field. I conclude with a list of suggested applications.
Matlab code for the examples in this chapter is available on the author’s personal homepage.

26.1 Introduction

In the last two decades the field of empirical corporate finance has made great strides in employing
sophisticated statistical tools to achieve identification, such as instrumental variables, propensity
scoring and regression discontinuity methods. The application of Bayesian econometrics and in
particular Markov chain Monte Carlo (MCMC) methods, however, has been lagging other fields
of finance such as fixed income and asset pricing, as well as other areas of scientific inquiry such as
marketing, biology, and statistics. This chapter explores some of the many potential applications of
this powerful methodology to important research questions in corporate finance.

With the current trend in the corporate finance literature towards more complex empirical mod-
els, MCMC methods provide a viable and attractive means of estimating and evaluating models for
which classical methods such as least squares regressions, GMM, Maximum Likelihood and their
simulated counterparts are too cumbersome or computationally demanding to apply. In particu-
lar, MCMC is very useful for estimating nonlinear models with high-dimensional integrals in the
likelihood (such as models with many latent variables), or a hierarchical structure. This includes,
but is not limited to, discrete-choice, matching and other self-selection models, duration, panel
data and structural models, encompassing a large collection of topics in corporate finance such as
capital structure and security issuance, financial intermediation, corporate governance, bankruptcy,
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and structural models of the firm. The MCMC approach thus opens the door to estimating more
realistic and insightful models to address questions that have thus far been out of reach of empirical
corporate finance.

To illustrate the method, I consider the effect of firm attrition on the coefficient estimates in
typical capital structure panel data regressions. Firms disappear from the sample for non-random
reasons such as through bankruptcy, mergers or acquisitions, and controlling for this non-random
selection problem alters the estimated coefficients dramatically. For example, the coefficient on
profitability changes by about 25%, and the coefficient on asset tangibility drops roughly in half.
Whereas estimating this selection correction model is difficult with classical methods, the MCMC
estimation is not particularly complex, requiring no more than standard probability distributions
and standard regressions. I provide the Matlab code for this model on my personal website.22

The goals of this chapter are two-fold. First, I want to introduce MCMC methods and provide a
hands-on guide to writing algorithms. The second goal is to illustrate some of the many applications
of MCMC in corporate finance. However, these goals come with a good deal of tension. Most
sections in this chapter start with developing MCMC estimators for simple problems that have
standard frequentist solutions that come pre-packaged in most popular software packages. The
reason I discuss these examples is not because I think that researchers should spend their time
coding up and running their own MCMC versions of these standard estimators, but rather to
illustrate certain core principles and ideas. These simple examples then function as a stepping stone
to more complex problems for which MCMC has a distinct advantage over the standard approaches
such as least squares regressions, GMM, and Maximum Likelihood (or where such approaches are
simply not feasible). For example, Section 26.4 starts with a standard probit model, focusing on the
core concept of data augmentation. The modularity of MCMC allows us to extend this model to
build a dynamic selection model in Section 26.4.3 that is nearly impossible to estimate by Maximum
Likelihood or other classical methods.

To aid readers interested in applying MCMC methods, I have provided Matlab code for all the
numbered algorithms in this chapter on my personal webpage.23 Apart from educational purposes,
these examples can also be used as building blocks to estimate more complex models, thanks to
the inherent modularity of MCMC. It is, for example, quite straightforward to add a missing data
feature to a model by adding one or two steps to the algorithm, without the need to rewrite the
entire estimation code.

At the core of MCMC lies the Hammersley–Clifford theorem, by which one can break up
a complex estimation problem into bite-size pieces that usually require no more than standard
regression tools and sampling from simple distributions. Moreover, MCMC methods do not rely on
asymptotic results but instead provide exact small-sample inference of parameters (and nonlinear
functions of parameters), and do not require optimization algorithms that often make Maximum
Likelihood and GMM cumbersome to use.

This chapter is organized by modelling approach. Section 26.2 introduces MCMC estimation
through a simple regression example. Section 26.3 introduces the concept of data augmentation
through a missing data problem. Section 26.4 discusses limited dependent variable and sample
selection models, currently the most widely used application of MCMC in corporate finance. Sec-
tion 26.5 addresses panel data models and introduces the powerful tool of hierarchical modelling,
and presents the application to capital structure regressions with attrition. Section 26.6 describes the
estimation of structural models by MCMC, and in particular the concepts of Metropolis–Hastings
sampling and Forward Filtering and Backward Sampling. Section 26.7 suggests a number of further

22 https://faculty-gsb.stanford.edu/korteweg/pages/DataCode.html.
23 Other popular packages for running MCMC estimations are R, WinBugs and Octave (all can be down-

loaded free of charge). Many code examples for these packages can be found online.
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applications in corporate finance for which MCMC is preferable to classical methods. Section 26.8
concludes.

26.2 Regression by Markov chain Monte Carlo

A simple introduction to MCMC is found by considering the standard linear model

y = Xβ + ε,

where y is an N × 1 vector of dependent variables, X is an N × k matrix of predictor variables,
and the error term is distributed iid Normal, ε ∼ N

(
0, σ 2IN

)
. With conjugate Normal-Inverse

Gamma priors, σ 2 ∼ IG(a, b) and β|σ 2 ∼ N
(
μ, σ 2 · A−1)

, this problem has well-known ana-
lytical expressions for the posterior distribution of the parameters of interest, β and σ 2. Alterna-
tively, one can learn about the joint posterior of β and σ 2, by drawing a sample of it through Monte
Carlo simulation. Algorithm 1 explains the simulation steps in detail (for ease of notation I do not
write the conditioning on the observed data X and y in the algorithm). First, draw a realization of
σ 2 from its posterior Inverse Gamma distribution. Next, draw a realization of β from its posterior
distribution, using the draw of σ 2 from the first step. Together, these two draws form one draw of
the joint posterior distribution p(β , σ 2|X, y). Repeating these two steps many times then results
in a sequence of draws from the joint posterior distribution. This sequence forms a Markov chain
(in fact the chain is independent here), hence the name Markov chain Monte Carlo [31, 33]. This
particular MCMC algorithm in which we can draw from exact distributions is also known as Gibbs
sampling.

Algorithm 1 Regression

1. Draw σ 2 ∼ IG(a + N, b + S),
where S = (

y −Xm
)′ (y −Xm

)+ (m −μ)′A(m − μ), and m = (X′X + A)−1(X′y+Aμ)

2. Draw β|σ 2 ∼ N
(

m, σ 2 · (X′X + A)−1)

3. Go back to step 1, repeat.

To illustrate the algorithm, I simulate a simple linear model with N = 100 observations and one
independent variable, X, drawn from a standard Normal distribution, and no intercept. I set the
true β = 1 and σ = 0.25. For the priors I set a = 2.1 and b = 1, corresponding to a prior mean
of σ 2 of 0.91 and a variance of 8.26, and I set μ = 0 and A = IK · 1/10 000, such that the prior
standard deviation on β is one hundred times σ 2. Unless otherwise noted, I use the same priors
throughout this chapter. Using Matlab it takes about 3.5 seconds on a standard desktop PC to run
25 000 iterations of Algorithm 1. Figure 26.1 shows the histogram of the draws of β and σ . These
histograms are the marginal posterior distributions of each parameter, numerically integrating out
the other. In other words, the histogram of the 25 000 draws of β on the left-hand plot represents
p
(
β|X, y

)
, and with enough draws converges to the analytical t-distribution. In the right-hand plot,

the draws of σ 2 are first transformed to draws of σ by taking square roots before plotting the
histogram. This highlights the ease of computing the posterior distribution of nonlinear functions
of parameters. This example may appear trivial here, but this transformation principle will prove
very useful later.

The vertical lines in Figure 26.1 indicate the true parameter values. Note that the point estimates
are close to the true parameters, despite the small sample and the prior means being centred far from
the true parameter values. Moreover, the simulated posterior means coincide with the analytical
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Figure 26.1 Posterior distribution of regression parameters. Histograms of the 25 000 parameter
draws of the standard regression model estimated by MCMC on a simulated dataset of 100
observations. The vertical lines indicate the true parameter values that were used to generate the
data.

Bayesian solutions. The (1, 99%) credible intervals are [0.910, 1.034] for β , and [0.231, 0.290] for
σ . The posterior standard deviation of β is 0.026, compared to a standard error of 0.025 from OLS
regression. The difference is due to the MCMC estimates being small-sample estimates that do
not rely on asymptotic approximations, unlike standard errors. After all, the very definition of the
posterior distribution implies that the estimates are conditioned on the observed data only, not an
imaginary infinitely large dataset. This allows for exact inference, which may be quite different from
the asymptotic inference of classical methods, especially in smaller datasets.

26.3 Missing data

To make the inference problem more interesting, suppose that some of the observations in y are
missing at random (I postpone the problem of non-randomly missing data until the next sec-
tion). The problem of missing data is widespread in corporate finance, even for key variables such
as investments and leverage. For example, for the 392,469 firm-year observations in Compustat
between 1950 and 2010, capital expenditure is missing for 13.9% of the observations. Debt issuance
has been collected since 1971 but 14.1% of the 348,228 firm-year observations are missing, whereas
market leverage (book debt divided by book debt plus market value of equity) is missing 22.4%
of the time. For R&D expenditures the missing rate is over 50%. Even a canonical scaling variable
such as total assets is missing around 5% of the time. As I will illustrate below, MCMC provides a
convenient way of dealing with the missing data problem.

With missing data one loses the Bayesian analytical solution to the posterior distribution. How-
ever, the sampling algorithm from the previous section needs only one, relatively minor, modifi-
cation based on the important concept of data augmentation [94] in order to deal with this issue.
Think of the missing observations, denoted by y∗, as parameters to be estimated along with the
regression parameters. In other words, we augment the parameter vector with the latent y∗, and
sample from the joint posterior distribution p

(
β , σ 2, y∗|X, y

)
.

The key to sampling from this augmented posterior distribution is the Hammersley–Clifford
theorem. For our purposes, this theorem implies that the complete set of conditional distributions
p
(
β , σ 2|y∗, X, y

)
and p

(
y∗|β , σ 2, X, y

)
completely characterizes the joint distribution. Algorithm

2 shows that, unlike the joint distribution, the complete conditionals are very straightforward to
sample from: p

(
y∗|β , σ 2, X, y

)
is a Normal distribution (and each missing observation can be
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sampled independently since the error terms are iid), and p
(
β , σ 2|y∗, X, y

)
is simply Algorithm 1, a

Bayesian regression treating the missing y∗ as observed data. This gives a first taste of the modularity
of the MCMC approach: we go from a standard regression model to a regression with missing data
by adding an extra step to the algorithm. Note again that I suppress the conditioning on the observed
data in the algorithm.

Algorithm 2 Missing data

1. Draw the missing y∗i for all i with missing yi, treating β and σ 2 as known:

y∗i |β , σ 2 ∼ N
(

X′β , σ 2)

2. Draw β , σ 2 from a Bayesian regression with Normal-IG priors, treating the y∗as observed
data. The posterior distributions are:

σ 2|y∗ ∼ IG(a + N, b + S)

β|σ 2, y∗ ∼ N
(

m, σ 2 · (X′X + A)−1
)

3. Go back to step 1, repeat.

Denoting by
{
σ 2}(g) the draw of σ 2 in cycle g of the MCMC algorithm, the MCMC algorithm

thus starts from initial values {β}(0) and
{
σ 2}(0), and cycles between drawing y∗, σ 2 and β ,

conditioning on the latest draw of the other parameters:

{β}(0) ,
{
σ 2}(0) → {

y∗
}(1) → {

σ 2}(1) → {β}(1) → {
y∗

}(2) → . . .

The resulting sequence of draws is a Markov chain with the attractive property that, under mild
conditions, it converges to a stationary distribution that is exactly the augmented joint posterior
distribution. This is the essence of MCMC. Figure 26.2 shows the first 50 draws of Algorithm 2, using
the same regression model as the previous section (with true β = 1 and σ 2 = 0.25), but randomly
dropping half of the observations of y. The convergence to the stationary distribution is most
noticeable for σ 2, and quite rapid for this particular model. The period of convergence is called
the ‘burn-in’ period and is dropped before calculating parameter estimates and other properties of
the posterior distribution.

For many problems the likelihood function is not globally concave and has multiple local max-
ima. For such problems the chain needs to run for a larger number of cycles in order to fully
explore the posterior distribution. As a general rule, the MCMC algorithm is more hands-off than
Maximum Likelihood, which requires a great deal of manual work by the researcher to make sure
that a global optimum is reached, for example through the use of different starting values, applying
a variety of maximization algorithms, or simulated annealing routines. On rare occasions, it is
possible even for the MCMC chain to get ‘stuck’ in a local maximum, so it is still good practice to try
different starting values. This is also helpful in determining when the chain has converged (Gelman
and Rubin [32] develop a convergence test based on the within and between variance of multiple
MCMC chains), and does not waste much computation time because the post-convergence draws
of the different chains can be combined in order to obtain a better approximation to the posterior
distribution.
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Figure 26.2 Convergence of the MCMC chain. Plot of the first 50 iterations of the Markov chain of
the estimation of the missing data regression model in Algorithm 2, estimated on a simulated dataset
of 100 observations, of which 50 are dropped at random. The dashed horizontal lines indicate the
true parameter values that were used to generate the data.

Table 26.1 shows parameter estimates from two OLS regression approaches to the missing data
problem, as well as MCMC estimates. The first OLS results drop the observations for which y is
unobserved altogether. The second set of OLS estimates fill in the unobserved y∗ using the point
estimates of β from the dropped observations. In other words, y∗i = x′

i β̂ . Unlike other common
fill-in schemes such as using the sample average, this results in unbiased estimates of β .

The key issue here is one of statistical efficiency: dropping the unobserved data altogether
ignores the information in X that is contained in the dropped observations, while filling in the
missing data with point estimates understates standard errors by ignoring the prediction variance
in the filled-in data. The latter problem is evident from the fact that the standard errors, as well
as the estimates of the residual standard deviations of the filled-in OLS regressions, are consider-
ably lower compared to the OLS regressions that drop the data with missing observations. The
MCMC algorithm solves both these problems by using all observations on X while accounting for
prediction variance by filling in different values for y∗ every time we take a draw of β and σ 2. For
comparison, the first MCMC column shows the MCMC version of the regression dropping the
observations with missing ys. The posterior standard deviations are larger than the OLS standard
errors because they are small-sample rather than asymptotic estimates. The last column shows the
results from Algorithm 2, accounting for the information in the dropped X while also accounting
for the uncertainty of the missing y∗.

It is evident from Table 26.1 that integrating out the missing y∗ is not particularly helpful in
this example. However, Table 26.2 shows that the benefits are more substantial when allowing for
missing observations on the explanatory variables in a multiple regression. Simulating and inte-
grating out the missing variables leads to parameter estimates that are generally closer to the true
parameters than the other methods, even for a relatively low correlation between the explana-
tory variables of 0.15. Moreover, since the full information about the dependent and non-missing
explanatory variables is exploited, the estimates have lower posterior standard deviations, i.e. they
are more precise, compared to the MCMC estimates that drop the observations with some missing
data altogether. The algorithm for tackling this problem is very similar to Algorithm 2, essen-
tially simulating the missing explanatory variables from a regression of the variable with missing
data on the other variables. An example of a corporate finance application to such a problem is
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Table 26.1 Missing dependent variable regressions. Estimates of a missing data regression model
based on a simulated dataset of 100 observations, randomly dropping 50% of the dependent vari-
able data (but not the regressor). The true coefficients are shown in the first column (there is no
intercept). The OLS columns estimate the model by dropping the missing observations altogether
(the column labelled ‘Drop’), and filling in the missing data using fitted values from the ‘Drop’
regression (the column labelled ‘Filled’). The MCMC estimates in the ‘Drop’ column uses the stan-
dard Bayesian regression of Algorithm 1, dropping the missing observations. The final column uses
Algorithm 2, which simulates and integrates out the missing observations. The MCMC estimates
use 1 000 burn-in cycles followed by 25 000 cycles to sample the posterior distribution. Standard
errors for the OLS estimates and posterior standard deviations for the MCMC estimates are in
brackets.

True OLS MCMC

Drop Filled Drop Alg 2

β 1 1.012 1.012 1.013 1.011

(0.047) (0.025) (0.058) (0.057)

σ 0.25 0.239 0.171 0.298 0.297

- - (0.029) (0.032)

in Frank and Goyal [29], who impute missing factors in leverage regressions using an MCMC
algorithm.

Other, more complex, cases also promise better results, for example if y follows a time-series
process but has missing data gaps in the series. An illustration of this kind is found in Korteweg [56],
who uses panel data for corporate bond and equity values to estimate the net benefits to leverage,
where a non-trivial fraction of the corporate bond values are unobserved. Another avenue for
improving performance is to sample the empirical distribution of the residuals, instead of imposing
the Normal distribution, to obtain results that are more robust to distributional assumptions. For
further information on using Bayesian methods for missing data, see Rubin [88] and Graham and
Hirano [36].

26.4 Limited dependent variable and selection models

In the previous section I assumed that data is missing at random. If data is instead missing for a rea-
son, it becomes necessary to specify the model by which observations are selected in order to obtain
estimates of the parameters of interest. More generally, selection models are useful for addressing
many questions in corporate finance such as the effect of underwriter choice on bond issue yields,
the diversification discount due to conglomeration choice, and the impact of bank versus pubic debt
financing on cost of capital (see Li and Prabhala [68] for a comprehensive overview and references).

I start this section with a simple probit example. The probit model serves as a basis to devel-
oping an estimation algorithm for the Heckman selection model. Since both probit and Heckman
have canned Maximum Likelihood-based modules in popular statistics packages such as Stata, this
may not sound very exciting. However, in Section 26.4.3 and beyond, I introduce extensions to
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Table 26.2 Missing explanatory variable regressions. Estimates of a missing data regression model
based on a simulated dataset of 100 observations with two explanatory variables, y = x1β1 +
x2β2 + ε, and randomly dropping 50% of the observations on x2. The true coefficients are shown
in the first column. The explanatory variables have a correlation coefficient of 0.15. The first column
estimates the model by dropping the missing observations altogether, and the second column uses
the Griliches [37] GLS method to fill in the missing data, using a regression of the variable with
missing data on the other explanatory variable. The MCMC estimates in the ‘Drop’ column use the
standard Bayesian regression of Algorithm 1, dropping the missing observations, whereas the final
column uses a version of Algorithm 2 to simulate and integrate out the missing observations. The
MCMC estimates use 1 000 burn-in cycles followed by 25 000 cycles to sample the posterior dis-
tribution. Standard errors for the OLS estimates and posterior standard deviations for the MCMC
estimates are in brackets.

True OLS GLS MCMC

Drop Filled Drop Alg 2

β1 0.5 0.493 0.416 0.493 0.476

(0.038) (0.002) (0.042) (0.039)

β2 –0.5 –0.425 –0.426 –0.424 –0.474

(0.044) (0.003) (0.049) (0.039)

σ 0.25 0.251 0.262 0.280 0.282

– – (0.020) (0.025)

dynamic selection, matching models and switching regressions, that are very difficult to estimate
with Maximum Likelihood, but are quite feasible with MCMC, both from an ease of implementa-
tion as well as a computational perspective.

26.4.1 Probit model

In the standard probit model, yi has two possible outcomes, zero and one. The probability of
observing yi = 1 is:

pr( yi = 1) = � (xiβ)

where � (·) is the standard Normal cdf. Observations are assumed to be iid. Probit models
have been used in corporate finance to estimate, for example, the probability of issuing debt or
equity [49], takeovers [4], bankruptcy [84] and the firing of CEOs [53].

The estimation goal is to find the posterior distribution of β given y and X. It will prove conve-
nient to rewrite the model in the following way:

yi = I{wi≥0}
wi = xiβ + ηi
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with ηi ∼ N (0, 1), iid. The auxiliary selection variable w is unobserved. If w ≥ 0 then y equals
one, otherwise y equals zero. Augmenting the posterior distribution with w, MCMC Algorithm 3
(from Albert and Chib [3]) shows how to sample from the joint posterior distribution of β and
w, conditional on the observed data. The algorithm cycles between drawing from the complete
conditionals w|β and β|w, which by the Hammersley–Clifford theorem fully characterize the joint
posterior distribution.

Algorithm 3 Probit model

1. Draw wi|β for all i:

(a) for yi = 1:

wi|β ∼ LT N (xiβ , 1)

(b) for yi = 0:

wi|β ∼ UT N (xiβ , 1)

2. Draw β|w from a Bayesian regression of w on X, with Normal priors on β and known
variance = 1:

β|w ∼ N
(
(X′X + A)−1(X′w + Aμ), (X′X + A)−1

)

3. Go back to step 1, repeat.

In step 1, when y equals one, w must be greater than zero, and the distribution of w is therefore
truncated from below at zero. I denote this lower-truncated Normal distribution by LT N . Simi-
larly, UT N is the upper truncated Normal distribution, again truncated at zero. Step 2 draws from
the posterior distribution of coefficients in a Bayesian regression, as in Algorithm 1 but fixing the
variance of the error term to unity.

An advantage of MCMC for the probit model is in the calculation of nonlinear functions of
parameters. Researchers are often interested in the partial effects, ∂pr(y = 1|x)/∂x = φ(x′β)β ,
which are highly nonlinear functions of β . With the standard Maximum Likelihood approach the
asymptotic distribution of the partial effects has to be approximated using the Delta method. With
MCMC we obtain a sample from the exact posterior distribution without relying on asymptotics
or approximations by simply calculating the partial effect for each draw of β (discarding the burn-in
draws). We can then compute means, variances, intervals etc.

Many extensions of Algorithm 3 have been developed, for example to the multivariate probit
model with several outcome variables [14], the multinomial probit that allows more than two dis-
crete outcomes [73], and the multinomial-t and multinomial logit models [15]. In the next section
I discuss another extension of the probit model, the classic Heckman selection model.

26.4.2 Heckman selection model

In the Heckman (also known as Tobit type 2) selection model, yi is no longer a binary variable but
can take on continuous outcomes:

yi = xiβ + εi

wi = ziγ + ηi
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The outcome variable yi is observed only when wi ≥ 0. The error terms are distributed iid jointly
Normal with zero means, var(εi) = σ 2, var(ηi) = 1, and correlation ρ. The top equation is
referred to as the outcome equation, and the bottom equation is the selection equation.

The Heckman selection model can be used to control for endogenously missing data and self-
selection by firms. For example, the choice to issue equity may depend on the type of firm. If there
is an unobserved component to firm type, then selection cannot be controlled for by covariates in
the outcome equation alone. In panel data applications it is common practice to use fixed effects
to control for selection, but these do not control for the fact that the reasons for selection can (and
often do) change over time. Selection models do allow for that possibility.

To estimate the Heckman model by MCMC, we decompose εi into a component that loads on
ηi and an orthogonal component ξi:

yi = xiβ + δ · ηi + σξ · ξi

wi = ziγ + ηi

where δ = σ · ρ is the covariance between ε and η, and σξ = σ · √
1 − ρ2 is the conditional stan-

dard deviation of ε|η. From this representation it follows immediately that the selection equation
cannot be ignored if ρ (and hence δ) is not equal to zero. Consider the expected value of yi if it is
observed:

E
[

yi|wi ≥ 0, data
] = xiβ + δE [ηi|ηi ≥ −ziγ ]

Ignoring the selection equation (dropping δ · η in the observation equation) thus introduces an
omitted variables bias if ρ �= 0 [43]. The omitted variable, E [ηi|ηi ≥ −ziγ ] = φ(·)/�(·), is
called the inverse Mills ratio.

MCMC Algorithm 4 (based on Li [65]) shows how to draw from the posterior distribution of
the parameters augmented with the latent selection variable, w, and the missing observations, y∗.
The algorithm essentially combines the randomly missing data routine with the probit estimation.

From the sampled parameters it is straightforward to use nonlinear transformations to recover
the posterior distribution of ρ and σ , as well as treatment effects, analogous to the calculation of
partial effects in the probit model.

The typical approach to estimating Heckman models is the two-step estimator [43]: In the
first stage we estimate the selection equation using a probit model, and in the second stage we
plug the fitted inverse Mills ratio from the first stage into the outcome equation to correct for the
omitted variable bias. This estimator generates inconsistent estimates for the covariance matrix in
the second stage, and correct standard errors have to be computed from an asymptotic approxima-
tion or through a bootstrap. Full information estimators (MCMC and the Maximum Likelihood
estimator) exhibit better statistical properties but are often criticized for their sensitivity to the
Normality assumption. Robust and nonparametric estimators have been proposed to deal with this
issue (e.g. [45, 71, 72]), but tend to be limited in the types of models they can estimate. For example,
Manski’s [72] model is limited to two regressors. In contrast, the MCMC algorithm is more flexible.
Van Hasselt [97] extends the algorithm to accomodate a mixture of Normals in the error terms
without losing the generality of the model. Mixtures of Normals are able to generate many shapes
of distributions such as skewness, kurtosis and multimodality, and the algorithm lets the data tell
you what the shape of the error distribution is. Van Hasselt also shows how to estimate the number
of mixture components, something that is very difficult to do with frequentist methods.24

24 A common concern with the standard selection model is that it is identified from distributional assump-
tions only, unless one employs an instrument that exogenously changes the probability of being selected but is
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Algorithm 4 Heckman selection model

1. Draw wi, y∗i |β , γ , δ, σ 2
ξ

(a) for yi observed:

wi|β , γ , δ, σ 2
ξ ∼ LT N

⎛

⎝ziγ + ρ ·
⎡

⎣ yi − xiβ√
δ2 + σ 2

ξ

⎤

⎦ , 1 − ρ2

⎞

⎠

whereρ = δ/

√
δ2 + σ 2

ξ

(b) for yi not observed:

wi|β , γ , δ, σ 2
ξ ∼ UT N (ziγ , 1)

y∗i |wi, β , γ , δ, σ 2
ξ ∼ N

(
xiβ + δ [wi − ziγ ] , σ 2

ξ

)

2. Draw β , γ |w, y∗, δ, σ 2
ξ from a Bayesian Seemingly Unrelated Regression (Zellner, 197x) of

[y; w] on [X; Z], with Normal priors on β and γ and known covariance matrix :

β , γ |w ∼ N
((

C′−1C + A
)−1 (

C′−1 [
y; w

] + Aμ
)

,
(

C′−1C + A
)−1

)

where

 =
[

σ 2
ξ + δ2 δ

δ 1

]

⊗ IN and C =
[

X 0
0 Z

]

3. Draw δ, σ 2
ξ |β , γ , w, y∗ from a Bayesian regression of y − Xβ on w − Zγ , with Normal-IG

priors (see Algorithm 1).
4. Go back to step 1, repeat.

The Heckman selection algorithm outlined above can be adapted to estimate many related mod-
els. For example, Chib [13] develops an MCMC algorithm to estimate the Tobit censoring model
where y takes on only non-negative values. Tobit censoring is relevant in corporate finance applica-
tions because many variables are naturally non-negative, such as gross equity issuance, cash balances
and investment, and ignoring any censoring (for example from irreversible investment bounding
capital expenditures at zero) may mask certain causal relationships of interest. Double-censoring
can also be accommodated, to account for the fact that leverage (measured gross of cash) is bounded
between zero and one, which is important for estimating speed-of-adjustment models [10, 51].
Similarly, the outcome variable may be qualitative (exactly zero or one) to model dichotomous
outcomes such as default versus no default, or merger versus no merger.

orthogonal to ε, the shock in the observation equation [45]. Relaxing the Normality assumption may loosen
the distributional assumptions somewhat, but should not be seen as a substitute for an instrument.
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The standard selection model has only two possible outcomes from selection: a data point is
either observed or not observed. In many corporate finance applications there are multiple possible
outcomes. For example, a company can choose not to raise debt financing, choose to issue public
bonds or to obtain a bank loan. Obrizan [81] shows how to estimate the selection model with
a multinomial probit in the selection equation by MCMC. Classical estimation of this model is
possible as well, but requires numerical integration of the likelihood using quadrature or simulation.
I will return to this issue below. In the remainder of this section, I introduce three other extensions to
the Heckman model that have many potential applications in corporate finance but are very difficult
to estimate with traditional methods.

26.4.3 Dynamic selection

The standard Heckman model assumes that the error terms in the selection equation are inde-
pendent across units of observation. Under this assumption the unobserved data points are only
informative about γ , the parameters of the selection equation. They carry no further information
about the parameters of the outcome equation, β . In many corporate finance applications this is
not the case. For example, a firm may be more inclined to issue equity because a peer firm is doing
the same, or because some common unobserved factor induces both firms to issue. For the purpose
of illustration, consider the case of two firms. The outcome of the first company is unobserved and
the outcome of the second is observed. The expected value of the outcome of the second firm is

E
[

y2|w2 ≥ 0, w1 < 0, data
] = x2β + δE [η2|η2 ≥ −z2γ , η1 < −z1γ ]

Unlike the standard Heckman model, if the ηs are correlated then firm 1 carries information about
the conditional mean of y2 despite firm 1’s outcome being unobserved. In other words, the fact that
firm 1 is unobserved matters for the conditional mean of firm 2. With two firms the expectation is
a two-dimensional integral. With thousands of firms the integral becomes very high-dimensional,
and with the current state of computing power it is too time-consuming to evaluate in a Maximum
Likelihood estimation, or even to compute the inverse Mills ratio in the two-step procedure.25

A similar estimation issue arises when the outcome variable follows an autoregressive distributed
lag (ADL) model. For example, consider the following ADL process for an individual firm:

yt = λyt−1 + xtβ + εt

Assume that the error terms are temporally independent (but ε and η are still contemporanesouly
correlated so that δ �= 0). In a two-period setting, if the outcome at time 1 is unobserved but
observed at time 2, the conditional mean of the outcome at time 2 is

E
[

y2|w2 ≥ 0, w1 < 0, data
] = x2β + λE

[
y1|w2 ≥ 0, w1 < 0, data

] + δE [η2|η2 ≥ −z2γ ]

With λ = 0 this works out to the standard Heckman correction. With non-zero λ we get a similar
integration issue as in the cross-sectional case, because the value of y1 depends on the realized
value of y2, due to the ADL process. The resulting model is thus a dynamic generalization of the

25 The usual way to numerically integrate out the latent variables in Maximum Likelihood is through quadra-
ture methods, which are effective only when the dimension of the integral is small, preferably less than five [96].
The alternative, Simulated Maximum Likelihood (SML), is less computationally efficient than MCMC. I will
discuss this in more detail in Section 26.5.
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standard selection model. Autocorrelation in the error term results in similar estimation problems,
even without the lagged dependent variable.

Korteweg and Sørensen [59] tackle the estimation problem of the dynamic selection model
using an MCMC algorithm, and apply it to estimate the risk and return to venture capital funded
entrepreneural firms. The outcome variable is the natural logarithm of a start-up’s market value,
which follows a random walk (the ADL process above with λ = 1). However, the valuation is only
observed when the company obtains a new round of funding. The probability of funding depends
strongly on the firm’s valuation, and this gives rise to the selection problem. Korteweg and Sørensen
develop an MCMC algorithm to estimate the model in a computationally efficient way.26 In a
follow-up paper, Korteweg and Sørensen [60] apply the model to estimating loan-to-value ratios
for single-family homes, as well as sales and foreclosure behaviour and home price indices. They
extend the model to include multiple selection equations, in order to capture the probability of a
regular sale versus a foreclosure sale.

The dynamic selection model is very versatile, and can be applied to virtually any linear asset
pricing model with endogenous trading. The model is also applicable to a variety of corporate
finance problems, since many of the standard variables follow ADL processes, and, in addition,
autocorrelation in the error term is a common occurrence. Moreover, the estimation problem is not
unique to the selection model, but generalizes to the Tobit model and other censoring problems.
For example, investment follows an ADL but is censored at zero (if irreversible), leading to similar
integration issues as the dynamic selection model. Other examples include cash balances, default
or M&A intensity, and leverage, where the latter is subject to double censoring as mentioned above.

26.4.4 Switching regressions

In a switching regression, y is always observed, but the parameters of the outcome equation depend
on whether w is above or below zero:

yi =
{

yi0 = xi0β0 + εi0 if wi > 0

yi1 = xi1β1 + εi1 if wi ≤ 0

For example, Scruggs [89] considers the market reaction to calls of convertible bonds, which can
be ‘naked’ (without protection) or with the assistance of an underwriter that guarantees conver-
sion at the end of the call period. We observe the announcement reaction, y, under either call
method but the choice of method is endogenous through the correlations between η, ε0 and ε1.
Unlike standard average announcement effect studies, the β0 and β1 parameters in the switching
regressions reflect announcement effects conditional on the endogenously chosen call method, as
advocated by Acharya [1], Eckbo, Maksimovic, and Williams [25], Maddala [70], and Prabhala [83].
In other words, the parameters capture the counterfactual of what would have happened if a firm had
chosen the unobserved alternative. As such, we can use the model to analyse treatment effects. As in
the Heckman model, without an instrument the model is identified from parametric assumptions
alone, and imposing an exclusion restriction is helpful to achieve nonparametric identification.
Scruggs assumes that the error terms have a fat-tailed multivariate t-distribution and estimates the
model using an MCMC algorithm.

Switching models have many potential applications in corporate finance. For example firm’s cash
and investment policies may be different in growth versus recession regimes, or hiring and firing
intensities of CEOs may vary depending on the state of the firm.

26 A detailed description of the algorithm as well as Matlab and C++ code to implement it can be found on
my personal webpage.
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It is possible to estimate a switching regression using classical methods [43, 61], but this is
cumbersome at best. The MCMC approach is flexible and easy to extend to more complex models.
For example, Li and McNally [67] use MCMC to estimate a switching regression with multiple
outcome equations within each regime. They apply their model to the choice of share repurchase
method, modelling the percentage of shares bought, the announcement effects and the tender
premium (if the repurchase is by tender offer). This model can in turn be extended to outcome equa-
tions that are not all continuous, but instead may be composed of a mix of continuous, truncated
and discrete outcomes. Another logical extension is to have more than two regimes since in many
cases corporate managers face a decision between multiple options (similarly to the multinomial
selection model). Such models become increasingly intractable with classical methods, but are
quite manageable using MCMC.

26.4.5 Matching models

A prevalent form of matching in corporate finance is the endogenous two-sided matching between
two entities. For example, firms match with banks for their financing needs, and CEOs match with
the firms they run. Sørensen [91] develops a model in which venture capitalists (VCs) match with
entrepreneurs. He asks whether the better performance of experienced VCs is driven by sorting
(more experienced VCs pick better firms) or influence (more experienced VCs add more value).
Since some of the dimensions along which sorting occurs are unobserved, the resulting endogeneity
problem makes identification more tricky. The economics of the problem makes finding an instru-
ment very difficult, so Sørensen develops a structural model that exploits the fact that investors’
decision to invest depends on the other agents in the market, whereas the outcome of the investment
does not. This provides the exogenous variation needed for identification.

The resulting model is prohibitively time-consuming to estimate by Maximum Likelihood
because investment decisions interact. If one investor invests in a start-up, then other investors
cannot. This implies that the error terms in the model are not independent and have to be integrated
jointly in order to compute the likelihood function. Given that there are thousands of investments,
such an extremely high-dimensional integral is computationally infeasible at present. Sørensen
develops a feasible MCMC procedure to estimate the model, which is computationally much
quicker than Maximum Likelihood.

Later studies [9, 82] use a similar MCMC methodology to study the matching of targets and
acquirers in M&A, and the matching between banks and firms.

The next section on panel data dives deeper into the benefits of MCMC methods for formulating
feasible estimators that perform high-dimensional integration in a computationally efficient way.

26.5 Panel data

In corporate finance one often observes the actions of a set of agents (companies, CEOs etc.) over
time. Such panel datasets are a rich source of identification, but also come with certain empirical
challenges. The standard issues in classical estimation of panel data models are the assumptions
regarding asymptotics (whether we assume that N or T approaches infinity) and the related inciden-
tal parameters problem [78],27 the initial values problem [44], and the Hurwicz asymptotic bias for

27 The incidental parameters problem in the panel data context states that individual fixed effects are not
estimated consistently for fixed T, which results in inconsistent estimates of the parameters of interest. In some
cases a transformation (such as first-differencing to cancel out the fixed effects) can resolve the problem, but
these are rarely found outside of the linear and logit models.
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ADL type models (also known as Nickell bias or, when applied to predictive regressions, Stambaugh
bias). The Bayesian approach avoids many of these pitfalls. For example, asymptotic assumptions
are unnecessary in the Bayesian paradigm since one conditions on the observed data only, and the
initial values problem is easier to handle since we can treat it like a missing data problem. Moreover,
MCMC methods allow the estimation of a wider variety of panel data models, as I will discuss
below.

26.5.1 Random effects probit

Consider the panel data extension of the probit model with random effects (RE):

yit = I{wit≥0}
wit = xitβ + αi + ηit

For example, pr(yit = 1) could represent the probability that firm i goes bankrupt at time t. The
unit-specific intercept, αi, is assumed to be randomly generated from a Normal distribution with
mean zero and variance τ2, and is uncorrelated with ηit ∼ N

(
0, 1 − τ2)

. This ‘random effect’
controls for time-invariant, unobserved heterogeneity across units.28 The parameters, β , are there-
fore identified from the time-series variation within firms.29

It is useful to think of the structure of the panel probit model as a hierarchy, where each level
builds upon the previous levels:

τ2 ∼ IG (a, b)

αi|τ2 ∼ N
(

0, IN · (
1 − τ2)

/τ2)

wit|αi, τ2 ∼ N
(

xitβ + αi, 1 − τ2)

This hierarchy can be extended to as many levels as desired (e.g. industry-company-executive-year
data). Hierarchical models [69] are useful in many corporate finance settings, and MCMC methods
are very well suited for estimating these models, due to the complete conditional structure of
the algorithm. By breaking up the problem into simple regression steps based on its hierarchical
structure, one can estimate models for which even the act of writing down the likelihood function
becomes an arduous task. This allows one to compute correct standard errors and perform hypoth-
esis testing without resorting to standard shortcuts such as two-stage estimators.

Algorithm 5 shows how to extend the probit Algorithm 3 to estimate the panel probit model.
Steps 1 and 2 follow straight from Algorithm 3. Step 3 jointly draws a set of αs by regressing wit −
xitβ on a set of dummies, one for each firm (note that the prior means are zero). Step 4 estimates
the variance of the αs, again in regression form. Note that the Algorithm follows the hierarchy of
the model.

28 Alternatively, one can think of the random effects as a form of error clustering. Note that in Stata the
‘cluster’ command gives larger standard errors than the RE estimates, because Stata only considers the residual
idiosyncratic error after removing the group error component.

29 The random effects estimator is different from the fixed effects estimator, which is typically estimated using
dummy variables. The random effects estimator dominates the fixed effects estimator in mean-squared error
[26, 92], whereas the benefit of the fixed effects estimator is that it allows the unit-specific means to be correlated
with the other explanatory variables. Mundlak [76] develops a correlated random effects model by specifying
αi = x̄iγ + ui , where x̄i is the time-series average of xit , and ui is an othogonal error term. Chamberlain [8]
extends the approach to a more flexible specification of α as a function of x.
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Algorithm 5 Panel random effects probit

1. Draw wit|β , α, τ2 for all i and t:

(a) for yit = 1:

wit|β , α ∼ LT N (xitβ + αi, 1)

(b) for yit = 0:

wit|β , α ∼ UT N (xitβ + αi, 1)

2. Draw β|w, α, τ2 from a Bayesian regression of w − α on xit , with Normal priors on β and
known variance 1 − τ2:

β|w ∼ N
(
(X′X + A)−1(X′(w − α) + Aμ),

(
1 − τ2) · (X′X + A)−1

)

where w − αis the stacked vector {wit − αi} across i and t, corresponding to the matrix X.
3. Draw α|β , w, τ2 from a Bayesian regression of w − Xβ on a NTxN matrix of firm dummies

D, using a N
(

0, IN · (
1 − τ2)

/τ2)
prior:

α|β , w, τ2 ∼ N
((

D′D + IN · (
1 − τ2)

/τ2)−1 · D′(w − Xβ),
(

1 − τ2)

· (D′D + IN · (
1 − τ2)

/τ2)−1)

4. Draw τ2|α, β , w, using an IG (a, b) prior:

τ2|α, β , w ∼ IG
(

a + N, b +
N∑

i=1
α2

i

)

5. Go back to step 1, repeat.

Besides the relative ease of programming,30 there is also a computational advantage to MCMC
in models with high-dimensional integrals over many latent variables. To appreciate why nonlinear
panel data models such as the panel RE probit are difficult to estimate by Maximum Likelihood,
consider the likelihood function:

L =
N∏

i=1

∞∫

−∞

[ T∏

t=1
�

(
(2yit − 1) · xitβ + αi√

1 − τ2

)]

φ
(αi

τ

)
dαi

where, as before, φ(·) is the pdf of the standard Normal distribution, and �(·) is the cdf. The term
in square brackets is the standard probit likelihood, conditional on αi. Because of the nonlinearity
of �(·), the expectation over α cannot be solved analytically, so numerical methods are required to
evaluate the integral. In order to calculate the likelihood for one set of parameters, we need to eval-

30 The core (steps 1 through 5) of the panel probit routine of Algorithm 5 requires only about 20 lines of code
in Matlab.
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uate N unidimensional integrals (in addition to the integrals required to evaluate the standard Nor-
mal cdf in the inner term of the likelihood). This can be done quite efficiently by Gauss–Hermite
quadrature (this is how Stata estimates this model). However, even with small changes to the model
the integral becomes of high dimension, at which point quadrature quickly loses its effectiveness
(even for as few as five dimensions [96]). For example, allowing for auto-correlation in the ηits, the
inner term,

∏T
t=1 �

(
(2yit − 1) · xitβ+αi√

1−τ 2

)
, becomes a T-dimensional integral with no analytical

expression.31 Allowing instead for cross-correlation (but no auto-correlation) in the error terms,
rewrite the likelihood as

T∏

t=1

∫
f
(

y1t . . . yNt
)

g (α1 . . . αN) d(α1 . . . αN)

where f (·) is the joint likelihood of y1t . . . yNt conditional on the αs, and g(·) is the joint probability
density of the REs. Even conditional on the αs, the N-dimensional joint likelihood f (·) has no
analytical solution, and on top of that one needs to integrate over the distribution of the REs. The
classical alternative to quadrature, Simulated Maximum Likelihood, thus requires a large simulation
exercise to evaluate the likelihood, covering the entire joint distribution of all latent variables. This
simulation has to be repeated for every guess of the parameters vector. MCMC on the other hand
switches between drawing new parameters and drawing the latent states. The integration over the
distribution of the latent states only needs to be done once, after the simulation is finished. This
speeds up estimation considerably. For example, Jeliazkov and Lee [53] extend MCMC Algorithm
5 and estimate a random effects panel probit model in which the ηit are serially correlated, and
apply it to women’s labour force participation. The estimation problem extends to many related
models for which the likelihood is non-linear in the parameters, and Algorithm 5 can be adapted to
estimate these models as well. For example, Bruno [6] develops an algorithm for a panel RE Tobit
model. Such models have wide applicability in corporate finance for the same reasons as mentioned
above: many standard variables, such as leverage, investment or the decision to fire a CEO, are of a
binary or truncated nature, and fixed or random effects help control for time-invariant unobserved
heterogeneity in a panel data setting. Another useful extension is to deal with unbalanced panel data
by combining Algorithm 5 with the randomly missing data Algorithm 2.

26.5.2 Panel data with selection/attrition

In this section I combine the Heckman model from Section 26.4.2 with the panel RE model from
the previous section. In other words, I allow for non-random missing data in a random effects panel
model. This model is useful for controlling for non-random attrition, for example firms disappear-
ing through bankruptcy or merger/acquistion. In spite of the wide range of potential applications,
no canned estimators are currently available in popular software packages.32

The model is

yit = αi + xitβ + δ · ηit + σξ · ξit

wit = θi + zitγ + ηit

31 Note that the problem of integration with auto-correlated errors is closely related to the estimation of the
dynamic selection model of Section 26.4.3.

32 Running a panel Heckman in Stata and using the ‘cluster’ option to allow for random effects does not lead
to the same result, as the error clustering is not true Maximum Likelihood and does not allow for random effects
in the selection equation.
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where δ and σξ are as defined in Section 26.4.2. The random effects are iid, αi ∼ N
(
μ, τ2)

,

and θi ∼ N
(
κ , ω2)

. The error terms are iid, ηit ∼ N
(

0, 1 − ω2)
, and ξit ∼ N

(
0, σ 2

ξ

)
, and are

uncorrelated with each other and with the random effects. As in the standard Heckman model in
Section 26.4.2, selection enters through δ �= 0. Hausman and Wise [41] were the first to consider
this model. Other Maximum Likelihood approaches have been developed by Ridder [85], Nijman
and Verbeek [79] and Vella and Verbeek [98]. These models impose strong assumptions and are
computationally burdensome as they require the evaluation of multiple integrals. To circumvent
the computational burden, two-step estimators are typically employed, but these understate the
standard errors of the parameters in the observation equation by not accounting for the estimation
error in the inverse Mills ratios. MCMC is useful in these models because it is a computationally
more efficient estimation method, and it allows for correct inference, taking into account all sources
of estimation error.

Algorithm 6 shows the MCMC procedure, which is essentially the standard Heckman model of
Algorithm 4, augmented with the RE components as in Algorithm 5. Dropping Steps 3 through 6
and setting μ, κ , τ and ω to zero collapses the algorithm back to the standard Heckman model.
Similarly, forcing ρ = 0 collapses the algorithm down to a standard RE panel regression without
selection. Although Algorithm 6 is slightly longer than the algorithms shown thus far, it is not much
more complicated as it is still essentially a sequence of regressions.

To illustrate the importance of selection effects in corporate finance, I run a RE panel regression
of quasi-market leverage (defined as the book value of debt divided by the book value of debt plus
the market value of equity) on lagged profitability (operating income divided by the book value
of assets), tangibility (net property plant and equipment divided by book assets), market-to-book
ratio (market value divided by book value of equity) and the natural logarithm of book assets.
Regressions of this nature are quite common in the literature (e.g. [64]), although researchers
typically use fixed effects rather than random effects. I use data for a random sample of 1 000 firms
from Compustat between 1950 and 2010, for a total of 11 431 firm-years. The first column in Table
26.3 shows the standard GLS estimates of the regression coefficients. To gauge the effect of the
priors and the additional distributional assumptions of the MCMC algorithm in this example, the
second column of the table reports the MCMC estimates of the same regression model, ignoring
the selection issue (i.e. forcing ρ = 0). The coefficient estimates are very close, suggesting that
MCMC indeed replicates the standard GLS regression when ignoring selection. The random effects
are important as they account for 57% of the variance (result not reported in the table).

An important concern is that leverage is missing for 1 572, or 14%, of firm-years. If observations are
not missing at random, for example if firms drop out of the sample due to a merger or a bankruptcy,
this can result in misleading estimates. Unreported results reveal that the missing firm-years are
characterized by higher profitability, higher tangibility and lower market-to-book ratios, suggesting
that they are indeed different in observable respects. This is in principle not a problem, unless there
is also selection on unobservable variables, which would manifest itself as a non-zero correlation
between the error terms in the selection and observation equations, ρ. The last column of Table 26.3
shows the estimates from MCMC Algorithm 6. The posterior mean of the correlation ρ is 0.367, the
first percentile of the posterior distribution is 0.237 and the 1/10th percentile is 0.070. This finding
indicates that ρ is not zero and there is indeed non-random selectivity on unobserved variables.
Moreover, the selection correction has a large impact on parameter estimates. The coefficient on
profitability drops from –0.186 in the GLS to –0.237 after correcting for selection, a change of
about 25%. Moreover, the coefficient on tangibility roughly drops in half, from 0.207 to 0.101. The
estimates of market-to-book and firm size are only marginally affected by the selection issue. Note
also the well-known result that the estimate of residual variance (and hence standard errors) is
biased downwards when ignoring selection [42], hence the larger posterior standard deviations
of the coefficients in the selection correction model. For brevity I do not report the coefficients
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Algorithm 6 Panel random effects with selection

1. Draw wit , y∗it|α, θ , β , γ , δ, σξ , μ, τ2, κ , ω2

(a) for yit observed:

wit ∼ LT N

⎛

⎝θi + zitγ + ρ
√

1 − ω2 ·
⎡

⎣ yit − αi − xitβ√
δ2 + σ 2

ξ

⎤

⎦ ,
(

1−ρ2) · (
1−ω2)

⎞

⎠

where ρ = δ/
√

δ2 + σ 2
ξ .

(b) for yit not observed:

wit ∼ UT N
(
θi + zitγ , 1 − ω2)

y∗it|wit ∼ N
(
αi + xitβ + δ [wit − θi − zitγ ] , σ 2

ξ

)

2. Draw β , γ |w, y∗, α, θ , δ, σξ , μ, τ2, κ , ω2 from a Bayesian Seemingly Unrelated Regression of
[y − α; w − θ ] on [X; Z], with Normal priors on β and γ and known covariance matrix 

as in Algorithm 4 Step 2, where

 =
[

σ 2
ξ + δ2 δ

√
1 − ω2

δ
√

1 − ω2 1 − ω2

]

⊗ IN

3. Draw α|w, y∗, θ , β , γ , δ, σξ , μ, τ2, κ , ω2 from a Bayesian regression of y − Xβ on a NTxN

matrix of firm dummies D , using a N
(
μ, IN ·

(
δ2 + σ 2

ξ

)
/τ2

)
prior.

4. Draw θ |w, y∗, α, β , γ , δ, σξ , μ, τ2, κ , ω2 from a Bayesian regression of w − Zγ on a NTxN
matrix of firm dummies D , using a N

(
κ , IN · (

1 − ω2)
/ω2)

prior.
5. Draw μ, τ2|w, y∗, α, θ , β , γ , δ, σξ , κ , ω2 from a Bayesian regression.
6. Draw κ , ω2|w, y∗, α, θ , β , γ , δ, σξ , μ, τ2 from a Bayesian regression.
7. Draw δ, σ 2

ξ |w, y∗, α, θ , β , γ , μ, τ2, κ , ω2 from a Bayesian regression of y − α − Xβ on
w − θ − Zγ , with Normal-IG priors (see Algorithm 1).

8. Go back to step 1, repeat.

of the selection equation, although these could be interesting in their own right as they convey
information about the reasons for selection.

It is important to note that the results in Table 26.3 should be taken as suggestive only. There
are other observable variables that can be included in the observation and selection equations that
may alleviate the omitted variable problem. Moreover, I include the same variables in the selection
equation as in the observation equation, so the model is identified from distributional assumptions
only. A more thorough analysis requires an instrument that changes the probability of observing
leverage but does not drive leverage itself. In other words, one needs a variable in the selection
equation that does not appear in the observation equation. This requires delving deeper into the
economic reasons for selection. For example, the fact that more profitable firms are more likely to
disappear from the data suggests that the main source of attrition is mergers and acquisitions rather
than bankruptcy. One would then look for an instrument that drives M&A but not leverage. Other
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Table 26.3 Random effects panel regressions. Random effects panel regression estimates of quasi--
market leverage (defined as the book value of debt divided by the book value of debt plus the market
value of equity) on profitability (operating income divided by the book value of assets), tangibility
(net property plant and equipment divided by book assets), market-to-book ratio (market value
divided by book value of equity) and the natural logarithm of book assets, based on a random sample
of 1 000 firms spanning 11 431 firm-years from Compustat between 1950 and 2010. All explanatory
variables are lagged by one period. The first column uses the standard GLS method to estimating a
random effects panel model. The ‘No Selection’ column estimates the same random effects model,
but using MCMC (Algorithm 6 withρ forced to zero). The column labelled ‘Selection’ uses MCMC
Algorithm 6 to correct for sample selection. The MCMC estimates use 1 000 burn-in cycles followed
by 10 000 cycles to sample the posterior distribution. Standard errors for the GLS estimates and
posterior standard deviations for the MCMC estimates are in brackets.

Dependent variable: Quasi-market leverage

GLS MCMC

No selection Selection
correction correction

Operating income / assets –0.183 –0.186 –0.237
(0.015) (0.015) (0.017)

Tangibility 0.209 0.207 0.101
(0.016) (0.016) (0.021)

Market-to-book –0.029 –0.029 –0.028
(0.002) (0.002) (0.002)

Log(assets) 0.020 0.020 0.019
(0.002) (0.002) (0.002)

ρ – – 0.367
– – (0.049)

possible extensions are to use two selection equations to separately model bankruptcy and M&A
as different reasons for attrition, essentially producing a joint model of capital structure, M&A and
bankruptcy, or to use the Korteweg and Sørensen [59] approach and model leverage as an AR(1)
process. Note also that the above example, given the use of random effects, only considers selection
in the time series. There could be important cross-sectional sample selection issues over and above
the time-series selection problem.

It is fairly straightforward to generalize Algorithm 6 to make the dependent variable a binary
(probit) or truncated (Tobit) variable. For example, Hamilton [38] specifies a RE panel Tobit selec-
tion model with t-distributed error terms and uses MCMC to estimate the effect of HMO choice
on healthcare costs. A different extension to the model is in Cowles, Carlin, and Connett [19] who
estimate a panel selection model allowing for two observation equations. Selection is multinomial
and the observation equations are observed at different cutoffs of the selection variable. They apply
their model to a longitudinal clinical trial measuring the effect of smoking cessation paired with an
inhaler treatment on lung function. The selection problem is that patients endogenously do not
show up for follow-up visits, or show up but fail to return canisters with inhaler.
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26.6 Structural models

Structural models have many potential applications in empirical corporate finance, and have been
used in areas such as capital structure (e.g. [46, 47, 93]) and corporate governance (e.g. [95]).
These models are typically estimated by simulated method of moments (SMM) or, in some cases,
Simulated Maximum Likelihood (SML, see e.g. [5, 80]). In this section I will illustrate the benefits
of estimating these models by MCMC, especially models with latent state variables.

Consider Merton’s [75] model of the firm in state-space representation:

vt = vt−1 + μ + σεt

Et = P (vt , σ ; θ) + ηt

The state variable of the model is the natural logarithm of the market value of the firm’s assets, vt ,
which follows a random walk with drift μ. The shocks to firm value, εt , have a standard Normal
distribution. The observed market value of equity, Et , is a function of vt , volatility, σ , and other
parameters, θ . In Merton’s model the pricing function, P(·), is the Black–Scholes European call
option function, and the parameters vector θ consists of the maturity of debt (time-to-expiration),
the face value of debt (strike price), and the risk-free interest rate, all of which I will assume are
observed. The pricing error, ηt , allows for unmodelled features such as market microstructure noise
[50, 58] that may force observed prices away from the model.33

I assume for now that, in addition to θ , the time series of firm value, vT = {v1 . . . vT} as well as
the equity values are all observed. The inference problem is then to obtain the posterior distribu-
tion p

(
σ 2, μ|ET , vT)

. As usual, an MCMC algorithm cycles between drawing from the complete
conditionals, p

(
μ|σ 2, ET , vT)

and p
(
σ 2|μ, ET , vT)

. The first distribution is a simple Bayesian
regression and poses no problems. The second distribution is more tricky because σ is present in
both equations of the state-space, and although the conditional posterior can be evaluated without
much trouble, it is not a known distribution that is easily sampled. The solution to this problem is
an accept–reject type algorithm known as Metropolis–Hastings.34 Denote by ς the current draw
of

{
σ 2}(g) in cycle g of the MCMC algorithm. To sample the next draw,

{
σ 2}(g+1), one proceeds

as follows:

1. Draw s from a proposal density f (s; ς).

2. Compute α = min
(

1, p
(

s|μ,ET ,vT)·f (ς ;s)
p(ς |μ,ET ,vT)·f (s;ς)

)
.

3. Set
{
σ 2}(g+1) =

{
s w/ probability α

ς w/ probability 1 − α
.

Note that we use the latest draw for μ when computing α. The proposal density is key for the perfor-
mance of the algorithm. Ideally, it is a density that is close to the target density, p

(
σ 2|μ, ET , vT)

, yet
easy to sample from. The proposals can be iid (commonly known as ‘independence Metropolis’) or
proposals may depend on the current draw of σ 2. A popular example of the latter type is the ‘random

33 An alternative motivation for the pricing errors is simply to avoid a stochastic singularity problem in the
sense that the model makes predictions about more observable variables than there are structural shocks and
hence could be rejected with the observation of as few as two time periods.

34 The Metropolis–Hastings algorithm is derived from the detailed balance condition of the stationary dis-
tribution of the Markov chain, which ensures that the chain will be reversible. I will not go into the theoretical
details here, but instead refer the reader to Johannes and Polson [54], Robert and Casella [86], or Rossi et al. [87]
for a comprehensive treatment.
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walk Metropolis’ in which s equals the current draw, ς , plus a random increment. Note that if we
are able to sample from the target density, i.e. f (·) = p(·), then we are back to a Gibbs sampler step:
α = 1 and we always accept the proposal. In this sense we can think of the Metropolis–Hastings
algorithm as a generalization of the Gibbs sampler. As in the Merton model example, an MCMC
algorithm can be a mixture of Gibbs steps and Metropolis–Hastings steps.

It is important to ‘tune’ the proposal density to get reasonable performance from the sampler.
Clearly an acceptance rate near zero is bad because the sampler will be slow to converge to, and
explore, the posterior distribution due to the many rejected proposals. An acceptance rate near 100%
may seem great at first sight, but one may worry that the chain is moving very slowly because the
incremental steps in a random walk Metropolis are too small, or because the tails of the proposal are
too thin relative to the target distribution in an independence Metropolis sampler. Either way, we
may be undersampling an important part of the posterior distribution, leading to poor inference.
There is no generic theoretical advice that can be given as to how best to pick a proposal distribution.
Typical advice in practice is to aim for a 50–80% acceptance rate, but it should be noted that the
acceptance rate alone does not determine whether the sampler does a good job. For more details
on the Metropolis–Hastings algorithm and tuning, see Johannes and Polson [54], Robert and
Casella [86], or Rossi et al. [87].

In many structural models inference is complicated further by the fact that the underlying state
variable is not observed (e.g. [46, 47, 63]). MCMC deals with this by augmenting the posterior
distribution with the state variable, p

(
σ , μ, vT |ET)

, which can subsequently be integrated out to
obtain the marginal distribution of the model parameters. Conveniently, the complete conditionals
for μ and σ do not need any modification (they are already conditioned on a draw of vT), so the
only extra step that is required is to sample from the conditional distribution of the state variable
p
(

vT |μ, σ , ET)
. In the Merton model a linear Kalman filter provides us with the distribution of

v1|E1 through vT |ET , dropping the conditioning on the parameters for ease of exposition. Since
we need to draw from v1|ET through vT |ET , one more step is required: smoothing. This essentially
involves running the Kalman filter again, but going backwards starting at time T, and sampling the
vts as we go along. This procedure is called ‘Forward Filtering, Backwards Sampling’ (FFBS) [7, 30].

Korteweg and Polson [58] describe the MCMC algorithm for a structural model of the firm in
detail, with FFBS and Metropolis–Hastings sampling for σ 2. They estimate Leland’s [62] model for
a panel of firms and compute corporate bond credit spreads, taking into account the effect of param-
eter and latent state uncertainty. Using the robust pricing framework of Hansen and Sargent [40],
the bond price under uncertainty, Pt , is the expectation of the model price over the distribution of
latent state and parameters given the data up to time t:

Pt = Eσ ,vt |Et (B(vt , σ ; θ))

≈ 1
G

G∑

i=1
B

(
v(i)

t , σ (i); θ
)

where B(·) is the model’s bond pricing function. Bayesian methods are very well suited for problems
of learning and uncertainty, since the posterior distribution captures the degree of parameter and
state uncertainty based on the observed data. The second line shows the approximation to the
bond price based on G cycles of the MCMC algorithm (after dropping the initial burn-in cycles).
The expectation in the top line becomes a simple average over the draws of the algorithm. The
concavity of the bond pricing formula in v and σ results in larger credit spreads for bonds compared
to estimates from standard methods (e.g. [27]).

Apart from the usefulness for learning and uncertainty problems, MCMC methods have the
same advantage over SMM and SML in speed of computation as described in Section 26.5.1: instead
of simulating the latent state variables for each set of parameters as is required in SMM/SML, the
MCMC algorithm bounces between parameter draws and draws of the state vector, leading to faster
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convergence. Moreover, the MCMC and other likelihood-based estimates incorporate all available
information, unlike SMM which only considers a set of moments chosen by the researcher and
therefore results in less powerful tests. However, this efficiency gain does come at the expense of
making stronger distributional assumptions on the observation error, η (see Korteweg and Lem-
mon [57] for a detailed discussion of structural model testing). Finally, as shown earlier, MCMC
gives correct small-sample inference and is amenable to computing nonlinear functions of param-
eters and states. This is a particularly useful feature for structural models where the observables are
often nonlinear in both the parameters and states.

The MCMC algorithm for structural models can be extended in various important directions,
including but not limited to panel data, autocorrelation in the error structure, handling missing data,
and adding stochastic volatility and jumps to the state process, as well as more flexible observation
error distributions, for example through mixtures of Normals. The inherent modularity of MCMC
makes this task more convenient to handle than with classical methods.

There are other applications of state space models outside of strict structural modelling. One
example is Korteweg [56], who uses MCMC to estimate the net benefits to leverage from a state
space model in which the state vector is composed of individual firms’ unlevered asset values and
industry asset betas. The observations are the market values of firms’ debt and equity and their
riskiness (i.e. betas) with respect to the market portfolio. Under the identifying assumption that
all firms within the industry share the same (unlevered) asset beta, Korteweg identifies the present
value of the net benefits to leverage as a function of leverage and other firm characteristics such as
profitability, market-to-book ratio, and asset tangibility. The MCMC algorithm for this model is
similar to the algorithms described above, employing the Kalman filter and FFBS to integrate out
the latent states.

26.7 Extensions and other applications

In this section I will highlight some further potential applications of MCMC methods in corporate
finance, focusing on cases which are difficult to estimate using classical methods.

Hierarchical models are a particularly useful type of model that has to date seen little application
in corporate finance. Hierarchical models were introduced in Section 26.5.1 in the context of estimat-
ing random effects in a panel probit model, but the basic concept of the hierarchical model has much
broader applicability. For example, consider a model of the decision to issue equity. The typical
approach would be to run a probit or hazard model that specifies the probability of issuing equity as
a function of a number of covariates, most importantly the financing deficit, one of the key variables
in the pecking order theory of capital structure. However, a common concern is that the financing
deficit and the decision to issue equity are jointly determined in the sense that they are both driven
by (unobserved) investment opportunities. Lacking a good instrument or natural experiment, one
example of a hierarchical modelling solution to this problem is to model the deficit conditional on
an underlying (latent) investment opportunity variable, and to specify the probability of issuing
equity conditional on both the deficit and the latent variable, potentially allowing for correlation
between the error terms.35

It is also useful to add hierarchical model features to structural models. For example, it would be
interesting to analyse the cross-sectional distribution of firms’ bankruptcy costs, or the distribution
of CEO talent in structural models of the firm. However, there is usually not enough data to reliably
pin down the estimate on a firm by firm basis. One way to overcome this issue is to use a hierarchical

35 Of course an instrument that shocks the deficit (but not the equity issuance probability) will help the
identification of the model. The intuition is similar to the argument for having an instrument in the Heckman
selection model.
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setup and specify a firm’s bankruptcy cost or a CEO’s talent as being generated from a particular
distribution, using the observed data to estimate the mean and variance of this distribution, as was
done in the random effects model.

Bayesian methods are also very useful for duration (hazard) models. For example, one could
model the probability of attrition in Section 26.5.2 through a hazard rate instead of a probit model.
This would do a better job of capturing the essence of liquidation or an acquisition in the sense that,
unlike in the probit model, a firm could not come back to life the next period. Li [66] estimates the
duration of Chapter 11 bankruptcy spells from a Bayesian perspective, using an approximation to
the posterior density, accounting for parameter and model uncertainty as well as providing correct
sample properties based on the small dataset. Horny, Mendes and Van den Berg [48] estimate
a hazard model of job duration with worker and firm-specific random effects. They use random
effects because fixed effects are not feasible due to right-censoring of the unemployment spells,
and because the random effects allow them to decompose the variation of job durations into the
relative contributions of workers’ and firms’ characteristics. In addition, they allow for multiple job
spells per worker and for correlation between the worker and firm random effects. They estimate
the model by MCMC because the joint dependence of the random effects makes classical likeli-
hood-based estimation very difficult for both computational speed and the difficulty of finding the
appropriate asymptotic distribution in order to calculate standard errors. Chen, Guo and Lin [11]
develop a model of switching hazard models which they use to estimate the probability of IPO
withdrawal in relation to its subsequent survival hazard, which in turn depends on the IPO decision.
They use MCMC because of the computational advantage in both estimation and performing
model selection and cross-validation, as well as the small-sample inference properties. Fahrmeir
and Knorr Held [28] develop a nonparametric MCMC method for a duration model with multiple
outcomes, such as unemployment ending in a full-time versus a part-time job. Such a model could,
for example, be applied to firms’ survival spells ending in either bankruptcy or an acquisition, or
CEO’s tenure spells ending in a forced or voluntary retirement.

Another area where MCMC can be applied is count data. These models are related to duration
models, but instead of a time spell the dependent variable is a non-negative integer that counts the
number of events that have occurred within a given time period. Examples include the number
of takeover bids received by a target firm [52], the number of failed banks [22] or the number of
defaults in a portfolio of assets [55]. Chib, Greenberg and Winkelmann [16] develop an MCMC
algorithm for panel count data models with random effects. They argue that Maximum Likelihood
is not a viable estimator for this model due to the presence of random effects paired with the
nonlinearity of count data. Chib and Winkelmann [17] generalize this model to allow for multivari-
ate correlated count data, represented by correlated latent effects. Munkin and Trivedi [77] embed
a count model in a self-selection model with two correlated outcome equations, one of which is a
count and the other a continuous variable. The authors strongly motivate their MCMC approach by
the computational difficulties encountered when attempting to estimate the model by SML. Deb,
Munkin and Trivedi [23] extend this selection model by allowing the entire outcome function to
be different among the treated and untreated groups, essentially turning the model into a switching
regression with count outcomes. They apply their MCMC estimation to separate the incentive and
selection effects in private insurance on the number of doctor visits, using a multiyear sample of
the US adult non-Medicare population. This could be applied in corporate finance, for example,
for identifying the incentive and selection effects in public versus private firms in undertaking
acquisitions, using the count of M&A as the dependent variable.

A class of models that is very closely related to the switching regressions of Section 26.4.4, and
which is also related to the state space models of Section 26.6 is the set of hidden Markov models
(HMM). Unlike switching regressions, there are typically no covariates that drive the selection into
a specific state, but they generally allow for multiple states (in some cases a continuum of states) of
the system that switch according to a Markov process. In economics, HMM are usually applied
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to regime switching settings, where the economy may switch between expansion and recession.
Albert and Chib [2] argue that the two-step Maximum Likelihood approach to estimating HMM
of Hamilton [39] does not give correct standard errors as the uncertainty about the parameters
in the first step is not incorporated in the second step. In addition, the ML approach does not
provide a complete description of the likelihood, such as bimodality or asymmetry. Albert and Chib
develop an MCMC algorithm that deals with both issues. McCullogh and Tsay [74] use MCMC
to estimate an HMM that is very close to the switching regressions of Section 26.4.4 and apply
it to GNP data. Ghysels, McCullogh and Tsay [35] estimate a nonlinear regime switching model
and apply their MCMC estimator to two examples, one using housing starts data while the other
employs industrial production data. They argue that the MCMC approach is particularly suitable to
their model because classical estimation of periodic Markov chain models often results in parameter
estimates at the boundary.

Recent work has started exploring the uses of MCMC for Instrumental Variables, with some
success (see Sims [90] for a discussion and further references). In particular, when the error dis-
tributions are non-Normal, the Bayesian estimates may be more efficient than classical methods
[18]. On a different note, two recent papers by Davies and Taillard [20, 21] propose an MCMC
approach to dealing with omitted variables that does not use an instrument at all, but instead
achieves identification by assuming that any common variation in the residuals is due solely to the
omitted variables.

Finally, thanks to the modularity of MCMC, models can be mixed and extended in various
ways that are quite straightforward. For example, one can deal with missing data by adding the
Algorithm 2 steps to any of the other algorithms. Error clustering can be handled by adding random
effects to the models. Last but not least, one can deal with heteroskedasticity and non-Normal error
terms by using mixtures of Normals (see Diebolt and Robert [24] and Geweke [34] for MCMC
mixture models, Chen and Liu [12] for Kalman filters with mixtures of Normals, and Korteweg and
Sørensen [59] for an application). These mixture models can be added to MCMC algorithms with
relative ease, are very flexible in generating both skewness and kurtosis in the error distributions,
and make the MCMC estimates more robust to outliers.

26.8 Conclusion

With the current trend towards more complex empirical models in the corporate finance literature,
Markov chain Monte Carlo methods provide a viable and attractive means of estimating and evalu-
ating models where classical methods such as least squares regression, GMM and Maximum Like-
lihood and their simulated counterparts are difficult or too computationally demanding to apply. In
particular, this includes nonlinear models with many latent variables that require high-dimensional
integration to evaluate the likelihood, or models that have a hierarchical structure. Examples of
such models include panel limited dependent variable models, matching and other self-selection
models, and structural models of the firm. The potential application of these types of models in
corporate finance is vast, including such diverse areas as capital structure, financial intermediation,
bankruptcy, and corporate governance.

The core feature of the method is the Hammersley–Clifford theorem, which breaks up the prob-
lem into its complete conditional distributions. These are usually relatively easy to sample from,
requiring no more than standard regression tools. Another benefit of the MCMC approach is that
it is modular, so that, for example, one can add a missing data module to a panel probit algorithm
with relative ease. Moreover, the method allows for exact small-sample inference of parameters and
nonlinear functions of parameters (the latter being helpful, for example, when calculating marginal
effects in a probit or logit model), and does not require optimization algorithms, simulated anneal-
ing or other methods that can make Maximum Likelihood and GMM cumbersome to use.
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Every introductory text necessarily has to focus on certain ideas at the expense of others, and I
have chosen to focus on applications rather than to discuss some of the more technical details of
the MCMC method, the role of priors, and convergence diagnostics. Most introductory textbooks
thoroughly discuss these and other topics, and I refer the interested reader to Rossi et al. [87] and
Johannes and Polson [54] for a particularly lucid treatise and further reading.

This chapter has only touched the tip of the iceberg of possibilities that MCMC has to offer for
empirical corporate finance research, and I hope to have convinced the reader that the potential
benefits of the method are plentiful. Given that learning MCMC does come with some fixed cost,
I hope that this chapter and the accompanying code samples help to lower the cost of adoption,
and inspire and motivate corporate finance researchers to dive deeper into MCMC methods. With
time, hopefully this methodology will become part of the standard toolkit in finance, as it already
is in many other areas of scientific inquiry.
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