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1. Introduction 

Researchers’ attempts to measure the investment performance of portfolio managers have 

long been hobbled by market timing.  If fund managers attempt to trade in anticipation of 

market-wide factors (market timing behavior), it has been known since Grant (1977) that 

security selection ability is hard to measure.  If managers attempt to both time the markets 

and pick undervalued securities, it is hard to distinguish one skill from the other.  

Commonly, market timing and selectivity performance are measured assuming that only 

one of those abilities exists.  This can lead to a missing variables bias if both types of 

behavior are present.  In addition, funds may attempt to time or react to market volatility 

(Busse, 1999), further complicating inferences.  This paper develops new performance 

measures that accommodate selectivity, level timing and volatility timing in a consistent 

framework.   

 Classical measures of timing ability such as Treynor and Mazuy (1966) and Merton 

and Henriksson (1981) make strong assumptions, such as timing behavior of a stylized 

form, and/or the validity of a simple options pricing model.  This leads to misspecification 

if the stylized assumptions are not satisfied.  Our approach avoids such stylized 

assumptions by observing managers’ behavior through the portfolio weights.   

 Measures of performance that attempt to accommodate market timing behavior 

typically model the ability to time the level of market factors, but not market volatility.  

Investors value market level timing because the positive covariance between a fund’s 

market exposure and the future market return boots the expected portfolio return for a 

given average risk exposure.  Risk-averse investors value volatility timing when funds can 

reduce market exposure in anticipation of higher volatility.  The negative covariance 
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between a fund’s market exposure and volatility lowers the average volatility of the 

portfolio, and can do so without an average return penalty.1  Busse (1999) studies volatility 

timing behavior in US mutual funds, and finds evidence for the behavior in funds’ returns. 

Aragon and Martin (2012) suggest that hedge funds may actively time volatility.  If both 

level and volatility timing behavior are present, models that leave one of them out are likely 

misspecified.2 

 Classical measures identify timing ability through the nonlinearity it creates in 

funds’ returns, using stylized models of manager behavior to map the nonlinearity into 

managers’ superior information.  There are two problems with this approach.  First, there 

are many potential sources of nonlinearity in fund returns that may be unrelated to market 

timing ability (see Chen Ferson and Peters (2010) for a discussion).  Second, if the nonlinear 

timing term is left out of a returns-based performance regression, the selectivity measure is 

biased when the missing nonlinear term is correlated with the included linear term.  By 

using portfolio holdings instead of reported returns, we avoid these problems.  By 

observing fund managers’ behavior through their holdings, we avoid stylized assumptions 

about the behavior.   

                                                  
1 If the market volatility process is such that high unexpected volatility leads to an upward 
revision in market volatility, and if prices adjust downward to raise expected returns for 
the higher volatility, then a volatility-timing strategy will enhance portfolio average 
returns. 
2 Holmes and Faff (2004) apply Busse’s model in Australia, and Kim and In (2012) examine 
Busse’s model using simulations.  Other studies further motivate the relevance of volatility 
timing.  Fleming, Kirby and Ostdiek (2001), Johannes, Polson and Stroud (2002) and Han 
(2009) find that models attempting to predict volatility have an economically significant 
impact on mean-variance optimal portfolio strategies.  Graham and Harvey (1996) find that 
dispersion in newsletters’ asset allocation recommendations predicts future market 
volatility.  Aragon and Martin (2012) find that aggregate hedge fund demand for options 
predicts market volatility changes.  Cao, Chen, Liang and Lo (2012) consider both market 
and volatility timing for hedge funds, but their returns-based approach is very different 
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 This paper contributes to a rapidly-developing literature on holdings-based 

performance measures, kicked off by Grinblatt and Titman (GT, 1989).  Section 2 discusses 

the relation between returns-based and holdings-based performance measures.  We also 

(Section 3.1) develop the relation of our measures to previous holdings-based measures, 

and point out sources of misspecification in those measures that our new measures avoid.  

The intuition for the misspecification in the earlier holdings-based measures follows from 

the fact that these measures examine Cov(xt’ rt+1), which denotes the sum over the securities 

i, of the covariances between portfolio holdings, xit, and the subsequent realized excess 

returns, rit+1.3  However, a well-specified performance measure is based on Cov(xt’ mt+1 rt+1), 

the sum of the covariances between the portfolio holdings and the subsequent abnormal, or 

risk-adjusted returns, where  mt+1 is the stochastic discount factor (SDF).  We use popular 

linear SDFs in this paper, but the idea can be used with any SDF.   

 Using linear SDFs, we show that previous holdings-based performance measures 

leave out a volatility timing component.  Boguth et al. (2011) suggest that volatility timing 

may impart substantial biases to estimates of alpha in other contexts.  Our analysis also 

implies that previous holdings-based measures of selectivity leave out a second moment 

term, where the selectivity component of a fund’s return may be correlated with the SDF.  

These missing terms can change the inference about funds’ ability.  In particular, we find 

that investment ability is significantly related to a fund’s tendency to react to market 

volatility, while the selectivity measure of Grinblatt, Titman and Wermers (1997) finds no 

significant relation.   

                                                                                                                                                                       

from ours. 
3 We characterize the GT measure as an estimate of the covariance. Empirically, GT 
estimate E{[x-xlag]’r}, a weight-change measure, where the lagged weight, xlag serves as a 
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 Our measures extend the previous holdings-based performance measures in a 

parsimonious way.  Only three parameters are needed for each mutual fund.  This allows 

us to easily examine models with multiple benchmarks. 

 We implement our measures on a sample of US active, open-ended mutual funds.  

We find that funds with more active responses to volatility have better subsequent 

performance.  We also find that the ability of funds to time market factor levels is correlated 

with a lagged measure of investor sentiment and with the aggregate flows of new money.  

Sorting funds by factor model R-squares confirms the findings of Amihud and Goyenko 

(2013) that the low R-square funds have better performance.   

 The rest of the paper is organized as follows.  Section 2 briefly reviews returns-based 

versus holdings-based performance measures.  Section 3 describes our models and their 

estimation.  Section 4 describes the data, Section 5 presents the empirical results and Section 

6 concludes. 

 

2. Returns-based versus Holdings-based Performance Measures 

Returns-based measures of performance typically compare the after-fund-cost returns of a 

fund with the returns of a fund-specific benchmark.  In principle, the benchmark should be 

a feasible “Otherwise Equivalent” (Aragon and Ferson, 2008) alternative choice to the fund, 

except without the fund’s skill.  Most typically, risk adjustments are used to define 

equivalent.  For example, Jensen’s (1968) alpha, based on the Capital Asset Pricing Model 

(Sharpe, 1964), uses a fund beta-weighted average of a market index and short term cash 

securities as the benchmark.  A fund whose average return exceeds this benchmark has a 

                                                                                                                                                                       

proxy for the expected weight. 
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positive Jensen’s alpha.  

 Since reported mutual fund returns are measured after expenses and funds’ trading 

costs, returns-based measures are directed at what is left for investors after funds’ costs.  

However, returns-based measures in practice typically mix the after-cost returns of funds 

with the before-cost returns of the benchmarks, creating an “apples to oranges” 

comparison.  Accurate returns-based measures also require accurate measures of funds’ 

risks.  Even if the risk model could be agreed on, risk measurement can be difficult when 

funds engage in market timing or other activities that imply high-frequency trading and 

risk exposures that vary over time (e.g., Ferson and Schadt (1996), Patton and Ramadorai 

(2013). 

 Holdings-based measures, in contrast, examine the covariances between funds’ 

holdings and the subsequent before-cost returns of the underlying securities held, looking 

for the ability to take positions before securities rise in value.  Because the underlying 

assets’ returns are measured before costs, holdings-based measures are better suited than 

returns-based measures for assessing managers’ investment ability before trading costs and 

fees. 

 Holdings-based approaches avoid the problems induced by high frequency trading, 

but do not exploit the information in high frequency returns, which Bollen and Busse (2001) 

find helps to detect market timing ability.  This can result in a loss of power.  However, 

Ferson and Khang (2002) and Jiang et al. (2007) examine the power of holdings-based 

approaches with simulation and find that including the large amount of information in a 

fund’s portfolio holdings more than offsets the loss of information from a single time-series 

of the reported fund returns.  Measures using funds’ holdings can be quite powerful.  The 



 8 

small standard errors we report are consistent with better precision than returns-based 

measures.   

 Reported holdings can be subject to “window dressing” (e.g. Lakonishok, Shliefer 

and Vishny, 1992), where funds attempt to mislead investors at reporting dates (see 

Solomon, Soltes and Sosyura (2012) for a recent analysis).   Such behavior could obscure 

truly informed trading, but backward-looking window dressing should not produce false 

predictive ability.  Abstracting from costs, weight-based measures miss the possibility that 

the ability to trade at low cost or the ability to manage an efficient securities lending 

operation can be forms of skill.  More deeply, while the returns and holdings are measured 

before costs, fund managers presumably determine their holdings through some 

optimization in a world with costs.  Modeling this consideration in holdings-based 

measures is a good opportunity for future research.4   

 

3. The Models 

Consider a definition of abnormal performance, or alpha, based on the Stochastic Discount 

Factor: 

   αp = E(m rp),                                                                                                (1) 

 

where m is the SDF and rp is the return of the fund in excess of a short-term Treasury bill.   

This measure of performance goes back to Grinblatt and Titman (1989), Glosten and 

Jagannathan (1994) and Chen and Knez (1996) who adopt specific SDF models.  Ferson and 

Lin (2012) argue that if m is the client’s marginal rate of substitution, Equation (1) is the best 

                                                  
4 We thank David Mauer for this idea. 
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way to specify a valid performance measure.   

 To see the structure of holdings-based performance measures let xt be the vector of 

holdings at time t and let rpt+1 = xt’ rt+1 be the “hypothetical” fund excess return based on 

the vector of future excess returns, rt+1, on the securities held at time t (we now suppress the 

time subscripts unless required for clarity).  Ferson (2012) shows that Equation (1) and 

simple algebra yield: 

    αp = Cov(x’ m r).                                                                             (2) 

 

Equation (2) says that the right way to measure performance with holdings is the sum of 

the covariances between the portfolio weights and the risk-adjusted abnormal returns, m r.  

 The classical Grinblatt and Titman (1989, 1993) measure is an estimate of Cov(x’r), which 

leaves out the risk adjustment, m.  Ferson (2012) provides conditions under which the two 

approaches are equivalent, but the conditions are stringent and unlikely to be met in 

practice.  Our measures are versions of Equation (2).   

 We assume the SDF is given by popular linear factor models, following Cochrane 

(1996), and using factors that are current standards in the fund performance literature:   

 

     m = a - b’rB,                                                                                         (3) 

 

where rB is a vector of K benchmark portfolio excess returns and a and b are market-wide 

parameters to be estimated.   The simplest example is the CAPM, where K=1 and a broad 

stock market index is the benchmark.  We also use the Fama-French (1996) and Carhart 

(1997) factors, and models that include a bond market factor.  We start with equations (1) - 
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(3) in their simple “unconditional” form and discuss conditional versions of the model 

below.5 

 Consider a factor model regression for the excess returns of the N underlying 

securities: 

     r = a0 + β rB + u,                                                                                 (4) 

 

where β is the N x K matrix of regression betas and E(urB)=E(u)=0.  Let the vector of 

idiosyncratic returns be the sum of the intercepts plus residuals:  v = a0 + u.  A fund forms a 

portfolio of the N assets using weights, x, as: 

 

      rp = x’r = (x’β) rB + x’v.                                                                     (5) 

 

In this formulation, the “cash” position invested in the short term Treasury security is 1 – 

1’x, where 1 is an N-vector of ones.  Define w’=x’β as the “asset allocation” weights.  Our 

approach is to estimate these using a “bottom up” method and daily data for the 

underlying asset returns and benchmarks, similar to Jiang, Yao and Yu (2007) and Elton, 

Gruber and Blake (2010).   Substituting Equation (5) into the definition of alpha we obtain: 

 

  αp = a E(w’rB) – b’ E(rBrB’ w) + E{(a-b’rB) x’v},                                                 (6) 

       = a Cov(w’rB) – b’ E{ [rBrB’ – E(rBrB’)] w}+ E{(a-b’rB) x’v}. 

                                                  
5 Many interesting extensions are possible.  For example, Kang (2012) includes a liquidity 
factor in the model and finds it useful for hedge fund performance.  Including squared 
benchmark returns brings in skewness preference and the possibility of “skewness timing.” 
Our approach is parsimonious enough to handle additional factors. Future research should 
explore these and other extensions.  
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The benchmarks have zero alphas in (1) by construction when (3) describes the SDF.  This 

allows us to move between the first and second lines of Equation (6), writing the measures 

in terms of covariances.  In our estimation scheme, described below, we use the second line 

of Equation (6). 

 The first term in Equation (6) is essentially the weight-based measure of Grinblatt 

and Titman (GT, 1989, 1993) applied at the “asset allocation” level. This captures market 

level timing through the covariance between the asset allocation weights and the 

subsequent benchmark returns.  A fund that puts more weight in asset classes that 

subsequently offer unexpectedly high returns has positive level timing.  The second term 

captures “volatility timing.” A fund that puts more weight on factors whose second 

moments are subsequently unexpectedly low is attractive to investors who dislike second 

moments, so this term gets a negative coefficient, -b.   

 The third term of Equation (6) captures selectivity ability.  This term focuses on the 

portfolio-weighted average of the idiosyncratic security returns, xt’vt+1.  When this dynamic 

strategy is positive, or has a positive covariance with the marginal rate of substitution, it 

represents selectivity performance with positive value.  There are two components of 

selectivity.  The first, aE(x’v), is similar to previous measures.  The second, E{(-b’rB)(x’v)}, 

captures the relation between a fund’s dynamic combination of the stocks’ idiosyncratic 

returns and marginal utility, as reflected in the benchmark returns, (-b’rB).  This higher 

moment term is ignored in previous measures.6    

                                                  
6 Even though vt+1 and rBt+1 are uconditionally uncorrelated, they may be related through 
the information in xt.  For example, if the portfolio weight xt has selectivity information 
about vt+1, the product of the two is related to an average of the stocks’ idiosyncratic 
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 The sum of the three components of performance has a simple relation to a 

traditional regression-based alpha.  If the “hypothetical” before cost excess returns, rp=x’r 

are used in a factor model regression on rB, the intercept is proportional to αp.  This is 

because, on the assumption of a linear factor model for the SDF, the SDF alpha is 

proportional to the intercept in the factor model regression (e.g. Ferson, 1995).  By 

exploiting the holdings data, x, our measures make it possible isolate the three components 

of performance.  Unlike in classical returns-based measures, this is possible without making 

stylized assumptions about fund manager behavior, because we observe their behavior 

through the portfolio holdings.7  (Because the hypothetical return based on the holdings 

does not reflect any interim trading, it avoids many of the issues discussed above, where 

high frequency trading biases regression-based estimates of alpha.) 

 Previous measures of market timing, such as the classical quadratic regression of 

Treynor and Mazuy (1966) are difficult to apply for more than one or two benchmarks.   

This is because the regression includes on the right hand side the benchmarks, the squared 

benchmarks, and with multiple benchmarks, the products of the benchmarks.  With K 

benchmarks, there are 2K + (K2 - K)/2 fund-specific coefficients to be estimated.  For 

example with three factors there are 9 slope coefficients plus an intercept in the regression 

                                                                                                                                                                       

volatilities.  If there is a discount rate effect for average idiosyncratic volatility, such that the 
volatility and the benchmark return have a negative correlation, then the higher moment 
effect is positive.  There are of course other examples where xt’vt+1 contains information 
about rBt+1.  Since the higher moment effect involves the benchmark return, there is room 
for debate over calling it selectivity or a form of timing.  We choose the former for two 
reasons. First, the term involves only the idiosyncratic components of the security returns, 
v.  Second, the first two terms in Equation (6) as specified, cleanly capture level and 
volatility timing. 
7 Letting rp = ap + βprB + e, with E(e)=0=E(erB), and m=a-b’rB, then αp= E(mrp) = E(m) ap.  
Thus, the hypothetical return is sufficient for estimating total performance, and the 
regression intercept ap is equivalent to our total performance measure.  But we cannot 
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for each fund.  This can be a degrees-of-freedom challenge when many mutual funds have 

short sample histories.  In contrast, as shown below, our model only requires only three 

fund-specific parameters; one captures market level timing, one captures volatility timing 

and one captures selectivity. 8  We must also estimate the market-wide parameters a and b 

and the mean E(rB), but these are identified from the benchmarks as described below, and 

are the same for each fund. 

 

3.1 Relation to Previous Holdings-based Performance Measures 

 To relate our measure more explicitly to earlier holdings-based measures, use  

x’β = w’ and Equation (5) to see that: 

 

    Cov(x’r) = Cov(w’rB) + Cov(x’v).                                                  (7) 

 

This shows that the GT measure has a level timing component, proportional to the first term of 

Equation (6), and a selectivity component, similar to a part of our selectivity measure.  The GT 

measure leaves out the two terms related to information about second moments.  There is no 

volatility timing term, and the second moment component of selectivity is missing.  This is 

because the GT measure is developed under joint normality with homoskedasticity, so an 

informed manager never gets a signal that second moments will change. If time-varying 

                                                                                                                                                                       

decompose the total performance without the portfolio weight. 
8 If a manager times market volatility traditional returns-based measures are even more 
complicated.  Consider a generalization of the Admati et al. (1986) model where the 
manager gets a signal that is informative about the level of the market and also about its 
future volatility.  The portfolio weight is then related to the future market return and its 
square, and the portfolio return – the product of the weight and the market return -- is 
related to the market as a cubic function.  This adds cubic factors to the Treynor-Mazuy 
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second moments are important, our measure offers new and important improvements over 

the original measure. 

 Daniel, Grinblatt, Titman and Wermers (DGTW, 1997) develop a popular holdings-

based measure where each security i held in a fund gets its own benchmark return, Rtbi at 

each period, t.  The benchmark is chosen for each stock from a set of 125 portfolios, as the 

portfolio that most closely matches the size, book-to-market ratio and lagged return of the 

stock.  In addition, the fund is assigned a set of benchmark weights equal to its actual 

weights reported k periods before: xi,t-k.  The DGTW measure is: 

 
         DGTWt+1 = Σi xit (Ri,t+1 - Rt+1bi) + Σi (xit Rt+1bi - xi,t-kRt+1bi(t-k)) + Σi xi,t-k Rt+1bi(t-k) ,                  (8) 
 
 

where Rt+1bi(t-k)  is the benchmark return associated with security i at time t-k.  The first term is 

interpreted as "characteristic selectivity (CS)," the second term as "characteristic timing (CT)" 

and the third as the return attributed to the style exposure (AS).  Note that the expected sum of 

the three terms is equal to the original GT measure, so Equation (8) is a decomposition of the 

GT measure, and the sum of the terms has the same theoretical justification as the original 

measure.  In particular, it leaves out the same second moment terms that appear in our new 

measure.   

 If we take the security specific benchmark, Rt+1bi  in (8),  as an analogue to the systematic 

component of returns,  β rB  in our Equation (5), then the CS term measuring selectivity in 

DGTW is analogous to Cov(x’v), the GT selectivity term in Equation (7).  The DGTW CS 

measure leaves out the higher moment part of selectivity.  If the second moment effects are 

                                                                                                                                                                       

regression, further expanding the number of regressors. 
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important, the inference about fund ability will differ.   We find empirically that this difference 

can lead to different inferences about selectivity performance.   

 The original GT measure and the DGTW measures use unconditional covariances, and 

may be misspecified if conditional covariances given public information are important.  The 

evidence in Ferson and Khang (2002) suggests that conditional weight-based measures are 

important.  We therefore extend our measures to consider conditioning information below.  

We first describe estimation for the unconditional case.  Then, the conditional case is a simple 

extension. 

 

3.2 Estimation 

 We estimate the market-wide parameters a and b through the short-term Treasury 

return Rf and the excess return of the benchmarks, as shown in Equations (9a-9b) below.  

For each fund we estimate a market level timing component, denoted as αm, a volatility 

timing component, ασ, and a selectivity component, αS.   The total alpha for each fund is 

then αp = αm + ασ + αS.  The model is estimated using the Generalized Method of Moments 

(GMM, Hansen, 1982) through the following moment conditions: 

 

  ε1= (a – b’ rB) rB                                                                                                  (9a) 

  ε2= (a – b’ rB) Rf  - 1                                                                                           (9b) 

  ε3= rB –μB                                              (9c) 

  ε4= αm – a(rB –μB) ’w                                                                                          (9d) 

  ε5= ασ + b’(rBrB’)w – a μB ’w                                                                             (9e) 

  ε6= αS – [(a-b’rB) v’x].                                                                                        (9f) 
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In Equation (9e) we use the condition 0 = a E(rB)’ – b E(rBrB’) to avoid the need to estimate 

the parameters of the matrix E(rBrB’).  Because the condition holds exactly at the parameter 

values that satisfy (9a) and (9b), no additional restrictions are imposed in using this 

condition.  In Equation (9f), we use v= r – βrB, where β is the N x K matrix of bottom-up 

betas estimated using daily data for the stock returns and the benchmarks and v is an N-

vector of the idiosyncratic returns of the stocks held.9   The moment conditions state that 

E(ε)=E(ε1,ε2,ε3,ε4,ε5,ε6)=0.  We use the optimal GMM standard errors (Newey and West 

(1987) with three lags in the covariance matrix) with the delta method to get standard errors 

for the sum of the components of performance. 

 The GMM system (9) is exactly identified and has a block diagonal structure with 

respect to the fund-specific performance parameters.  Results in Farnsworth et al. (2002) 

imply that the estimates of performance for each fund, when the system is estimated 

separately for each fund as we do here, are numerically identical to using a full system with 

many funds stacked together, which is not feasible.  If there is public information, Z, we can 

interpret all of the equations’ expectations as conditional on Z.   The parameters a and b 

will also be functions of Z.  We discuss such conditional models below. 

 

3. The Data 

 We study fund data for 1984-2010 from the Center for Research in Security Prices 

Mutual Fund database.  We start the analysis in 1984 because during 1962-1983 there is a 

                                                  
9 Each of the individual betas in x’β is estimated by regression using daily data, and the 
system misses the estimation error in the daily bottom up betas, which we essentially take 
as data.  While betas are estimated with vastly greater precision than alphas, especially 
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selection bias where funds that report monthly returns have higher average reported 

returns than the broader universe (e.g. Fama and French, 2010).  We exclude fixed income, 

international, money market, sector and index funds,10 focusing on active, US equity funds. 

 In some of our analyses we also use daily fund return data from CRSP, available starting in 

1998.  We subject the fund data to a number of screens to mitigate omission bias (Elton 

Gruber and Blake 2001) and incubation and back-fill bias (Evans, 2010).  In particular we 

exclude observations prior to the reported year of fund organization, and we exclude funds 

that do not report a year of organization or which have initial total net assets (TNA) below 

$15 million in their otherwise first eligible year to enter our sample.  We combine multiple 

share classes for each fund, focusing on the TNA-weighted aggregate share class.   

 We study US open-ended Equity, Asset Allocation and Balanced funds.   These 

broad groups are determined using the investment objective codes from CRSP.11  To avoid 

a possible look-ahead bias due to strategic reporting of investment objectives (Sensoy, 2009) 

we use the most recent, previously reported code to categorize the funds.  When we use 

holdings data we merge the CRSP and Thompson holdings data using MFLINK and we 

lose about 8% of the funds (4% of the TNA) due to missing links.  To compare with 

previous studies that focus only on the equity holdings of funds, we report some 

                                                                                                                                                                       

with daily data, this caveat should be kept in mind when interpreting our empirical results. 
10 We identify and remove index funds both by Lipper objective codes (SP, SPSP) and by 
searching the funds’ names with key word “index.” 
11 US equity funds are defined as those with policy codes  CS, Flex, I-S; Weisenberger 
objective codes GCI, IEQ, IFL, LTG, MCG, SCG, G, G-I, G-I-S, G-S, G-S-I, GS, I, I-G, I-G-S, I-
S, I-S–G, S, S-G-I, S-I, S-I-G; SI objective codes AGG, GMC, GRI, GRO, ING, SCG; or Lipper 
objective codes  CA, EI, EIEI, ELCC, G, GI, LCCE, LCGE, LCVE, LSE, MC, MCCE, MCGE, 
MCVE, MLCE, MLGE, MLVE, MR, S, SCCE, SCGE, SCVE, SESE, or SG; Asset Allocation 
funds are identified as funds with Weisenberger objective codes AAL; SI objective codes  
CPF, EPR, FLX, IMX or Lipper objective code FX.  Balanced style funds are identified as 
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experiments on the equity holdings alone, and some experiments using the active equity 

funds only.  However, given our focus on market factor and volatility timing, we include 

the asset allocation and balanced funds, and we measure their cash and bond holdings. 

 Table 1 present summary statistics of the funds’ characteristics. The average over 

time of assets under management ranges across funds from under 300$ million to over 2.4 

$billion.  The average turnover is almost 90% per year, and is higher for the Asset 

Allocation style funds.  The average expense ratio is 1.1 - 1.25% per year.  The funds hold 

primarily US stocks, although the average Asset Allocation fund holds more than 10% cash 

and the average balanced fund holds 35% in bonds.  For some of our analysis we group 

funds according to characteristics, including the expense ratio, fund size (TNA), age, 

turnover, return gap, active share and factor model regression R-squares, described below. 

  We use daily returns data to estimate betas for the individual stocks held by the 

funds.  The returns data are from CRSP.  Our bond index is the Barclays US Aggregate 

bond index return.  This is a value-weighted index of government and investment-grade 

corporate issues that have more than 1 year remaining until maturity.  We obtain daily data 

for the CRSP stock market factor, the Fama–French (FF, 1996) factors and the UMD 

momentum factor, from Kenneth French’s web site. 

 

5. Empirical Results 

5.1 Results for Fund Groups 

 We first estimate the models on broad groups of mutual funds:  Asset Allocation, 

Balanced and the full active US Equity sample.  Since we would not expect to find 
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significant performance at the level of broad groups, these exercises serve mainly to check 

the model specification.  We ask if the estimated parameters seem economically reasonable, 

if the performance estimates look plausible compared with previous research, and if the 

estimates seem reasonably precise.  The results of these exercises are summarized here and 

reported with tables in the Appendix.    

 We start with a simple case using the CAPM and a focus on asset allocation, 

estimating only the equations (9a) – (9e) at a quarterly frequency.   We take the asset 

allocation weights directly from CRSP, which reports the percentage holdings in stocks, 

bond and cash on an annual or quarterly basis.  We use the most recently-available 

holdings.  The estimate of the market-wide parameter a is strongly significant, at 1.03, and 

the estimate of the parameter b is 2.43 with a t-statistic of 1.82.  In the CAPM, the value of a 

is the inverse of the gross risk-free rate plus a risk adjustment, while the value of b is a 

version of relative risk aversion, discounted by a pure time preference parameter.  These 

values seem economically reasonable.  

 The performance estimates suggest insignificant “negative” market level timing 

ability for the active equity group, and insignificant positive ability for the Asset Allocation 

group, which is similar to many previous studies using other methods.  It makes sense to 

find more market timing in the asset allocation style funds.  

 Our second example is a two-factor SDF model with a stock market index and the 

bond index.  The funds’ weights are measured as the fractions reported by CRSP for 

holdings in stocks and in bonds, normalized to sum to one minus the reported holdings in 

cash.  The point estimate of the parameter a is 1.19 and the point estimate of b for the 
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market index is 2.47, both similar to the previous exercise.  The value of the b parameter for 

the bond index is 16.76.  All of these coefficients are statistically significant.12   

 The performance estimates suggest insignificant “negative” market level timing and 

positive volatility timing ability, although the economic magnitude is less than 16 basis 

points per year.  The combined timing measure is almost exactly zero for balanced funds 

and is 7 basis points per quarter or less in each case.   The negative level timing results are 

essentially similar to what previous studies of unconditional timing ability find through 

other methods.  However, negative level timing makes little economic sense and studies 

find neutral timing for broad fund groups when the model accomodate time-varying risks 

(Ferson and Schadt, 1996) and other sources of nonlinearity (Chen, Ferson and Peters, 2010). 

 When our models accomodate both level and volatility timing, the combined timing effect 

is neutral. 

 We next consider multiple benchmarks and use the full holdings data to measure the 

portfolio weights in individual stocks.  We combine this with the CRSP data and normalize 

the equity weights to sum to one minus the CRSP reported holdings in cash plus bonds.  

(Below, we examine results for the equity holdings only.)  The asset allocation weights for 

the benchmark factors are now derived “bottom up” from the individual stock holdings 

and individual stocks’ betas, estimated using daily data over the full available sample for 

each stock.  (Later, we use rolling methods that do not assume constant betas over such 

long intervals.)  We consider two multifactor benchmarks: the FF3 factors and the Carhart 

(1997) 4-factor model.  We also examine a five-factor model including a bond factor.  The 

                                                  
12 In a two-factor Merton (1973) model the b coefficient for bonds depends on the elasticity 
of the marginal utility of wealth with respect to the bond factor relative to the variance of 
the bond factor, the latter being a relatively small number which scales up value of the 
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point estimates of the parameter a and the b coefficient for the market factor are similar to 

the previous cases, but the b coefficients on the HML and SMB factors are not statistically 

significant.   

 The timing performance results for the broad fund groups are essentially similar to 

the results using only the asset allocation weights.  The selectivity term is either negative 

(for balanced funds) or positive, small and statistically insignificant.  The total alphas are 

economically small.  The standard errors say that the alphas are reliably close to zero for the 

fund groups.  

 Previous studies find that inferences about performance can be sensitive to the 

effects of public information.  Ferson and Schadt (1996) and Becker et al. (1999) find that 

market timing ability looks better in models that account for public information.  We 

examine conditional versions of the models, described in the Appendix.  We find that 

moving to a conditional version of the CAPM removes any evidence of negative timing 

ability, consistent with Ferson and Schadt (1996) and Becker et al. (1999).   The standard 

errors say that timing ability of the fund groups is reliably close to zero in the conditional 

CAPM.    

 Previous studies of holdings-based performance often consider only the equity 

portion of the portfolio.  In order to better reflect potential market timing or asset allocation 

behavior, we include the cash and bond holdings.  We conduct some experiments using the 

conditional models to see if our results are sensitive to this issue.  Using the equity holdings 

only we obtain similar results. 

 Overall, the analysis at the level of broad fund groups suggests that our models are 
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reasonably well specified.  The parameter estimates are economically reasonable in 

magnitude.  The performance estimates display patterns similar to those found for broad 

groups in previous studies using other methods.  The estimates also appear to be much 

more precise than the alphas in returns-based models.  We now turn to the evidence at the 

individual fund level. 

 

5.2 Sorting Funds for Volatility Timing 

 It may not be surprising to find no significant performance at the level of large 

groups of funds, but there may be funds with certain characteristics that have performance. 

 In particular, we are interested in the second moment effects that distinguish our 

measures.  In this section we sort funds based on proxies for the likelihood that they 

actually engage in volatility-related behavior.  We estimate these proxies following 

previous work that uses returns-based methods. 

 The closest antecedent for volatility timing is Busse (1999).  The following regression 

for funds’ daily reported returns generalizes his specification: 

 

     rpt+1 = ap + βp0 ‘rBt+1 + βp1’rBt + [λp1 σmt + λp2 (r2mt+1 -σ2mt) + λp3 (Δσmt+1)] rmt+1 + εpt+1.        (10) 

 

The first two beta vectors in this regression control for the unconditional loadings on the 

four Carhart (1997) benchmarks.  We include the lagged benchmark returns in daily data to 

allow for nonsynchronous trading.  The market beta is modeled as a constant plus the term 

in square brackets [.]; thus the market beta is linear in several terms including the market 

volatility, σmt, which we model as in Busse using an EGARCH (1,1) model on the daily data. 



 23 

 The coefficient λp1 measures the extent to which a fund reacts to market volatility by 

contemporaneously changing its market beta.  This term was also examined by Busse.  The 

coefficient λp2  captures volatility timing in a manner consistent with our model, measuring 

the extent to which a fund anticipates unexpected changes in the second moments.  The 

final coefficient, λp3, which was also examined by Busse (1999), is included as a check on the 

specification, capturing the ability of a fund to anticipate changes in the conditional 

volatility as captured by the EGARCH model. 13,14 

 Each quarter we select funds with at least 60 daily return observations over the past 

year and estimate the coefficients of the regression (10).  We then sort funds into deciles 

according to the coefficient estimates and examine the future performance of the portfolios 

over the next quarter, rolling the whole procedure ahead each quarter.  The sample period 

is 1998-2010 and the results are shown in Table 2. 

 In Panel A of Table 2 funds are sorted on λp1, measuring their reaction to market 

volatility.  The differences in the reactions to volatility seem large, as shown in the right 

hand column.  The lowest λp1 funds have negative coefficients, meaning that they reduce 

market exposure when market volatility is high.  Such volatility reaction indicates active 

management, because a passively managed fund should not have a lower market beta 

simply because market volatility is high.  Previous studies such as  Kacperczyk, Sialm and 

Zheng (2005, 2008), Cremers and Petajisto (2009) and Amihud and Goyenko (2013) find that 

active management, captured with various measures, is associated with better fund 

                                                  
13 Motivated by nonsynchronous trading we also examine modifications of the regression 
(10) where a lagged version of the term in square brackets [.], multiplied by rmt, is included 
and we use the sum of the λ coefficients for the two lags as the sorting parameters.  The 
results are similar to those reported in the table except where noted. 
14 We also replace the daily estimated EGARCH volatility with the VIX index and find 
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performance.   

 Table 2 shows that the funds that react more actively to volatility record the best 

subsequent performance.  The total alphas and the selectivity measures after portfolio 

formation are significantly different across the extreme deciles, with t-ratios of -2.4 and -2.7, 

respectively.  The difference in subsequent total performance between the extreme deciles 

is 1.1% per quarter.  Interestingly, about half of this is due to the selectivity component, and 

half to the combined timing ability.15  Thus, funds’ reaction to market volatility can detect 

active management associated with stronger performance.  

 The standard errors in Table 2 confirm our previous impression of good precision 

for both the selectivity component and the total alpha.  The standard errors for these 

measures are usually between 1-2 basis points per quarter for each decile group.  The 

precision of the timing estimates does not seem to be as high.  The differences in timing 

ability associated with volatility reaction shows a spread of 49 basis points per quarter 

across the extreme deciles, with the funds that reduce exposure in response to market 

volatility scoring larger market level timing coefficients.  This difference, however, is not 

statistically significant.  We also examine the DGTWcs measures for these portfolios, and 

the lower λp1 funds have the larger selectivity measures, but the differences are not 

statistically significant.  Thus, our measures appear to ferret out ability that the DGTWcs 

measure does not detect, when funds are sorted according to their proclivity for reacting to 

time-varying market volatility. 

 In Panel B of Table 2 we repeat the exercise sorting funds on their λp2 coefficients, 

                                                                                                                                                                       

essentially similar results. 
15 When we include the lagged interaction terms in the regression (10) the selectivity effect 
is 70 basis points with a t-ratio of 2.1, but the total alpha difference is no longer significant. 
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which measure the ability to anticipate unexpected volatility.  A negative coefficient 

describes a fund that gets out of the market before volatility rises.  In particular, the fund 

anticipates the squared market residuals better than the information in the EGARCH 

model.  In this case, the differences across the portfolios in their subsequent performance 

measures are not significant. 

   It might be too much to expect a mutual fund’s holdings to predict market volatility 

better than a daily EGARCH model.  In Panel C of Table 2 we sort on the λp3 coefficients, 

which capture the alternative measure of timing ability based on changes in the EGARCH 

conditional volatility. The funds with stronger volatility timing record significantly better 

subsequent selectivity performance.  The difference between the selectivity measures for 

the extreme deciles is about 2.8% per year and the t-ratio is larger than three.16  The total 

performance differences are not significant and the DGTWcs measures present no 

statistically significant differences. 

 The results in Table 2 provide evidence that funds whose reported returns suggest a 

greater proclivity to trade actively in response to volatility have better subsequent 

performance for the next quarter.  Selectivity is the dominant component of the 

performance, but the DGTWcs selectivity measure shows no significant relation to funds’ 

volatility-related behavior.  We investigate the selectivity further by looking separately at 

its two parts.  For the evidence in Panel A of Table 2 we find that neither of the two terms 

displays a significant spread by itself, while the combined effect is significant.  This 

                                                  
16 When the lagged interaction terms are included in the regression (10) the difference is 
about 2% per year.  We also estimate versions of regression (10) where we constrain some 
of the λ-coefficients to be zero and estimate only the coefficients of interest.  In another 
version we use the funds’ equity holdings only, assuming these weights sum to 1.0.  The 
results of these experiments are broadly similar. 
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suggests that the DGTWcs measure finds no relation because it leaves out the higher 

moment effect.  For the evidence in Panel B there is no significant relation, while in Panel C 

the selectivity performance is mainly driven by the first moment term.  

 

5.3 Sorting Funds on Factor Model R-squares 

 Amihud and Goyenko (2013) find that when funds are sorted according to the 

regression R-squares of their returns in standard factor models, the funds with lower R-

squares have higher subsequent performance.  Titman and Tiu (2011) find that low R-

square hedge fund perform better.  Low R-squares likely indicate more active management; 

either departing from a benchmark or focusing on stocks with larger fractions of variance 

attributed to firm-specific information.   

 Table 3 sorts our sample of funds as in Amihud and Goyenko, using daily reported 

fund returns to estimate the factor model R-squares.  Consistent with Amihud and 

Goyenko, the DGTWcs measure is larger for the lower R-square funds, by about 24 basis 

points per quarter, but this is not statistically significant.  Our selectivity measure is also 

higher for the lower R-square funds, of a similar magnitude and not statistically significant. 

Our overall alpha measures vary substantially with the R-squares and the difference sports 

a t-ratio over two.  This difference between the extreme deciles, about 3.2% per year, is 

likely economically significant.  The overall performance spread reflects selectivity (about 

62%) and combined timing ability (about 38%).  Thus, our new measure, by accomodating 

the response to changes in second moments that is likely of more active funds, produces 

sharper estimates of how performance varies with fund activity. 

 One possible concern with Table 3 is the role of the balanced and asset allocation 
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funds.  If the risks of such funds are poorly captured by the Carhart (1997) model, they may 

have both low R-squares and overstated alphas.  We replicate the exercise in Table 3, 

removing the balanced and asset allocation funds from the sample.  The DGTWcs measure 

is larger for the lower R-square funds, by about 30 basis points per quarter, but not 

statistically significant.  Our selectivity measure is higher for the lower R-square funds.  

The spread is 70 basis points per quarter, but not statistically significant. Our overall alpha 

measures differ by 3.6% per year across the deciles, with a t-ratio of 1.87, so the results are 

very similar to the results that include the asset allocation and balanced funds.  We also 

conduct an experiment where we use a five-factor model, including the Barclays bond 

index factor, to compute the R-squares and the performance for the full sample of funds.  

The spread in total alphas across the R-square deciles is 3.2% per year with a t-ratio of 2.11. 

The spread in the DGTWcs measure is only 1.1% per year, with a t-ratio of 1.48.  Thus, the 

findings that the low R-square funds have better total performance, and that this not 

detected by the DGTWcs measure, are not driven by the asset allocation and balanced 

funds nor by the choice of factor models. 

 Amihud and Goyenko (2013) and our Table 3 use the after-cost daily reported fund 

returns from CRSP to compute the factor model R-squares.  We check the sensitivity of our 

results to an alternative measure of R-squared, based on the hypothetical returns formed 

from the portfolio holdings and the daily returns of the underlying stocks.  The sample 

period for this exercise is 1995-2010.   In results not tabulated here, we find that the results 

are similar.  The differences between the two versions of factor model R-squares could be 

affected by funds’ actions between the portfolio holdings’ reporting dates. One R-square 

measure uses the daily returns, which reflect the actions between the quarterly holdings 
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dates, and the other R-square uses the hypothetical returns, based on the quarterly 

holdings.  But the two samples of funds do not perfectly overlap.  To control for that 

difference, we sort on the two measures of R-squared, restricting to the subset of funds for 

which both types of R-squares can be computed.  The differences between our total alphas 

for the extreme deciles sorted on R-square are 80-90 basis points per quarter and the 

corresponding absolute t-ratios are slightly larger than two, using either version of the R-

squared.  So, the Amihud and Goyenko (2013) finding seems robust to the measure of R-

squared, at least in the subsample where both versions can be calculated.17   Overall, the 

results in tables 2 and 3 show that our new measures detect ability associated with active 

management in cases where the DGTWcs measure cannot. 

  

5.4 Ex-Post Abnormal Performance 

 Recent papers such as Kacperczyk, van Nieuwerburg and Veldcamp (2012) examine 

ex post measures of performance.  For example, in a linear factor model regression the 

intercept plus residuals define an abnormal performance measure at each date.  This 

approach may have more power to detect abnormal returns, because there may be patterns 

in the residuals that average to zero and are ignored by the intercept.  We examine a 

version of this approach.  We use the most recently reported holdings and a buy-and-hold 

assumption to build a monthly series of portfolio holdings, known at the end of each 

month, t.  These are applied to returns for month t+1.  First, we estimate the benchmark 

parameters (a,b,μB) like before using the subset of moment conditions (9a-9c).  We use the 

                                                  
17 Sorting on the difference between the two versions of R-squared for each fund, we find 
no significant performance differences across the deciles.  This further suggests that the 
relation between performance and the R-squares from daily reported returns is not driven 



 29 

previous 36 months’ data on the benchmarks for this estimation.  We use the past year of 

daily data to estimate the factor betas of the underlying securities held, and we compute a 

bottom up asset allocation weight, wt, for each month. Then, we compute three monthly 

performance series for each fund for the subsequent month: 

 

    LTpt+1 =  a(rBt+1 –μB) ’wt,                                                                (11a) 

    VTpt+1 = [- b’(rBt+1rBt+1’) – a μB ’]wt,                                              (11b) 

    SELpt+1 = [(a-b’rBt+1) vt+1’xt].                                                         (11c) 

 
We use the ex post versions of our performance measures for several experiments. 

 

5.5.  Predicting After-Cost Fund Returns 

 While holdings-based measures are useful for evaluating manager skills before costs, 

it is interesting to see if the measures contain information about the returns available for 

investors after fund costs.   According to the model of Berk and Green (2004), differences in 

before-cost ability should be offset by differences in costs across funds, resulting in no 

abnormal performance for investors.   

 Each quarter we sort funds into quintiles based on our ex post measures of alpha, 

using data up to the end of the quarter.  We compute five equally-weighted portfolios 

based on the quintiles and examine their reported returns for the next three months.  

Rolling this procedure forward through time, we generate three time series of returns for 

each quintile; one for each of the three months after portfolio formation.  We find that the 

excess reported returns are higher for the high-performance quintiles in each subsequent 

                                                                                                                                                                       

by funds’ actions between reporting dates.   
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month.  The differences for the extreme quintiles are as large as 15 basis points per month.  

The differences in the Carhart (1997) four-factor alphas for the after-cost returns are as large 

as 16 basis points per month.  None of these differences is statistically significant, reflecting 

the large standard errors of the returns-based performance measures.  However, using our 

total performance measure as the sorting criteria, the spread portfolios’ returns and alphas 

are monotonic across the quintiles, while the sorting on the DGTWcs measure we find 

random patterns in the subsequent performance. 

 Possibly, the changes in funds’ portfolio weights induced by trades could be more 

informative about future after-cost returns than are the holdings levels (e.g., Chen, 

Jegadeesh and Wermers, 2000).  We repeat the previous analysis, replacing the levels of the 

portfolio weight for each quarter with the difference between the reported weight and what 

it would have been if the fund had used a buy-and-hold strategy since the previously-

reported holding.  Similar to the previous analysis, the higher-performance quintiles have 

higher subsequent returns in most cases, but the differences are not statistically significant.  

The differences in the extreme quintile returns are 13 basis points per month or less and the 

Carhart four-factor alphas are 12 basis points or less.  Sorting on the DGTWcs measure, 

insignificant random patterns in the future returns are observed across the quintiles.  

Overall, our holdings-based measures are better at selecting funds with subsequently 

higher after-cost returns than is the DGTWcs measure, but neither measure leads to a 

significant rejection of the Berk and Green (2004) prediction of zero after-cost alphas. 

 

5.6  Conditional Analyses of the Ex Post Performance Measures 

 The ex post performance measures from system (11) may be useful for detecting 



 31 

performance conditional on different economic states, because it includes performance 

fluctuations that are averaged out over time in the moment conditions of system (9).  By 

averaging the residuals separately within the given states, we could gain power to detect 

differences across the states.   

 We first run regressions of the ex post abnormal performance measures on the state 

of market sentiment, as measured by the Baker and Wurgler (2006) sentiment index at the 

end of the previous month.  The results are summarized in Table 4.  In Panel A funds are 

sorted into quintiles based on their factor model R-squares over the past 36 months.  All of 

the slope coefficients for the level timing ability measures and for the total alphas are 

negative, sport absolute t-ratios larger than two in eight of the ten examples and the t-ratios 

are greater than 3.0 in three of the ten cases.  This suggests that funds are better (less) able 

to time the market when investor sentiment is low (high).  The effect is weaker for the more 

active, low R-square funds, but still statistically significant.  The average coefficient, -0.022, 

suggests that the effect of timing ability on alpha varies by about 1.3% per month in 

association with a one-standard deviation move in investor sentiment.  The fitted values of 

the expected conditional alphas change sign with sentiment. They are all negative when 

sentiment is one standard deviation above its mean, and all positive when sentiment is one 

standard deviation below its mean.  The level timing effect of sentiment dominates and 

largely determines the coefficients of the total alphas on the sentiment index. 

 In Panel B of Table 4 we sort funds on the volatility reaction coefficients, γ1p, from 

Equation (10) estimated over the past 36 months.  We find that all of the slope coefficients 

for total performance and level timing ability are negative, with t-ratios larger than two.  

The coefficient magnitudes are similar to Panel A, and similar across the quintile groups.   
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 Novy-Marx (2012) raises concerns about spurious regressions for stock returns using 

the sentiment index.  We provide empirical p-values for the t-ratios in Table 4 using a 

version of the parametric bootstrap.  We model the vector {αt, Zt} as a VAR(1) process, 

where Zt-1 is the lagged sentiment index and αt is the ex post performance measure, and 

take the coefficients as parameters.  We resample the residuals from this model at random, 

without replacement, and add them sequentially to the fitted values of the conditional 

means from the VAR, building up the simulated time-series recursively.  We impose the 

null hypothesis that the slope coefficient for αt on Zt-1 is zero and set the intercept for αt 

equal to its unconditional sample mean.  This preserves the high autocorrelation of the 

sentiment index, equal to 0.96 in our monthly sample. The empirical p-value is the fraction 

of 1,000 simulation trials in which the t-ratio using the simulated data is larger in absolute 

value than in the original sample (a two-tailed test).  The empirical p-values confirm that, 

while there is a modest size distortion in the regressions, all of the slope coefficients for ex 

post timing ability on the sentiment index are significant at the 5% level or better. 

 One potential interpretation of this evidence that market timing ability differs 

conditional on sentiment is consistent with the cash flow mechanism described by Ferson 

and Warther (1996).  Funds receive more new money flows when market sentiment is high 

(Ferson and Kim, 2012).  Ferson and Warther find that aggregate new money flows can help 

explain “negative timing.”  When new money flows are large it may be more costly to try to 

time the markets.  When sentiment is low and money flows are muted, it may be less costly 

for funds to engage in market timing activity.  A similar argument is implicit in Edelen 

(1999), where fund performance on trades in response to flows is worse than it is on 

“discretionary” trades that are not made in response to flows. 
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 To see if new money flows explain the sentiment effect on performance, we run 

regressions of the ex post performance on the lagged sentiment index and a lagged value-

weighted aggregate of the new money flows for the funds in our sample.  The new money 

flows enter the regressions with negative coefficients, and the empirical p-values are below 

10% in nine of the ten examples, but the flows do not subsume the explanatory power of 

sentiment.  The regression slope for timing ability on sentiment remains negative and is 

significant at the 5% level in every case.  These regressions suggest that the cash flow 

mechanism of Ferson and Warther (1996) and Edelen (1999) may be in effect, but it does not 

fully explain the role of sentiment.  Whatever the mechanism, the regressions show that the 

ex post performance measures vary significantly across economic states, as captured by the 

sentiment index and the aggregate new money flows.  

 We examine additional market states, including the level of idiosyncratic volatility, 

recessions versus expansions and levels of market volatility.  The average level of 

idiosyncratic volatility may indicate times when the environment favors firm-specific 

information.  When common factors are calm and firm returns are driven to a greater extent 

by idiosyncratic factors, there is likely to be more room to pick stocks.  We measure the 

(complement of the) average idiosyncratic volatility by the average of the R-squares of 

individual stocks in daily Carhart (1997) factor model regressions.  The average of the firm 

R-squares is updated at the end of every quarter.18  Regressing each component of the 

broad fund groups’ ex post abnormal returns over time on the predetermined average R-

squares, none of the 15 regression slope coefficients delivers a t-ratio larger than 2.0.  

                                                  
18 At the end of each quarter we screen out stocks with extreme returns (>200%) or 
infrequent trading (zero returns on ≥ 75% of the days) during the quarter.  We run the 
regressions for the remaining stocks over the days of the quarter and average the regression 
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However, all nine of the timing measures have positive coefficients and all three of the 

selectivity coefficients are negative, so there is a hint that it is harder to time and easier to 

pick stocks when the average firm’s idiosyncratic volatility is relatively high. 

 Perhaps, subsets of funds and more active funds in particular, are more likely to 

display an idiosyncratic volatility effect.  We there examine performance conditioned on the 

average idiosyncratic volatility measure for funds grouped into quintiles on the R-squares 

in daily factor model regressions for the reported returns, on the Busse (1999) volatility 

reaction coefficients, γp1, described above, and on the volatility timing coefficients, γp2, from 

Equation (10).  With five quintile portfolios for each of five performance measures, there are 

25 t-ratios for each of the three sorting criterion, and a total of 75 performance test statistics. 

 Four of the absolute t-statistics are greater than two and the maximum absolute value is a 

t-statistic of -2.657.  All of the coefficients, except for the level timing effect, are negative.  So 

again there is a hint that selectivity performance is better when firm-level idiosyncratic 

volatility is high, but with so many tests the overall evidence is not strong. 

 When multiple tests are examined, the Bonferroni p-value is a conservative bound 

on the two-tailed p-value for the hypothesis that none of the performance measures is 

different from zero.  This computed by multiplying the p-value of the maximum absolute t-

ratio by the number of tests.19  In the previous example the Bonferroni p-value is 59%.  

Thus, based on the Bonferroni p-value the evidence for the effect idiosyncratic volatility 

effect on ability is not statistically significant. 

 Studies such as Moskowitz (2002), Ferson and Qian (2004), Kowsowski (2011),  

                                                                                                                                                                       

R-squares across the stocks. 
19 If A and B are rejection events for two statistics, P(A or B) = P(A) + P(B) - P(A and B).  The 
Bonferroni bound says P(A or B) ≤ P(A) + P(B) and uses the smallest p-value multiplied by 
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Glode (2011) and Kacperczyk, van Nieuwerburg and Veldcamp (2012) suggest that fund 

performance may vary over the state of the business cycle, with stronger performance in 

recession periods.  We use the ex post abnormal fund performance measures to examine 

performance over the business cycle, defined by NBER reference dates. At the broad fund 

group level, breaking the sample into recession and expansion subperiods, there are 30 tests 

for performance and none of the absolute t-ratios are larger than 2.0.  When we group funds 

into quintiles by the three criteria described above and regress each portfolio’s abnormal 

performance on a recession indicator dummy, we find no significant performance numbers. 

 If the before-cost ability does not vary across business cycles, while after-cost 

performance does according to the previous studies, it suggests that there is cyclicality in 

the cost structures of mutual funds.  Teasing out these patterns seems to be a topic worth 

future research. 

 We also condition performance on market volatility states, as measured by the VXO 

volatility index.   Regressing the three broad fund groups and the three sets of quintile 

groups on the VXO at the end of the previous month, there are 90 performance tests.  The 

largest absolute t-ratio is a t-statistic of 1.84, providing no evidence that performance varies 

across the VXO states.   

   

5.7. Sorting Funds on Other Characteristics 

 Previous studies have identified other fund characteristics associated with 

performance, and we consider several such characteristics in this section.   These include 

the expense ratio, turnover, active share and return gap, defined below.  Many of these 

                                                                                                                                                                       

the number of tests to bound the joint probability. 
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characteristics are likely to be associated with the differences between funds’ reported 

returns and the holdings-based returns that are the focus of our measures, such as costs and 

interim trading effects.  Many of the previous studies that emphasized these sorting criteria 

used the “characteristic selectivity” measure from Daniel, Grinblatt, Titman and Wermers 

(1997).   We also report results for this measure, DGTWcs in the tables, and note how the 

results differ from the results for our measures.  We use the Carhart 4-factor benchmark 

model for these exercises.  This controls for size, book-to-market and momentum factors, 

corresponding to the characteristics used in the DGTWcs measure. 

 One interesting comparison between the performance measures is their correlations 

across individual funds.  Traditional performance measures tend to be highly correlated 

across funds (e.g. Lehman and Modest, 1987), but our measures are not highly correlated 

with the DGTW measures.  Depending on the screens applied to the fund samples, we find 

correlations between our selectivity measure and the DGTWcs measure of 0.19-0.45.  Our 

level timing measure has correlations with the DGTW characteristics timing (CT) measure 

of 0.12-0.31, and our volatility timing measure has correlations that range between -0.10 and 

-0.21.  While low correlations can reflect estimation noise, the preceding analysis shows that 

our measure detect performance and predict returns in cases where the DGTW measure 

does not.  This suggests that the additional second moment terms that our measures bring 

to the analysis differ across funds from the previous measures. 

 In panel A of Table 5 we sort funds into equally-weighted deciles according to their 

most recently-reported expense ratios. The DGTWcs measures are slightly higher for funds 

with higher expense ratios, as previous work has shown, but this pattern is not statistically 

significant.  Using our measures, the selectivity performance is actually lower for the high-
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expense-ratio funds, by about 8 basis points per year, with the difference again not 

statistically significant.  The estimates suggest that the higher moment terms in our 

selectivity measure, ignored by the DGTWcs measure, vary by about 10 basis points per 

year across the expense ratio-sorted deciles.  Our total performance measure is also higher 

for the low expense ratio funds, by about 4 basis points per year, and not statistically 

significant.  The difference between the total performance and the selectivity is the market 

timing terms, which differ by about 4 basis points across the deciles. 

 Cremers and Petajisto (2009) propose an “active share” measure, the mean absolute 

difference between the holdings of a fund and the holdings of the benchmark.  Sorting 

funds on this measure, they find that excess after cost reported returns differ significantly, 

by about 2.5-3% per year across quintiles, and the more active funds deliver higher future 

returns net of a fund-specific benchmark.  Petajisto graciously provided data for the active 

shares on his web page.  Panel B of Table 5 sorts funds by the active shares and examines 

our performance measures along with the DGTWcs measure.   The DGTWcs measures 

increase with the active shares, but the differences between the extreme deciles, about 6 

basis points per year, is not statistically significant.  Our selectivity measures vary in the 

opposite direction across the deciles, the lower active share funds recording greater 

selectivity by about 4 basis points per year, not statistically significant.  Similar to the 

results in Panel A, the higher moment component of the selectivity term that is ignored by 

the DGTWcs measure but included in measure, amounts to about a 10 basis point per year 

difference across the deciles.  The total performance measures are similar to our selectivity 

measures in Panel C because the level and volatility timing effects roughly offset in the 

decile differences. 
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 Kacperczyk, Sialm and Zheng (2008) examine direct measures of the effects of 

portfolio actions between reporting dates.  They find that sorting funds by their lagged one-

year “return gap,” defined as the difference between the reported, after cost return and the 

hypothetical holdings-based return, can predict subsequent performance using several 

performance measures.  Sialm provides data for funds’ return gap on the web page of the 

Review of Financial Studies for 1984-2006.  Sorting by return gap in Panel C of Table 5 for 

1984-2006, we find that the DGTWcs measures are larger for the higher return gap funds, 

by about 4 basis points per year, but the difference is not statistically significant.  Our 

selectivity measure again varies in the other direction across the deciles, but the difference 

of -4 basis points per year is not significant.  The total performance alpha is higher for the 

high-gap funds, by about 1.4% per year.  This is completely driven by the highest gap 

decile, with more than 2/3 of the effect attributed to level and volatility timing 

performance.  None of these differences, however, is statistically significant. 

 The main focus of Kacperczyk, Sialm and Zheng (2008) is the after-cost reported 

fund returns.  Using these, we confirm that sorting on return gap delivers a significant 

spread in the Carhart 4-factor alphas over their sample period.  Our measures, without 

interim trading effects or any costs, likely produces different results than the after cost 

returns, because interim trading and expenses have a direct impact on after-cost returns 

and on the return gap. 

 Wermers (2000) finds that funds with higher lagged turnover generate higher 

DGTWcs measures in quintile sorts.  Panel E of Table 5 sorts funds into quintiles on their 

most recently reported turnover.  The DGTWcs measures are larger for the higher turnover 

funds, but the pattern is not monotonic or statistically significant.  The combined timing 
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measure is also larger for the high turnover funds, but the difference does not attain 

statistical significance. 

 As previously mentioned, earlier studies of holdings-based performance often 

consider only the equity portion of the portfolio.  In order to better reflect potential market 

timing and asset allocation behavior, we include the cash and bond holdings.  Possibly, 

differences in the results compared with DGTWcs, is related to our broader view of the 

funds’ portfolios.  Panel E of Table 5 strongly suggests this is not the case.  We replicate 

panel D using the equity holdings only, assuming the equity weights sum to 1.0 each 

quarter.  The results are almost identical.  The DGTWcs measures and our alpha measures 

differ across the Panels D and E only in their last digit.   

 Cremers and Petajisto (2009) find a negative trend in funds’ active shares over time, 

and suggest that recent data may be influenced by more “closet indexing” among active 

mutual funds.  Kim (2012) finds that the flow-performance relation in mutual funds 

attenuates after the year 2000, which could be related to volatility that renders recent 

performance less informative, or to a trend toward more similar performance in the 

universe of managers.  The earlier studies by Grinblatt and Titman (1993), Wermers (2000) 

and others use data that do not cover the period after 2000.  Perhaps, the evidence for 

investment ability has changed in the more recent data.  We repeat the analyses from Table 

5, using the restricted 1984-1999 sample period.  The results are similar to Table 5.  We find 

no evidence that the different findings using our measures are driven by the post 2000 data. 

 

5.8 A Multiple-comparisons Perspective 

 The preceding tables have presented many estimates of fund performance.  It is 
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important to interpret this evidence in view of the number of tests conducted.  We use 

Bonferroni p-values to evaluate the extreme statistics in some of the discussion.  This is a 

conservative bound, as it sets the joint probability of two rejection events to zero.  A simple 

alternative approach is to evaluate the fractions of the tests that reject the null hypothesis of 

zero performance at a given significance level.  In the tables to this paper we present 318 

estimates of performance and obtain 21 absolute t-ratios larger than 2.0.  Using simple 

binomial probabilities and allowing for a conservative amount of correlation across the 

tests, the overall t-ratio for observing 21 rejections at the 5% level, when the expected 

number of rejections is 15.9, is approximately 0.04. 20  If we add the estimates discussed in 

the text but not tabulated, there are 2155 estimates of performance and 124 absolute t-ratios 

larger than two.  The binomial t-ratio for this is -0.002. 

     We select the preceding tables considering the flow of the paper and to highlight 

“interesting” results.  In the analyses conducted for this paper, our best estimate is that we 

generated 9054 estimates of performance and found 381 absolute t-ratios larger than 2.0.  

The binomial t-ratio for finding 381 rejections of the null that performance is zero, using a 

5% test, when 9054 tests are conducted is close to zero.   

 While a multiple comparisons perspective suggests that overall, there is little 

evidence of ability, we do observe some patterns that suggest some of the results are not 

                                                  
20 If yi is an indicator variable for the i-th test rejecting at the 5% level and there are N tests 
with correlation ρ, then Σyi has mean 0.05N and variance N(.05)(.95){1+(N-1)ρ}.  The t-ratio 
in the example is (21-15.9)/[318(.95)(.05){1+317ρ}].5  The result is very sensitive to the 
assumed value of the correlation, ρ.  Using the ex post abnormal performance components 
described above for each fund, the sample correlations of two components taken across 
funds ranges from -0.23 to +0.19 and the average is 0.028.  At the extreme, if funds are 
sorted into quintiles randomly, the correlations of the measures across the quintiles are 
much higher, upwards of 90%.  We use ρ=0.03 in these calculations.  The t-ratios are smaller 
if ρ is larger. 
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random statistical flukes.  We should be cautious, as Richardson (1993) and others 

emphasize that correlated tests are likely to produce the appearance of patterns.  One of the 

marginal cases is when we condition the ex post abnormal performance on the average 

idiosyncratic volatility.  We find that all 18 of the regression coefficients for level timing are 

positive, 16 of the coefficients for volatility timing are positive and 17 of the selectivity 

coefficients are negative.  If the sampling distribution is symmetric under the null of zero 

coefficients, we should find half of the estimates are negative and half are positive.  Under 

the same correlation assumption used above, the binomial t-ratio for the number of positive 

coefficients is 3.45 for level timing, 2.68 for volatility timing and -3.07 for the selectivity 

coefficients.21  However, if the fund grouping is completely random the correlation of the 

estimates would be much higher than assumed in this calculation, as we would effectively 

have little more information than a single regression, not 18 separate tests.  If the correlation 

is 0.9 all of the binomial t-ratios are close to zero.  In this case the average value across the 

18 regressions might be a better statistic.  The average coefficient has the indicated sign, but 

is not statistically significant.  Thus, there is only weak evidence of stronger timing ability 

when the average idiosyncratic volatility is low or stronger selectivity performance when it 

is high. 

 

5.9 Precision and Power 

 As discussed previously, holdings-based measures could suffer a loss of power for 

various reasons.  Also as mentioned above, Ferson and Khang (2002) and Jiang et al. (2007) 

examine the power of weight-based approaches with simulation and find that using the 

                                                  
21  For example, using a 50% probability of a positive coefficient, the t-ratio for finding all 18 
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information in the many portfolio weights offsets the loss of information in a single time 

series of the reported fund returns, so that holdings-based measures are quite powerful.  A 

full simulation analysis of power is far beyond the scope of this study, complicated by the 

need to model the portfolio weights of funds with varying degrees of ability and other 

issues.  See Wang (2013) for a discussion and analysis of the statistical properties of 

holdings-based measures.   

 It seems that the precision of our estimates is high.  For example, in the Appendix 

tables A.1-A.2 the average standard error of the alpha estimates at the broad fund group 

level is about 5 basis points per quarter, so performance of 2% per year would earn a t-ratio 

of about ten.  In Table 5 where funds are sorted into decile portfolios, the average standard 

error of a performance estimate is about 19 basis points per quarter, so performance of 2% 

per year would earn a t-ratio of about 2.6.  In the quintile sorts the standard deviation is 

about 14 basis points per quarter.  This is much more precision than available with returns-

based alphas.   

 While a comparison of our performance estimates with returns-based estimates 

suggests that our approach delivers good precision, a comparison of our measures with the 

DGTWcs holdings-based measure is a slightly different story.  Averaged across all the 

panels in Table 5, our selectivity measure’s standard error is 16 basis points per quarter and 

our total performance alpha’s standard error averages 21 basis points per quarter.  By 

comparison, the DGTWcs measure’s average standard error is 11 basis points.  Thus, 

bringing the timing components and second moment terms in with our measures does 

present a modest cost in precision. 

                                                                                                                                                                       

coefficients positive is (18-9)/[18(.5)(.5){1+17ρ}].5   



 43 

 Why should we estimate selectivity simultaneously with the timing and second 

moment effects at a cost of lower precision?  As in many problems, we face a tradeoff 

between bias and efficiency.  If we estimate the full model with all the components, and 

some of them are really zero, we sacrifice precision on the other components.  If we leave 

out some of the components of performance that are not zero, we face a left-out variables 

bias for the components we include.  The standard errors suggest that our loss of precision, 

compared with the DGTWcs measure, is modest.  Importantly, our evidence shows that the 

components missing from the DGTWcs measure are not zero.  For example, we find that 

the relation between total performance and volatility reaction in Table 2 is almost 50% 

driven by the timing effects, and by leaving out those terms the DGTWcs measure finds no 

significant performance.  The relation of performance to the Baker and Wurgler (2006) 

sentiment measure that we document above is almost entirely driven by the market timing 

effects, and is not found by the DGTWcs measure.  Thus, there is useful information in the 

components of performance. 

  

5.10. Additional Tests 

 The preceding evidence suggests that active funds, with activity measured in 

various ways, have stronger future performance.  Another measure of activity is “style 

drift,” in which funds change their style exposures over time.  We measure the style drift of 

a fund using its daily reported returns over the past year to estimate Carhart (1997) four-

factor betas for the most recent and the lagged six-month periods, β1 and β2.  We use the 

full year to estimate the covariance matrix of the beta estimates, V(β).   

 Our measure of style drift is similar to a Chow (1960) test:  (β1 - β2)’V(β)-1(β1 - β2).  
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We sort funds into deciles on the style drift measure and estimate the performance of the 

decile portfolios over the next quarter, rolling the whole procedure forward quarterly.  We 

find that the more active funds record subsequent higher selectivity, by about 1% per year 

compared with the least active.  The t-ratio of the difference is 2.04 with our selectivity 

measure and 2.77 using DGTWcs.  These tests confirm with yet another measure of activity, 

that more active funds display better ability.  The timing measures suggest that the style 

drifting funds tend to anticipate high return and high volatility factors, but this is not a 

significant effect.  The differences in the level and volatility timing terms across the deciles 

is 1.6% and -1.2% per year respectively, so the total timing effect which is the sum of the 

two terms, is small.   

 Grinblatt and Titman (1993) and DGTW (1997) study the persistence in their 

measures.  We sort funds on the basis of previous estimates of each of our three 

components of performance each quarter.  These estimates use the previous two years of 

data.   This is a short sample for estimation, resulting in noisy estimates, but requiring that 

a fund survive for a longer period increases the survival selection bias and can create 

spurious persistence (e.g. Brown et al. 1992).  We find no evidence of persistence in our 

measures. 

 De Souza and Lynch (2012) criticize previous studies that find fund performance 

varies over the state of the business cycle, for using NBER reference cycles like we do 

above, because these are only known ex post.   They find that the evidence for business cycle 

variation in performance weakens substantially or disappears when ex ante conditioning 

variables are used.  We find a similar pattern with our conditional measures.  We estimate a 

probit model for the likelihood of a recession and break the sample up into high, medium 
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and low ex ante recession probability subsamples.  Any evidence for differences in 

performance across the business cycle states is even weaker in this exercise. 

  

6. Conclusions 

 A holdings-based performance measure should reflect the ability of funds’ portfolio 

holdings to anticipate the subsequent abnormal, or risk adjusted returns of the securities 

held.  Generalizing previous holdings-based measures to make the risk adjustment shows 

that investment performance has components related to factor level timing, volatility 

timing and selectivity.  We develop and implement simple measures of performance that 

account for all three components, without making any stylized assumptions about manager 

behavior. Our approach can be used with any specification for the stochastic discount 

factor, and we illustrate it using popular linear factor models.    

 Allowing for market level and volatility timing, we find that funds with more active 

responses to volatility have better investment ability.  We also find that the ability to time 

market factor levels is weaker when an investor sentiment measure is high, and stronger 

when it is low.  This is consistent with a deleterious impact of exogenous fund inflows on 

performance, but is not fully explained by aggregate fund flows.  Sorting funds by factor 

model R-squares confirms the findings of Amihud and Goyenko (2013) that the low R-

square funds have better ability.  Measuring activity in the form of “style drift,” produces 

similar results.   

 Comparing our new measures with popular holdings-based measures of selectivity 

from Daniel, Grinblatt, Titman and Wermers (1997), we find that the second moment and 

market timing effects that we include reveal performance, related to active management, 
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that remains hidden from the earlier measures.  Our new measures should be especially 

useful in settings where changes in conditional second moments are an important feature of 

the investment environment.
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Appendix   

A.1 Tables of Group Level Estimates 

 
Table A.1 

Components of Performance in a Market Timing Setting 
 

This table summarizes results when the unconditional CAPM defines the benchmark, using 
CRSP data on mutual funds’ weights in stock.  The sample covers January of 1984 through 
December of 2010. The GMM with a Newey-West lag of three is used for estimation.  Level 
timing is the estimate of αm, volatility timing is the estimate of ασ and their sum represents 
the total market timing performance.  NObs is the number of time series observations of the 
fund group used for the estimation.  Panel A reports GMM estimates of a and b in the 
system (9).   
 
Panel A:   
Estimates of the Market-wide Parameters: 
 

   NObs a b  

  Est 108 1.033 2.43  

  t_stat  23.73 1.82  

Panel B: 
Performance 

 

   Level 

Timing 

Volatility   

Timing 

Sum 

AssetAllocation  Est 33 0.0004 0.0002 0.0006 

 

t_stat  1.2743 1.2986 1.8123 

 

Balanced  Est 36 -2E-04 -1E-04 -0.0002 

 

t_stat  -0.353 -0.27 -0.5473 

 

USEquity  Est 55 -7E-04 0.0001 -0.0005 

 t_stat  -1.456 0.3683 -1.0373 
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Table A.2 
                          Components of Performance in an Asset Allocation Setting 
 
This table summarizes results for asset allocation performance in a two-factor setting, 
where the stock market index and a bond index are the benchmarks, using CRSP data on 
mutual funds’ asset allocation weights in stocks and bonds.  The bond index is the  Barclays 
US Aggregate bond index and the stock market index is the CRSP value-weighted market 
index.  The sample covers January of 1984 through December of  2010.  The GMM with a 
Newey-West lag of three is used for estimation.  Level timing is the estimate of αm, 
volatility timing is the estimate of ασ and their sum represents the total asset allocation 
performance.  Nobs is the number of time series observations of the fund group used for 
the estimation.  Panel A reports GMM estimates of the parameters a and b in the system (9). 
  
 
Panel A:   
Estimates of the Market-wide Parameters: 

   NObs a b1(mkt) b2(bond) 

  Est 108 1.19 2.47 16.76 

  t_stat  14.26 2.17 3.82 

Panel B:  
Performance 

 

   Level     

Timing 

Volatility   

Timing 

Sum 

AssetAllocatio

n 
 Est 33 -0.0007 0.0008 0.0001 

 

t_stat  -1.236 1.6648 0.1159 

 

Balanced  Est 36 -0.0004 0.0004 0 

 

t_stat  -0.79 2.0189 -0.008 

 

USEquity  Est 55 -0.002 0.0009 -0.0007 

 t_stat  -1.583 1.3533 -0.954 
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A.2 Conditional Models 
 
 The conditional models follow Cochrane (1996), assuming that the parameters a and 

b are linear functions of lagged instruments, Z, and that the conditional means of the 

benchmark excess returns are linear functions of Z.22  Thus, a and b are replaced by linear 

functions a(Z)=a’Z and b(Z)=b’Z, and μB is replaced by a linear function  δBZ in Equations 

(9c-9e), where δB is a K x L matrix of parameters, a and b are L-vectors of parameters and L 

is the number of lagged instruments in Z, which includes a constant.  The modified 

equations (9a-9c) are multiplied by each element of Z.  The GMM with a Newey-West 

(1987) covariance matrix using three lags is used in the estimation of the standard errors.   

 In the conditional CAPM the estimates of the market-wide parameters suggest that 

the coefficient b(Z) is a time-varying function of the lagged instruments; indicating a time-

varying price of market risk, but we do not reject the hypothesis that a(Z) is a constant 

function over time.  The conditional market timing model indicates insignificant overall 

market timing ability and both components of timing ability are insignificant.   

 We also examine a conditional asset allocation model with two factors: the market 

index and the bond index, similar to Table A.2.   There is less evidence of time-varying SDF 

coefficients in this model, consistent with the less-significant b coefficients in Table A.2.   

The overall flavor of the results is similar to that of the market timing example.  We find no 

significant negative level timing in the conditional version of the asset allocation model.  

The sum of the two components of timing ability is insignificant and numerically close to 

zero.  We estimate a conditional version of the FF3 factor model and examine all three 

                                                  
22 We also examine parametric conditional models that assume linear functional forms for 
the first and second conditional moments of the benchmark returns and derive nonlinear 
functions for time varying at and bt coefficients from the restrictions of the model.  These 
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components of performance using the Thompson holdings data.  The results are broadly 

similar.  We also estimate a conditional version of the Carhart 4-factor model and find 

essentially similar results. 

    In summary, the conditional models confirm the evidence for the broad fund groups. 

Allowing for level and volatility timing behavior, no strong evidence for performance is 

found at the fund group level.   The economic magnitudes of the performance estimates are 

small, and the standard errors say the performance is reliably close to zero. 
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Table 1 
Summary statistics of mutual fund characteristics, 1984-2010, are shown for three fund 
categories (US equity, Asset Allocation, Balanced).   The statistics are calculated as the 
averages over time of the quarterly characteristics for each fund.  
  

  Total Min Mean Median Max Std Dev 

Number of 

distinct 

mutual 

funds 

All 2879      
AssetAllocation 171      

Balanced 255      
USEquity 2608      

Number of 

fund-quarter 

observations 

All 98946      
AssetAllocation 3406      

Balanced 7357      
USEquity 88183      

Average 

TNA (total 

net assets), 

$millions 

All  291 1133 1179 2212 522 
AssetAllocation  295 884 845 1646 300 

Balanced  296 1332 1309 2367 457 

USEquity  291 1158 1185 2412 557 

Average 

Turnover 

ratio (%) per 

year 

All  70.86 87.82 87.69 121.44 10.71 
AssetAllocation  71.96 104.69 103.39 190.43 19.83 

Balanced  71.9 88.02 88.2 118.63 9.3 

USEquity  69.94 87.51 86.71 124.58 11.37 

Average 

Expense 

ratio (%) per 

year 

All  0.92 1.18 1.21 1.41 0.13 
AssetAllocation  0.82 1.25 1.25 1.41 0.11 

Balanced  0.88 1.1 1.08 1.33 0.12 

USEquity  0.92 1.19 1.23 1.41 0.13 

Average 

Proportion 

invested in 

stocks, (%) 

All  78.03 85.91 87.02 94.43 4.9 
AssetAllocation  49.52 62.60 64.78 73.64 6.54 

Balanced  50.28 58.33 59.10 72.87 4.06 

USEquity  79.34 88.76 92.20 96.48 6.11 

Average 

Proportion 

invested in 

cash, (%) 

All  3.1 7.91 6.43 13.95 3.4 
AssetAllocation  6.90 10.36 10.43 18.62 1.86 

Balanced  0.59 6.63 6.30 14.78 2.72 

USEquity  2.95 7.78 6.14 13.95 3.52 

Average 

Proportion 

invested in 

bonds, (%) 

All  2.36 6.18 6.39 9.43 1.81 
AssetAllocation  7.73 27.04 24.08 42.57 7.02 

Balanced  26.48 35.04 34.94 39.73 2.46 

USEquity  0.37 3.46 1.67 7.87 2.67 
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Table 2 
Performance of funds sorted on volatility-related Activity. 

This table reports estimates of alpha and its decomposition into market timing, volatility 
timing, and selectivity.  The Carhart 4  factors define the benchmark.  The sample covers 
January of 1998 through December of 2010.  The GMM with a Newey-West covariance 
matrix with three lags is used for estimation. Funds are sorted according to prior estimates 
of the coefficients of regression (10) in the text as proxies for the likelihood of volatility 
related active behavior.  The average of the sorting variables is shown in the right hand 
columns. 
 

Panel A: Sorting on λp1 (volatility reaction in reported returns) 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

λp1 

decile 1 est 48 0.0048 -0.002 0.0029 0.0036 0.0065 -24.239 

(lowest) t_stat  1.0052 -0.511 1.0006 2.0401 2.156 -9.3809 

         

decile 2 est 48 0.0033 -0.002 0.0018 0.0028 0.0046 -11.32 

 t_stat  0.6744 -0.354 0.6847 1.358 1.422 -8.8965 

         

decile 3 est 48 0.0029 -8E-04 0.0021 0.0018 0.0039 -7.1435 

 t_stat  0.7715 -0.226 1.0128 1.1655 1.5302 -8.0707 

         

decile 4 est 48 0.0023 -6E-04 0.0017 0.0007 0.0025 -4.1527 

 t_stat  0.7299 -0.21 1.1285 0.4263 1.0378 -6.3895 

         

decile 5 est 48 0.0017 -2E-04 0.0015 0.0004 0.002 -1.6658 

 t_stat  0.4986 -0.067 1.0758 0.2414 0.8928 -3.116 

         

decile 6 est 48 0.0028 -6E-04 0.0022 -2E-04 0.002 0.712 

 t_stat  1.0956 -0.264 1.5542 -0.14 0.9777 1.253 

         

decile 7 est 48 0.0012 0.0002 0.0013 -4E-04 0.0009 3.2749 

 t_stat  0.4606 0.0725 0.869 -0.23 0.3852 4.3901 

         

decile 8 est 48 0.0009 0.0006 0.0015 -4E-04 0.0011 6.2652 

 t_stat  0.3448 0.3531 0.7853 -0.243 0.473 5.9091 

         

decile 9 est 48 0.0015 0.0007 0.0022 -0.002 0.0005 10.447 

 t_stat  0.7162 0.3596 1.0504 -1.049 0.1833 6.633 

         

decile 10 est 48 -0.005 0.0035 -0.002 -0.003 -0.005 22.374 

(highest) t_stat  -0.948 0.6909 -0.687 -1.298 -1.47 7.3349 

decile 10 est 48 -0.01 0.0054 -0.005 -0.006 -0.011 46.614 

- decile1 t_stat  -1.172 0.678 -1.086 -2.661 -2.393 8.5762 
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Panel B: Sorting on λp2 (volatility timing in reported returns) 

 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

λp2 

decile 1 est 48 0.0012 0.0017 0.0029 -0.003 0.0001 -231.9 

(lowest) t_stat  0.2539 0.4983 1.1078 -1.478 0.0367 -3.433 

         

decile 2 est 48 0.0016 0.001 0.0027 -0.002 0.0004 -110.9 

 t_stat  0.3972 0.3057 1.1087 -1.562 0.1702 -3.551 

         

decile 3 est 48 0.003 -4E-04 0.0026 -0.001 0.0012 -66.91 

 t_stat  0.8772 -0.128 1.3831 -1.068 0.6203 -3.619 

         

decile 4 est 48 0.0019 -3E-04 0.0016 -0.001 0.0005 -35.13 

 t_stat  0.5726 -0.102 1.0591 -0.728 0.2868 -3.629 

         

decile 5 est 48 0.0035 -8E-04 0.0026 -9E-04 0.0017 -8.621 

 t_stat  1.1635 -0.309 1.7668 -0.66 0.9026 -2.783 

         

decile 6 est 48 0.0017 0.0006 0.0023 0.0007 0.003 16.231 

 t_stat  0.7817 0.2994 1.7376 0.4481 1.374 3.2255 

         

decile 7 est 48 0.0019 -8E-04 0.0011 0.0017 0.0027 42.071 

 t_stat  0.6471 -0.307 0.7367 0.8583 1.0224 3.7152 

         

decile 8 est 48 0.0034 -0.002 0.0018 0.002 0.0038 71.396 

 t_stat  1.1377 -0.86 0.9696 1.0905 1.1699 3.877 

         

decile 9 est 48 -6E-04 -6E-04 -0.001 0.004 0.0027 110.98 

 t_stat  -0.308 -0.476 -0.911 1.6741 0.8818 3.9717 

         

decile 10 est 48 -0.002 0.0006 -8E-04 0.0039 0.0031 220.92 

(highest) t_stat  -0.32 0.1643 -0.362 1.1354 0.6922 3.9514 

decile 10 est 48 -0.003 -0.001 -0.004 0.0067 0.003 452.77 

- decile1 t_stat  -0.388 -0.191 -1.01 1.7222 0.648 3.7 
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Panel C: Sorting on λp3 (volatility change timing in reported returns) 

 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

λp3 

decile 1 est 48 -0.011 0.0055 -0.005 0.0042 -0.001 -50.11 

(lowest) t_stat  -1.443 0.8741 -1.514 1.6839 -0.357 -7.624 

         

decile 2 est 48 -0.005 0.0031 -0.002 0.0015 -8E-04 -26 

 t_stat  -1.123 0.8846 -0.905 0.6943 -0.266 -7.054 

         

decile 3 est 48 -0.001 0.0012 0.0003 0.0018 0.0021 -17 

 t_stat  -0.271 0.4533 0.1391 1.0068 0.8447 -6.863 

         

decile 4 est 48 0.0007 -1E-04 0.0006 0.0011 0.0018 -10.58 

 t_stat  0.1965 -0.028 0.3226 0.7043 0.7067 -6.29 

         

decile 5 est 48 0.0019 -5E-04 0.0013 0 0.0013 -5.12 

 t_stat  0.514 -0.163 0.8922 0.0141 0.6095 -4.564 

         

decile 6 est 48 0.0026 -9E-04 0.0016 0.0002 0.0018 0.0014 

 t_stat  0.8078 -0.319 1.1076 0.1176 0.8622 0.0015 

         

decile 7 est 48 0.0041 -8E-04 0.0032 -4E-04 0.0029 5.3446 

 t_stat  1.4653 -0.35 2.226 -0.299 1.3708 3.8646 

         

decile 8 est 48 0.0048 -0.002 0.0027 -3E-04 0.0024 11.572 

 t_stat  1.3963 -0.627 1.7508 -0.241 1.1555 5.3054 

         

decile 9 est 48 0.0075 -0.002 0.0053 -0.002 0.0034 20.5 

 t_stat  1.7442 -0.679 2.171 -1.163 1.1915 5.7401 

         

decile 10 est 48 0.0117 -0.004 0.008 -0.003 0.0054 45.526 

(highest) t_stat  1.5514 -0.816 1.8453 -1.449 1.16 6.0315 

decile 10 est 48 0.0225 -0.009 0.0133 -0.0072 0.0066 95.638 

- decile1 t_stat  1.6199 -0.911 1.8804 -3.138 1.0679 7.19 
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Table 3 
Performance of individual funds, sorting on Factor Model R-squares. 

This table reports estimates of alpha and its decomposition into market timing, volatility 
timing, and selectivity.   The Carhart 4 factors define the benchmark.  The sample covers 
January of 1998 through December of 2010.  The GMM with a Newey-West covariance 
matrix with three lags is used for estimation.  DGTWcs is the characteristic selectivity 
measure of Daniel, Grinblatt, Titman and Wermers (1997). 
 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

DGTWcs 

decile 1 est 47 0.0043 -0.001 0.0032 0.0037 0.0069 0.0019 

(lowest) t_stat  0.8689 -0.256 1.0982 1.1546 1.8112 1.0821 

         

decile 2 est 47 0.0052 -0.002 0.0032 0.0033 0.0066 0.002 

 t_stat  0.8094 -0.344 0.9416 0.9573 1.382 0.9247 

         

decile 3 est 47 0.0033 -2E-04 0.003 0.0029 0.006 0.0015 

 t_stat  0.5937 -0.054 1.0124 0.9243 1.4143 0.822 

         

decile 4 est 47 0.0035 -0.001 0.0025 0.0018 0.0043 0.0013 

 t_stat  0.9386 -0.324 1.1384 0.6737 1.3025 0.7726 

         

decile 5 est 47 0.0027 -4E-04 0.0023 0.0016 0.0039 0.0017 

 t_stat  1.1378 -0.276 1.2527 0.8376 1.3421 1.0218 

         

decile 6 est 47 -0.0009 0.0008 -1E-04 0.0011 0.0009 0.001 

 t_stat  -0.5275 0.5333 -0.114 0.8166 0.5342 0.6574 

         

decile 7 est 47 -0.0008 0.0005 -3E-04 0.0009 0.0006 0.0006 

 t_stat  -0.3733 0.379 -0.18 0.8071 0.4908 0.4897 

         

decile 8 est 47 -0.0003 0.0011 0.0009 -2E-04 0.0007 0.0003 

 t_stat  -0.1278 0.7623 0.5194 -0.131 0.5569 0.2974 

         

decile 9 est 47 0.0005 0.0004 0.001 -0.001 -1E-04 -0.0003 

 t_stat  0.1911 0.2681 0.4205 -0.617 -0.122 -0.2594 

         

decile 10 est 47 -0.0004 0.0004 0 -0.001 -0.001 -0.0006 

(highest) t_stat  -0.1206 0.2019 0.0082 -0.661 -1.049 -0.6476 

decile 10 est 47 -0.0048 0.0016 -0.003 -0.005 -0.008 -0.0024 

- decile1 t_stat  -0.7189 0.3525 -0.684 -1.131 -2.138 -1.3067 
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Table 4 
Conditioning Performance on Investor Sentiment 

Ex post fund performance is regressed over time on the Baker-Wurgler sentiment index for 
funds grouped according to their factor model R-squares or on their their Busse volatility 
reaction coefficients, γ1p, estimated over the past 36 months.  The regression slopes are 
reported (est), along with their Newey-West t-ratios (tstat) and an empirical, two-tailed p-
value from a bootstrap simulation under the null that the slope is zero (pval).  The betas of 
stock holdings needed to construct the ex post performance measures are estimated from a 
rolling window of past one year of daily data with respect to the start of every month. 
 

    Nobs 

Level 

Timing 

Volatility 

Timing 

Total 

Timing Selectivity 

Total 

Alpha 

Panel A: Sorting on Factor Model R-squares 

quintle 1  est 141 -0.017 0.002 -0.015 -0.003 -0.018 

(lowest) tstat   -2.26 0.41 -1.28 -0.71 -1.98 

 pval   0.041 0.705 0.264 0.613 0.077 

        

quintle 2 est 141 -0.020 0.005 -0.015 -0.002 -0.017 

 tstat   -2.60 0.69 -1.23 -0.39 -1.81 

 pval   0.03 0.54 0.253 0.808 0.121 

        

quintle 3 est 141 -0.024 0.007 -0.017 -0.004 -0.020 

 tstat   -3.04 0.83 -1.29 -0.65 -2.25 

 pval   0.014 0.442 0.243 0.691 0.049 

        

quintle 4 est 141 -0.025 0.007 -0.018 -0.003 -0.022 

 tstat   -3.21 0.88 -1.55 -0.67 -2.48 

 pval   0.006 0.412 0.149 0.669 0.036 

        

quintle 5 est 141 -0.025 0.006 -0.019 -0.001 -0.021 

(highest) tstat   -3.26 0.89 -1.88 -0.37 -2.47 

 pval   0.006 0.432 0.091 0.785 0.02 

Panel B: Sorting by Volatility Reaction 

quintle 1  est 144 -0.020 0.005 -0.016 -0.004 -0.020 

(lowest) tstat   -2.45 0.63 -1.19 -0.70 -2.07 

 pval   0.033 0.546 0.264 0.598 0.063 

        

quintle 2 est 144 -0.020 0.004 -0.016 -0.002 -0.018 

 tstat   -2.64 0.66 -1.43 -0.52 -2.13 

 pval   0.018 0.529 0.209 0.742 0.064 
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quintle 3 est 144 -0.021 0.005 -0.016 -0.001 -0.017 

 tstat   -2.81 0.71 -1.44 -0.36 -2.08 

 pval   0.015 0.527 0.217 0.832 0.073 

        

quintle 4 est 144 -0.023 0.005 -0.018 -0.002 -0.019 

 tstat   -3.11 0.76 -1.56 -0.41 -2.23 

 pval   0.007 0.497 0.146 0.792 0.049 

        

quintle 5 est 144 -0.027 0.008 -0.020 -0.004 -0.023 

(highest) tstat   -3.60 0.89 -1.63 -0.78 -2.57 

  pval   0.002 0.44 0.144 0.543 0.024 
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Table 5 
Performance of individual funds, sorting on various predetermined characteristics. 

This table reports estimates of alpha and its decomposition into market timing, volatility 
timing, and selectivity.   The Carhart 4 factors define the benchmark.  The sample covers 
January of 1984 through December of 2010 or subsamples as indicated.  The GMM with a 
Newey-West covariance matrix with three lags is used for estimation.  DGTWcs is the 
characteristic selectivity measure of Daniel, Grinblatt, Titman and Wermers (1997). 
 

Panel A:  Sorting on Expense ratios 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

DGTWcs 

decile 1 est 104 0.0003 -9E-04 -5E-04 0.0009 0.0004 0.0006 

(lowest) t_stat  0.2337 -0.825 -0.66 1.0461 0.3794 1.0955 

         

decile 2 est 104 0.0002 -3E-04 -1E-04 0.0004 0.0003 0.0002 

 t_stat  0.1374 -0.308 -0.135 0.3421 0.2246 0.3529 

         

decile 3 est 104 0 -4E-04 -4E-04 -2E-04 -7E-04 0.0005 

 t_stat  -0.0171 -0.381 -0.459 -0.226 -0.494 0.6873 

         

decile 4 est 104 0.0006 -5E-04 0.0001 0.0004 0.0005 0.0004 

 t_stat  0.347 -0.504 0.0659 0.3169 0.2977 0.5466 

         

decile 5 est 104 0.001 -6E-04 0.0004 -4E-04 0.0001 0.0006 

 t_stat  0.5749 -0.477 0.4216 -0.247 0.0569 0.8911 

         

decile 6 est 104 -0.0002 -1E-04 -3E-04 -4E-04 -7E-04 0.0007 

 t_stat  -0.1068 -0.074 -0.225 -0.302 -0.429 0.9089 

         

decile 7 est 104 0.0013 -0.001 0.0002 -7E-04 -5E-04 0.0004 

 t_stat  0.6307 -0.734 0.1277 -0.392 -0.347 0.4917 

         

decile 8 est 104 0.0002 -4E-04 -2E-04 -7E-04 -9E-04 0.0003 

 t_stat  0.098 -0.321 -0.126 -0.344 -0.506 0.3344 

         

decile 9 est 104 0.0004 -6E-04 -2E-04 -7E-04 -9E-04 0.0008 

 t_stat  0.2291 -0.581 -0.142 -0.424 -0.557 0.7165 

         

decile 10 est 104 0.0006 0 0.0006 -0.001 -8E-04 0.0011 

(highest) t_stat  0.3399 0.0147 0.4493 -0.772 -0.556 1.2451 

decile 10 est 104 0.0002 0.0009 0.0011 -0.002 -0.001 0.0005 

- decile1 t_stat  0.1368 0.8277 0.9484 -1.708 -1.077 0.6269 
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Panel B:  Sorting on Active Shares (1990-2007) 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

DGTWcs 

decile 1 est 71 0.0034 -0.002 0.0012 0.0002 0.0015 3.00E-05 

(lowest) t_stat  1.4721 -1.267 0.8757 0.1789 1.4025 0.0677 

         

decile 2 est 71 0.0031 -0.002 0.001 -6E-04 0.0004 0.0001 

 t_stat  1.4189 -1.405 0.7834 -0.438 0.3711 0.0787 

         

decile 3 est 71 0.0007 -0.001 -3E-04 0.0003 0 3.5E-05 

 t_stat  0.4323 -0.91 -0.346 0.2043 -0.034 0.0404 

         

decile 4 est 71 0.0036 -0.003 0.0002 -4E-04 -3E-04 0.0016 

 t_stat  1.4114 -1.788 0.1242 -0.307 -0.199 1.1451 

         

decile 5 est 71 -0.0001 -8E-04 -8E-04 0.0004 -4E-04 0.0014 

 t_stat  -0.0216 -0.395 -0.542 0.2841 -0.271 1.1096 

         

decile 6 est 71 -0.0016 0.0006 -0.001 0 -0.001 0.0008 

 t_stat  -0.4174 0.1816 -0.509 -0.023 -0.563 0.6608 

         

decile 7 est 71 0.0002 -0.001 -8E-04 -0.001 -0.002 0.0017 

 t_stat  0.0727 -0.44 -0.381 -0.686 -0.993 1.056 

         

decile 8 est 71 -0.0012 -1E-04 -0.001 -8E-04 -0.002 0.0011 

 t_stat  -0.2961 -0.026 -0.449 -0.362 -0.688 0.7607 

         

decile 9 est 71 0.0015 -0.001 0.0005 -0.002 -0.002 0.0025 

 t_stat  0.2983 -0.298 0.1395 -0.981 -0.587 1.3592 

         

decile 10 est 71 0.0007 0.0005 0.0012 -0.001 -1E-04 0.0014 

(highest) t_stat  0.1404 0.128 0.373 -0.591 -0.042 0.9357 

decile 10 est 71 -0.0027 0.0027 -1E-04 -0.002 -0.002 0.0014 

- decile1 t_stat  -0.5218 0.6218 -0.018 -0.531 -0.493 0.8823 
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Panel C:  Sorting on Return Gap (1984-2006) 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

DGTWcs 

decile 1 est 89 0.0001 -0.002 -0.002 0.0023 0 0.0004 

(lowest) t_stat  0.02 -1.124 -1.45 1.547 0.0121 0.2777 

         

decile 2 est 89 -0.0018 0.0002 -0.002 0.0004 -0.001 0.0012 

 t_stat  -0.6298 0.0942 -0.802 0.3007 -0.51 1.1879 

         

decile 3 est 89 0.0007 -0.003 -0.002 0.0027 0.0007 0.0015 

 t_stat  0.2612 -1.391 -1.121 1.7579 0.4235 1.6356 

         

decile 4 est 89 0.0007 -0.003 -0.002 0.0015 -6E-04 0.0007 

 t_stat  0.262 -1.373 -1.5 1.1555 -0.395 0.8692 

         

decile 5 est 89 0.0014 -0.002 -8E-04 0.0006 -2E-04 0.0003 

 t_stat  0.5654 -1.102 -0.649 0.5084 -0.113 0.3726 

         

decile 6 est 89 -0.0003 -0.002 -0.002 0.0018 -4E-04 0.001 

 t_stat  -0.0933 -0.817 -1.43 1.3597 -0.248 1.3069 

         

decile 7 est 89 0.0002 -0.002 -0.002 0.002 0.0004 0.0008 

 t_stat  0.0708 -0.772 -0.863 1.0718 0.2276 0.9678 

         

decile 8 est 89 -0.0004 -0.001 -0.002 0.0014 -4E-04 0.001 

 t_stat  -0.1536 -0.646 -1.05 0.984 -0.237 0.9989 

         

decile 9 est 89 -0.0003 -0.001 -0.002 0.0013 -2E-04 0.001 

 t_stat  -0.1255 -0.712 -0.981 0.8053 -0.088 0.8582 

         

decile 10 est 89 0.0011 0.0016 0.0027 0.0009 0.0035 0.0014 

(highest) t_stat  0.3757 0.8221 0.9965 0.4122 1.2309 0.7667 

decile 10 est 89 0.001 0.0039 0.005 -0.001 0.0035 0.001 

- decile1 t_stat  0.3861 1.6657 1.6597 -0.91 1.2619 0.9468 
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Panel D:  Sorting on Turnover 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

DGTWcs 

quintle 1 est 96 -3E-05 -2E-04 -3E-04 0.0006 0.0004 0.0004 

(lowest) t_stat  -0.0197 -0.225 -0.287 0.4906 0.2525 0.469 

         

quintle 2 est 96 -0.001 -4E-04 -0.001 -5E-04 -0.002 -0.0005 

 t_stat  -1.0335 -0.939 -1.847 -0.545 -1.938 -0.7873 

         

quintle 3 est 96 -0.0022 0.0012 -0.001 0.0007 -3E-04 0.0004 

 t_stat  -1.3975 1.331 -0.767 0.5121 -0.168 0.3978 

         

quintle 4 est 96 4E-06 -3E-04 -3E-04 -3E-04 -6E-04 0.0002 

 t_stat  0.0023 -0.371 -0.263 -0.165 -0.4 0.1921 

         

quintle 5 est 96 0.002 0.0005 0.0025 -0.001 0.0015 0.0017 

(highest) t_stat  0.9782 0.4218 1.6905 -0.473 0.7365 1.2003 

quintle 5 est 96 0.002 0.0008 0.0028 -0.002 0.0011 0.0013 

- quintle 1 t_stat  0.7643 0.4082 1.6666 -0.815 0.5756 0.7769 

 

Panel E:  Sorting on Turnover (equity-only positions) 

  

Nobs Level 

Timing 

Volatility 

Timing 

Combined 

Timing 

Selectivity Total 

Alpha 

DGTWcs 

quintle 1 est 96 0.0002 -5E-04 -2E-04 0.0006 0.0003 0.0004 

(lowest) t_stat  0.1133 -0.34 -0.164 0.3919 0.2099 0.3782 

         

quintle 2 est 96 -0.0005 -3E-04 -8E-04 -5E-04 -0.001 -0.0005 

 t_stat  -0.4389 -0.63 -0.789 -0.48 -1.381 -0.5835 

         

quintle 3 est 96 -0.0019 0.001 -9E-04 0.0008 -1E-04 0.0003 

 t_stat  -1.3048 1.5096 -0.672 0.5132 -0.065 0.305 

         

quintle 4 est 96 0.0006 -6E-04 1E-05 -4E-04 -3E-04 0.0003 

 t_stat  0.3216 -0.616 0.01 -0.187 -0.265 0.2851 

         

quintle 5 est 96 0.0023 0.0001 0.0025 -9E-04 0.0016 0.0016 

(highest) t_stat  1.1253 0.1088 1.5992 -0.37 0.9987 1.0834 

quintle 5 est 96 0.0021 0.0006 0.0027 -0.001 0.0013 0.0012 

- quintle 1 t_stat  0.7748 0.3024 1.6858 -0.684 0.6203 0.6779 

 


