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Asset pricing models say that particular portfolios are minimum variance efficient, and testing 

the efficiency of a given portfolio has long been an important topic in empirical asset pricing.1  

Classical efficiency tests ask if a tested portfolio lies “significantly” inside a sample mean 

variance boundary.  These studies form the boundary from fixed-weight combinations of the 

tested asset returns. However, many studies in asset pricing now use  predetermined variables 

to model conditional expected returns, correlations and volatility, and portfolio weights may 

be functions of the predetermined variables. This paper develops tests of portfolio efficiency 

in a conditional setting. 

Our contribution is a new framework for testing asset pricing theories in the presence of 

conditioning information.  The framework uses “unconditional” efficiency as defined by 

Hansen and Richard (1987).  An unconditionally efficient portfolio uses the conditioning 

information in the portfolio weight function, to minimize the unconditional variance of return 

for its unconditional mean.  We refer to this as (minimum variance) efficiency with respect to 

the information, Z.  By testing the implications of asset pricing models for efficiency with 

respect to Z, we use the conditioning information “optimally,” allowing for nonlinear 

functions of the information.  Our testing framework has other attractive properties as well.   

The basic logic of our approach is as follows.  A model of expected returns implies that 

for the right stochastic discount factor, m, E(mR|Z) = 1, where Z are observable lagged 

                                                

1 The Capital Asset Pricing Model (CAPM, Sharpe, 1964) implies that a market portfolio should be mean 
variance efficient. Multiple-beta asset pricing models such as Merton (1973) imply that a combination of the factor 
portfolios is minimum variance efficient (Chamberlain, 1983; Grinblatt and Titman, 1987). The consumption CAPM 
implies that a maximum correlation portfolio for consumption is efficient (Breeden, 1979). More generally, any 
stochastic discount factor model implies that a maximum correlation portfolio for the stochastic discount factor is 
minimum variance efficient (e.g., Hansen and Richard, 1987). Classical efficiency tests are studied by Gibbons (1982), 
Jobson and Korkie (1982), Stambaugh (1982), MacKinlay (1987), Gibbons, Ross and Shanken (1989) and others.  
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instruments and R is the vector of gross (i.e., one plus the rate of) returns.  Any specification 

for m implies that particular portfolio(s) should be efficient with respect to Z.  We test an asset 

pricing model by testing the efficiency of the indicated portfolio(s) with respect to Z.  

Our testing framework involves expanding the mean variance frontier through the use of 

nonlinear “dynamic strategies,” as explained below.  Therefore, a central empirical issue is 

whether such strategies can improve the unconditional Sharpe ratio.  For example, some 

hedge funds claim large Sharpe ratios, and Fung and Hsieh (1997) find that hedge funds 

follow nonlinear strategies. We find that an equity market neutral hedge fund index delivers 

an average monthly Sharpe ratio of 0.76 during the 1995-2002 period.  Static combinations of 

the 25 Fama-French portfolios formed on size and book/market can only achieve a (bias 

adjusted) Sharpe ratio of 0.31.  However, by efficiently using standard lagged variables the 

Sharpe ratio is 1.05.  Thus, the economic significance of our approach is potentially large.  

Hedge funds might appear to expand the mean variance boundary dramatically, but not when 

the boundary includes the nonlinear lagged variable strategies.    

Previous studies also use conditioning information to expand the set of returns. For 

example, the “factors” or assets’ returns may be multiplied by lagged instruments, as in 

Shanken (1990), Hansen and Jagannathan (1991), Cochrane (1996), Jagannathan and Wang 

(1996) or Ferson and Schadt (1996). This “multiplicative” approach corresponds to dynamic 

strategies whose portfolio weights are linear functions of the lagged instruments.  However, 

Ferson and Siegel (2001) show that the portfolio weight functions that maximize the Sharpe 

ratio are not linear functions.  They show (see their Figure 1) that the nonlinearities occur 

within statistically reasonable limits. 
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Recent evidence calls into question the usefulness of standard lagged instruments to 

predict asset returns, once bias and sampling errors are accounted for (e.g. Ghysels (1997), 

Goyal and Welch (2003, 2004), Simin (2006), Ferson, Sarkissian and Simin, 2003).  

However, these studies do not use the conditioning information optimally.  We find that when 

similar variables are used in the optimal nonlinear strategy they do have information. 

In the standard approach, with N asset returns and L lagged instruments, a NL × NL 

covariance matrix must be inverted.  With our approach the matrices are N × N, so larger 

problems with fewer time series can be handled.  The main cost is the requirement to model 

the conditional means and covariance matrix of returns.  We evaluate this cost below.   

Another advantage of our approach is robustness.  Asset pricing tests can be misspecified 

for various reasons.  The econometrician can assume the wrong probability distribution, 

misspecify the moments of the returns, or the returns can be measured with error.  It is well 

known that mean-variance portfolio solutions are especially sensitive to errors in estimating 

the mean (e.g. Michaud, 1989).  Since mean-variance analysis is the foundation of asset 

pricing tests, errors in the means are particularly problematic.  Our methods should be more 

robust to these problems than the classical approach.2   

The rest of the paper is organized as follows. Section 1 further motivates and presents the 

main ideas. Section 2 develops the tests.  The data are described in Section 3 and Section 4 

presents the main empirical results.  Section 5 concludes the paper.  

 

                                                

2  Abhyankanar, Basu and Stremme (2006) and Chiang (2007) study the out-of-sample performance of the 
optimal portfolio strategies that form the basis our tests and find that they perform better than the standard mean 
variance solutions. 
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1. Asset Pricing, Portfolio Efficiency and Conditioning Information 

Most asset pricing models can be represented using the fundamental valuation equation: 

 { } 1
11

=++ ttt
ZRmE , (1) 

where Rt+1 is an N-vector of test asset gross returns, Zt is the conditioning information, a 

vector of observable variables at time t, mt+1 is the stochastic discount factor (SDF) implied 

by the model and 1 is an N-vector of ones. A common approach to testing an asset pricing 

model is to examine necessary conditions of (1). For example, multiplying both sides of 

Equation (1) by the elements of Zt and then taking the unconditional expectations leads to a 

multiplicative approach: 

 ( ){ } { }
tttt
ZEZRmE !=!++ 1

11
. (2) 

Equation (2) asks the stochastic discount factor to “price” the dynamic strategy payoffs, 

1t t
R Z+ ! , on average (or “unconditionally”), where { }

t
ZE !1  are the average prices. The 

multiplicative approach captures only a portion of the information in Equation (1).  By using 

“the right” functions of Zt we can capture more of the information.   Of course, if the choice 

of Z excludes important, unobserved information, this will result in a loss of power.  In this 

paper we take the choice of Z as given. 

Equation (1) is equivalent to Equation (3), holding for all bounded integrable 

functions f(.): 

 ( ){ } { }1 1 1 ( )t t t tE m R f Z E f Z+ +! " =# $ . (3) 

Equation (2) is a special case of  (3), which may be seen by taking ( )tf Z  to be each of the 

instruments in turn and stacking the equations. Thus, Equation (2) asks the stochastic discount 
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factor to price only a subset of the strategies implied by Equation (1) and the asset pricing 

model.  Our tests use the following version of Equation (3): 

 { }1 1'( ) 1 ( ) : '( )1 1
t t t t t

E m x Z R x Z x Z+ + = ! = . (4) 

Equation (4) uses all portfolio weight functions x(Z) in place of the general functions in 

Equation (3), subject only to the restrictions that the weights are bounded integrable functions 

that sum to 1.0.3 

 By using all portfolio weights in Equation (4), our approach rejects asset pricing models 

that previous methods would not reject.  While many asset pricing models are rejected in the 

literature, Lewellen, Nagel and Shanken (2007) argue that it may be too easy to find models 

that appear to “explain” some returns, like those of the Fama-French portfolios.  Our approach 

appears to be powerful in that setting.   

 Ferson and Siegel (2001) provide the expressions from which we construct the tests.  

These describe the efficient frontier of all portfolio weight functions. The optimal weight 

function minimizes the unconditional variance of 1'( )
t t

x Z R +  for its unconditional mean, µp, 

                                                

3 Equation (4) follows by multiplying (1) by the elements of the portfolio weight vector ( )x Z  and summing, 
using the fact that the weights sum to 1.0, then taking the unconditional expectation. Because of the portfolio weight 
restriction, Equation (4) is an implication of but is not equivalent to (3). Equation (4) retains the dynamic asset 
allocation decisions allowed by (3)—moving funds from one asset to another based on conditioning information—but 
leaves out the opportunity to save more or less, altering the overall scale of the investment based on conditioning 
information.  In equation (3), since both sides of the equation may be arbitrarily scaled by a constant, the 
unconditional expectation of the portfolio weights sum to 1.0 (Abhyankar, Basu and Stremme, 2006). Restricting to 
weights that almost always sum to 1.0 in Equation (4) allows us to work with portfolio returns and portfolio efficiency, 
as opposed to asset prices and payoffs. Working with prices and payoffs, it would be necessary in any event, to 
normalize the prices to achieve stationarity for empirical work.  
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over the functions x(Z).   The solution for the weights on the risky assets, in the presence of a 

risk free asset with return Rf, is given by Ferson and Siegel (2001) as: 4 

   x(Z)' = [ ( ) 1]
p f

f
R

Z R
µ !

µ !
"

' Q,                                                (5)  

  where         Q = 
1

( ( ) 1)( ( ) 1) ( )f fZ R Z R Z
!

"# $µ ! µ ! + %/& ' , 

   and            { ( ) 1) ( ( ) 1)}f fE Z R Q Z R!" = µ # µ # ,  

and 1  is an N-vector of ones.  We posit a parametric model for the conditional mean vector, 

( )
t
Zµ , and the conditional covariance matrix, ( )

t
Z!/ .   Note that even if the conditional mean 

function is linear in Z, the optimal weight is nonlinear.    

Ferson and Siegel (2001) study the shape of  the optimal weight function of Equation (5).  

They show that the portfolios are likely to be robust to extreme observations, because the 

nonlinear shape makes them conservative in the face of extreme realizations of Zt.  Ferson and 

Siegel (2003) apply the expressions to the Hansen-Jagannathan (1991) bounds and find 

robustness in that setting.  Ferson, Siegel and Xu (2006) study modifications of the solutions 

to compute maximum correlation portfolios and find evidence of robustness.  Bekaert and Liu 

(2004) argue that an approach like ours is inherently robust to misspecifying the conditional 

moments of returns. The intuition is that with the wrong moments ( )
t
Zµ  and ( )

t
Z!/ , using the 

expression for the “optimal” x(Z) is suboptimal.  However, the solution still describes a valid 

portfolio strategy. The strategy will no longer expand the boundary to the maximum possible 

                                                

4 Equation (5) applies when there is a fixed risk-free rate or a time-varying, conditionally risk-free rate.  We have 
experimented with each interpretation and find that in our sample of returns and monthly Treasury bills, the two 
interpretations are virtually empirically indistinguishable. 
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extent.  Thus the tests may sacrifice power, but remain valid with misspecified conditional 

moments.  The key to obtaining the advantages of our approach is the relation of Equation (4) 

to minimum variance efficient portfolios.  

 

1.1 Portfolio Efficiency with Respect to Conditioning Information 

We first formally define efficiency with respect to the information, Zt. Consider the set of all 

portfolios of the N test assets 
1t

R + , where the weights ( )tx Z  that determine the portfolio at 

time t are functions of the given information 
t
Z .  The restrictions on the portfolio weight 

function are that the weights must sum to 1.0 (almost surely in Zt), and that the expected value 

and second moments of the portfolio return are well defined. This set of portfolio returns 

determines a mean-standard deviation frontier, as shown by Hansen and Richard (1987). This 

frontier depicts the unconditional means versus the unconditional standard deviations of the 

portfolio returns. A portfolio is defined to be efficient with respect to the information Zt, when 

it is on this mean standard deviation frontier. 

Proposition 1.  (Hansen and Richard, 1987, Corollary 3.1) Given N test asset gross returns, 

 Rt+1, a given portfolio with gross return p,t+1R  is minimum-variance efficient with respect to  

the information Zt if and only if Equation (6) (equivalently, Equation 7) is satisfied for all  

t tx(Z ): x'(Z )1 1=  almost surely, where the relevant unconditional moments exist and  

are finite: 

 ( ) ( ), 1 1p t t tVar R Var x Z R+ +
!" #$ % &    if   ( ) ( ), 1 1p t t tE R E x Z R+ +

!" #= $ %      (6) 

 ( ) ( )1 0 1 1 , 1
;t t t t p tE x Z R Cov x Z R R+ + +

! !" #" # = $ + $% & % & . (7) 
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Equation (6) is the definition of minimum variance efficiency with respect to Z. It states 

that 
, 1p tR +  is on the minimum variance boundary formed by all possible portfolios that use the 

test assets and the conditioning information. Equation (7) states that the familiar expected 

return - covariance relation from Fama (1973) and Roll (1977) must hold using efficient–

with-respect-to-Z portfolios.  The expected returns on all the portfolio strategies are linear 

functions of their unconditional covariances with Rp,t+1.  In Equation (7), the coefficients 
0
!  

and 
1
!  are fixed scalars that do not depend on the functions x(.) or the realizations of 

t
Z .  

 

1.2 Asset Pricing Models and Efficiency with Respect to Information  

Most asset pricing models specify a stochastic discount factor. In particular, linear factor 

models say that m is linear in one or more factors. Proposition 2 describes the simplest case of 

our framework, showing that when there is conditioning information, testing linear factor 

models amounts to testing for the efficiency of a portfolio of the factors with respect to the 

information.  

Proposition 2.  Given {Rt+1, Zt} and a stochastic discount factor mt+1 such that Equation (4) 

 holds, then if 
t+1 B,t

m A B'R= +
+1

, where RB,t+1 is a k-vector of benchmark factor returns, 

 and A and B are a constant and a fixed k-vector, there exists a portfolio, Rp,t+1 = w'RB,t+1,  

w'1 = 1, where ( )w B/ 1 'B!  is a constant k-vector, and Rp,t+1 is efficient with respect to the 

 information Zt.  

Proof:  See the Appendix for all proofs. 
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The intuition of Proposition 2 is the same as the classical case with no conditioning 

information, as the proof in the appendix illustrates.  The difference is that in our framework 

the set of returns is expanded to all ( )'x Z R .  

We are interested in general stochastic discount factors, m(X,θ), where X is observable 

data and θ is a vector of parameters.  We also wish to allow for time-varying weights in the 

efficient portfolio.  This requires the definition of portfolios that are maximum correlation 

with respect to Z. 

Definition.  A portfolio RP is maximum correlation for a random variable, m, with 

 respect to conditioning information Z, iff: 

 ( ) [ ]2 2, '( ) , ( ) : '( )1 1
P
R m x Z R m x Z x Z! " ! # = , (8) 

where ρ2(.,.) is the squared unconditional correlation coefficient and we restrict to functions x 

for which the correlation exists. 

Proposition 3. If a given m satisfies Equation (4), then a portfolio RP that is maximum 

correlation for m with respect to Z must be minimum variance efficient with respect to Z.  

Proposition 2 is clearly a special case of Proposition 3, because a linear regression 

maximizes the squared correlation.   If mt+1 is linear in RB,t+1, a linear regression holds with no 

error.  We use Proposition 3 in our tests as follows. Given a stochastic discount factor, m, we 

test the model by constructing a portfolio that is maximum correlation for this m with respect 

to Z, and we then test the implication that the portfolio is efficient with respect to Z.5 

                                                

5 To construct the maximum correlation portfolio for m with respect to Z, we form the portfolio weights using 
Equation (6) and the Corollary to Proposition 2 in Ferson, Siegel and Xu (2006). 
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With the preceding results we can consider a case where the model implies a stochastic 

discount factor that is linear in k factor-portfolios, allowing for time-varying weights. 

Corollary. Given {Rt+1, Zt} and a stochastic discount factor mt+1 such that Equation (4)  

holds, then if a maximum correlation portfolio for mt+1 with respect to Zt has nonzero weights  

only on the k-vector of benchmark factor returns 
B,t+1
R , (a subset of Rt+1), then this portfolio 

is efficient with respect to Z, both in the full set of test asset returns and in the benchmark 

returns. 

The situation described in the Corollary is a “dynamic” version of mean variance 

“intersection,” as developed by Huberman, Kandel and Stambaugh (1987).  The Corollary 

follows because the factor portfolio in question satisfies the condition of Proposition 3, and so 

is efficient with respect to Z, in both the full set and the subset of assets.  Thus, the full set and 

subset minimum variance boundaries must touch at the point defined by the maximum 

correlation portfolio.  The Corollary does not say that all efficient combinations of the factor 

returns are efficient in the full set of returns.  Other points on the subset boundary may be 

inside the full set boundary.   

 

1.3 Conditional Efficiency  

Previous studies test conditional efficiency given Z, where efficiency is defined in terms of 

the conditional means and variances.6 Tests of conditional efficiency given Z may be handled 

                                                

6 Hansen and Hodrick (1983) and Gibbons and Ferson (1985) test versions of conditional efficiency given Z, 
assuming constant conditional betas.  Campbell (1987) and Harvey (1989) test conditional efficiency restricting the 
form of a market price of risk, and Shanken (1990) and Ferson and Schadt (1996) restrict the form of time-varying 
conditional betas. 
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as a special case of our approach.  If there is a (possibly, time-varying) combination of the k 

benchmark returns, RB, that is conditionally efficient, there is an SDF,  m = A(Z) + B(Z)'RB.  

The coefficients are: ( ) ( ) ( ) ( )
11 1| | 1 |f B B f BA Z R E R Z Cov R Z R E R Z
!! !" # $= ! !% &  and 

( ) ( ) ( )
1 1| 1 |B f BB Z Cov R Z R E R Z
! !" #= !$ % .  When 1k = we have a single-factor model, as in 

the conditional CAPM.  (See Ferson and Jagannathan, 1996.) We test conditional efficiency 

by constructing the maximum correlation portfolio for the indicated m with respect to Z.  This 

portfolio, call it *
pR , should be efficient with respect to Z. Note that *

pR  will be different from 

RB when the coefficients A(Z) or B(Z) are time varying functions of Z.  Thus, for example, the 

conditional CAPM does not imply that the market portfolio is efficient with respect to Z. 

However, the conditional CAPM does identify a portfolio of the test assets that should be 

efficient with respect to Z, and this can be tested using our approach. 

If we reject conditional efficiency, then we reject dynamic intersection a fortiori.   This 

follows from the Hansen and Richard (1987) result that efficient-with-respect-to Z portfolios 

must be conditionally efficient.  If there is no combination of the benchmark returns that is 

conditionally efficient, then no combination can be efficient with respect to Z, so there can be 

no dynamic intersection. 

 

 

2. Testing Efficiency 
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Classical tests of efficiency involve restrictions on the intercepts of a system of time-series 

regressions.  If 
t
r  is the vector of N excess returns at time t, measured in excess of a risk-free 

or zero-beta return, and 
,p t
r  is the excess return on the tested portfolio, the regression is:  

    
,t p t t

r r u= ! +" + ;    1,...,t T= ,                                                   (9) 

where T is the number of time-series observations, β is the N-vector of betas and α is the N-

vector of alphas. The portfolio 
p
r  is minimum-variance efficient and has the given zero-beta 

return only if ! =0.  

Classical test statistics for the hypothesis that ! =0 can be written in terms of squared 

Sharpe ratios (e.g., Jobson and Korkie, 1982).  Consider the simplest case of the Wald 

Statistic: 

 
2 2

1

2

ˆ ˆ( ) ( )
ˆ ˆ ˆ[ ( )]

ˆ1 ( )

p

p

S r S r
W T Cov T

S r

!
" #!

$= % % % = & '
& '+( )

2~ ( )N!&  (10) 

where $!  is the OLS or ML estimator of α and ( )T ! " !
) converges to a normal random 

vector with mean zero and covariance matrix, Cov( $ )! .  The term ( )2ˆ
pS r  is the sample value 

of the squared Sharpe ratio of 
p
r , defined by ( ) ( ) ( )

2
2

/p p pS r E r r! "= #$ % . The term ( )2
Ŝ r  is 

the sample value of the maximum squared Sharpe ratio that can be obtained by portfolios of 

the assets in r (including rp): 

 
2

2 [ ( )]
( ) max

( )x

E x r
S r

Var x r

!" #
= $ %

!& '
. (11) 
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The Wald statistic has an asymptotic chi-squared distribution with N degrees of freedom 

under the null hypothesis7. 

Classical tests ignoring conditioning information restrict the maximization of Equation 

(11) to fixed-weight portfolios, where x is a constant.  Efficient portfolios with respect to the 

information Z maximize the squared Sharpe ratio over all portfolio weight functions, ( )x Z .   

2.1 Empirical Strategy 

We compare the classical approach with no conditioning information, the multiplicative 

approach, and the efficient use of the information.  When we test the efficiency of a given 

portfolio, Rp, then ( )2ˆ
pS R  in the test statistic is formed using the normal maximum 

likelihood estimators of the mean and variance.  We use the one-month US Treasury bill 

return as the risk-free or zero-beta rate.  

The squared Sharpe ratio of the boundary portfolio, ( )2
Ŝ R , differs according to the way 

conditioning information is used.  When there is no conditioning information we use the 

fixed-weight solution to (11) evaluated at the maximum likelihood estimates. For the 

multiplicative approach we use the returns 1)(ˆ
!"!+= tfttftt ZRRRR , where Rft is the one-

month Treasury bill return for month t.  We then proceed as in the fixed-weight case with the 

returns 
t
R̂ in place of Rt.  When the information is used efficiently, 2ˆ ( )S R  is formed using the 

                                                

7 When the Wald statistic in (10) is multiplied by 
!!
"

#
$$
%

&

'

''

)2(

1

TN

NT , the result has an exact F distribution in finite 

samples under the assumption that the (rt, rpt) in (9) are normally distributed (e.g., Gibbons, Ross and Shanken, (1989).  
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sample mean and variance of ˆ '( )x Z R  where ˆ( )x Z  is the sample version of the efficient-with-

respect-to-Z portfolio weight.  

The solution for ˆ( )x Z  is a function of the assumed parametric models for 

1( ) ( )
t t t
Z E R Z+µ =  and 1( ) ( )

t t t
Z var R Z+! =/ .  In the simplest examples ( )

t
Zµ  is the linear 

regression function for the returns on Z and ( )
t
Z!/  is the covariance matrix of the residuals, 

which is held fixed over time. We also consider models with time-varying !/ (Zt).8  

We evaluate the tests using simulations.  To generate data consistent with the null 

hypothesis that a portfolio is efficient, we either restrict the return generating process to 

guarantee the portfolio’s efficiency, or we replace its return with a portfolio that is efficient, 

based on the specification of the asset-return moments. We construct the null distribution of 

the test statistic by using the artificial data in the same way that we use the actual data to get 

the sample value of the statistic. The details are discussed in the Appendix. 

We conduct experiments to assess the accuracy of our empirical p-values.  With no lagged 

instruments and normality the exact finite sample p-values are known from the F distribution 

(footnote 7).  We generate a random sample of normal returns from a population with mean and 

covariance matrix equal to our ML sample estimates. The tested portfolio, which is the SP500, is 

not efficient in this sample and the exact p-value from the F distribution is taken to be the 

"correct" p-value.  We check whether our simulations generate similar p-values.  We replace the 

SP500 with the portfolio that is efficient given the moments that generate the normal sample, 

                                                

8 Previous approaches to conditional asset pricing directly specify ad-hoc functional forms for  x(Z).  We use the 
optimal strategies, which are given functions of ( )Zµ  and ( )Z!/ , but we must specify these functions.  Pushing the 
selection of the functional forms closer to the data is an improvement because the functional forms of asset return 
moments can be evaluated independently of portfolio performance.   
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resample to generate 1,000 artificial samples, and compute the test statistic on each sample.  The 

empirical p-value is the fraction of these 1,000 trials in which the simulated test statistic exceeds 

the value computed on the original normal sample.  Averaging across 100 normal samples, we 

find that the empirical p-values and the GRS p-values are similar.9  While similar p-values do not 

rule out the possibility that both approaches are inaccurate, we take some comfort from the 

similarity. 

 

3. The Data 

We use a standard set of lagged variables to model the conditioning information.  These 

include: (1) the lagged value of a one-month Treasury bill yield (see Fama and Schwert, 

1977); (2) the dividend yield of the market index (see Fama and French, 1988); (3) the spread 

between Moody's Baa and Aaa corporate bond yields (see Keim and Stambaugh, (1986) or 

Fama, 1990); (4) the spread between ten-year and one-year constant maturity Treasury bond 

                                                

9 The p-values for 100 normal samples are summarized below:  

industries industries industries industries Size/BM                                   
1963-94  1963-72  1973-82  1983-92  1963-94 

Avg. GRS  0.042  0.021  0.055  0.031  0.000         

Avg. empirical  0.041  0.039  0.082  0.054  0.000 

  

Mean |GRS-empirical| 0.005  0.018  0.027  0.023  1.08E-5 

Std (GRS-empirical) 0.008  0.020  0.025  0.024  9.87E-5 

The standard deviation of a correct empirical p-value of 5%, when 1,000 trials are used in its construction, is 
[.95(.05)/1000]1/2 = 0.007.  The standard deviation of the difference between two such p-values, assuming independent 
trials, is 0.010. 
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yields (see Fama and French, 1989) and (5); the difference between the one-month lagged 

returns of a three-month and a one-month Treasury bill (see Campbell, 1987). 

We use two standard methods of grouping monthly common stock returns into portfolios. 

Twenty five value-weighted industry portfolios (from Harvey and Kirby, 1996) are used for 

the period February, 1963 to December, 1994.10  Table 1 shows the SIC industry 

classifications for the 25 portfolios, and summary statistics of the returns. The second 

grouping follows Fama and French (1996). Stocks are placed into five groups according to 

their prior equity market capitalization, and independently into five groups on the basis of 

their ratios of book value to market value of equity per share. These are the same 25 portfolios 

used by Ferson and Harvey (1999), who provide details and summary statistics.  

This project has matured over a length of time, providing the opportunity to investigate 

the results over a “hold-out” sample period, January, 1995 through December, 2002.  We use 

25 size x book-to-market and Industry portfolios from Kenneth French and update the other 

series with fresh data.11  The hold-out sample results are interesting in view of recent 

evidence, cited above, that some of the lagged instruments may have lost their predictive 

power for stock returns since the 1990s.  Table 1 reports the adjusted R-squares from 

regressing the industry returns on the lagged instruments over the 1963-1994 period and the 

1995-2002 sample.  The R-squares are substantially lower in the more recent period.  

                                                

10 We are grateful to Campbell Harvey for providing these data. 

11 We use a subset of the 48 value-weighted industry portfolios provided by French to match the definitions in 
Table 1.  We confirm that the matched industry returns produce similar summary statistics and regression R-squares on 
the lagged instruments as our original data, over the 1963-1994 period. 
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Regressions on the 25 size and book-to-market portfolios produces a similar result.  The 

average adjusted R-squared over 1963-1994 is 10.5%, while over 1995-2002 it is only 1.4%. 

 

4. Empirical Results 

4.1 Inefficiency of the SP500 Relative to Industry Portfolios 

Table 2 summarizes results for the 25 industry portfolios, where the tested portfolio, pR , is 

the SP500. In Panel A there is no conditioning information.  Substituting the maximum 

likelihood estimates of 2ˆ ( )pS R  and 2ˆ ( )S R  into (10) gives the sample value of the test 

statistic.  Referring to the asymptotic distribution, the right-tail p-value is 0.48 for 1964-94 

and 0.14! 0.39 in the ten-year subperiods.  These tests produce little evidence to reject the 

null hypothesis.  During 1995-2002 the maximum Sharpe ratio is substantially higher, and so 

is the value of the test statistic:  The asymptotic p-value is 0.001.  

Panel A of Table 2 also reports 5% critical values and empirical p-values based on Monte 

Carlo simulation assuming normality, and based on a resampling approach that does not 

assume normality. In addition, we report p-values from the exact F statistic, under the 

assumption of normality.  Consistent with Gibbons, Ross and Shanken (GRS, 1989) the Wald 

Test rejects too often when the asymptotic distribution is used, and when we correct for finite 

sample bias using simulation we find no evidence against the efficiency of the market index in 

the industry portfolios, at least when the conditioning information is ignored. The Monte 

Carlo and bootstrapped p-values are close to each other in every subperiod, suggesting that 

the departure from normality of the monthly industry returns is not severe.  The p-values from 

the F distribution are also similar to the empirical p-values.   
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Panel B of Table 2 summarizes tests using the “multiplicative” returns, 

1)(ˆ
!"!+= tfttftt ZRRRR . With 25 industry portfolios, the market return and five 

instruments plus a constant (L=6), there are 156 “returns.” One disadvantage of the 

multiplicative approach is that the size of the system quickly becomes unwieldy. It is not 

possible to construct the Wald Test for the ten year subperiods, as the sample covariance 

matrix is singular.  

Over the 1963-94 period the value of the Wald Test statistic using the multiplicative 

returns is 348.6. The asymptotic p-value is close to zero.  However, we expect a finite-sample 

bias and the simulations confirm the bias.  The empirical p-values reject efficiency at either 

the 2% (Monte Carlo) or 44% (resampling) levels. The Gibbons-Ross-Shanken p-value 

assuming normality is 3%. Thus, the results in the multiplicative case are sensitive to the data 

generating process. This makes sense, because even if Rt is approximately normal, the 

products of returns and the elements of 
1t

Z !  are not normal.  We therefore place more trust in 

the resampling results.  Using the resampling scheme we find no evidence to reject the 

efficiency of the market index with the multiplicative approach. 

Panel C uses the conditioning information Z optimally.  With this approach results for the 

subperiods can be obtained. The empirical p-values are 0.5% or less in the full sample and 

each ten-year subperiod, and 4.4% or less during 1995-2002.  Thus, we reject the hypothesis 

that the SP500 is efficient when using the conditioning information optimally.  We even find 

marginal rejections during the 1995-2002 sample period, where Table 1 illustrates that the 

predictive power of the lagged instruments is low.  The results based on the efficient-with-

respect-to-Z frontier are also fairly robust to the method of simulation (Monte Carlo or 
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resampling). This makes sense in view of the “robust” behavior of the portfolio weights that 

define the efficient-with-respect-to-Z boundary, as described by Ferson and Siegel (2001).    

 

4.2 Size and Book/Market Porfolios 

Studies that use portfolios grouped on firm size and book-to-market ratios find that a market 

index is not efficient (e.g. Fama and French, 1992). Table 3 presents results for these 

portfolios.  In panel A there is no conditioning information. Consistent with previous studies, 

efficiency is rejected for the 1963-1994 period.  However, in the 1995-2002 period, the 

efficiency of the market index is not rejected when the finite sample bias in the statistics is 

corrected.  This is consistent with a weakening of the size and book-to-market effects during 

1995-2002. In panel B the test assets are the multiplicative returns. The empirical p-value 

based on resampling is marginal, at 4%, over the 1963-1994 sample. 

In panel C the test assets are all portfolios ( )1t t
x Z R!
" . The resampling p-values are 0.3% 

or less, including the 1995-2002 subsample.  Thus, efficiency can be rejected with our 

approach.  Expanding the set of portfolio returns with the optimal nonlinear strategies changes 

the results, even in the size × book-to-market portfolio design. 

 

4.3 Expanding the Mean Variance Boundary 

The above evidence shows that the market index return lies “significantly” inside the 

mean-variance boundaries when the conditioning information is used optimally, but does not 

address directly the relations between the boundaries formed with versus without the 

information.  Table 4 examines whether the use of conditioning information expands the 

mean variance boundary.  For these tests we replace the market index with a portfolio of the 
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test assets whose weights are proportional to 1!
" µ/ , where !/  is the unconditional covariance 

matrix and µ  is the unconditional mean of the excess returns. This is a portfolio on the 

simulations’ “population” mean-variance boundary with no conditioning information.  We 

then test for the efficiency of this portfolio instead of the SP500.  In panel A we use the 

multiplicative approach to expanding the boundary. The empirical p-values are 0.464 and 

0.686, thus providing no evidence that the multiplicative approach expands the boundary.12 

In Panel B of Table 4 the test assets are all portfolios ( )1t t
x Z R!
" .  In the 1963-94 period 

the empirical p-values are 0.1% and 2.5%, showing that when the conditioning information is 

used optimally the mean variance boundary is expanded.  However, during 1995-2002 we do 

not reject the null hypothesis.  This is the weakest showing that our new approach makes.  

Note that the critical values are not drastically higher, but the sample values of the test 

statistic are lower during 1995-2002.  This reflects the low explanatory power of the lagged 

variables during this period, as indicated in Table 1.  The statistical noise involved in 

estimating the maximum Sharpe ratio for the 26 test assets in this experiment differs from that 

involving a smaller number of factors, so we may find rejections of other hypotheses during 

the 1995-2002 period.   

 

4.4 Testing Static Combinations of the Fama-French Factors 

The null hypothesis may be stated as m = a + b1Rm + b2RHML + b3RSMB, where the coefficients 

are fixed over time.  Rm is the gross return of the market index.  RHML is the one-month 

                                                

12 Using a fixed risk-free rate these tests may sacrifice power, as there may be other regions, corresponding to 
other values of the zero-beta rate, where the two boundaries are reliably distinct. 
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Treasury bill gross return plus the excess return of high book-to-market over low book-to-

market stocks, and RSMB is similarly constructed using small and large market-capitalization 

stocks.  We replace the first and last portfolios in the industry or size × book-to-market design 

with the returns RHML and RSMB, to insure that the factor portfolios are a subset of the tested 

portfolio returns. 

 Table 5 presents the tests.  Without conditioning information the only rejections occur for 

the industry portfolios.  The GRS and empirical p-values produce similar conclusions.  Fama 

and French (1997) also find that their factors don’t explain average industry returns very well.  

In Panel B the multiplicative approach is used, and the empirical p-values strongly reject the 

model for 1963-94.  This is consistent with studies such as Ferson and Harvey (1999) who 

find that the Fama-French factors do not explain time-varying expected returns over a similar 

sample period. We cannot examine the multiplicative approach over the holdout sample 

because the covariance matrices are too large to invert. 

 Panel C of Table 5 presents the tests relative to the efficient-with-respect-to-Z frontier.  

The tests confirm the value of using the conditioning information optimally.  We observe 

strong rejections, both over 1963-1994 and in the 1995-2002 sample, and for both portfolio 

designs. 

 

4.5  Testing Time-Varying Combinations of Factors 

In Table 6 we use our framework to test the conditional efficiency of the market index (Panel 

A) and of time-varying combinations of the three Fama-French factors (Panel B).  We reject 

both models over 1963-1994 in both portfolio designs.  The bootstrapped p-values are 1.2% 

or less.  We also reject both models in the 1995-2002 sample period with p-values of 1.8% or 
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less.  Thus, when the conditioning information is used optimally our tests strongly  reject 

conditional versions of both the CAPM and the Fama-French three-factor model.   If no time-

varying combination of the factors is conditionally efficient, then no time-varying 

combination can be efficient with respect to Z.   Thus, Table 6 rejects dynamic intersection a 

fortiori.13 

 

4.6  A Hedge Fund Example 

This section fleshes out the hedge fund example from the introduction.  We use monthly 

returns for six hedge fund indexes from Credit Suisse/Tremont for the 1995-2002 period.  

Panel A of Table 7 presents the Sharpe ratios, which vary from -0.05 to 0.76 across the fund 

styles.  

Fixed-weight combinations of the Fama-French portfolios and the CRSP value-

weighted market index produce a Sharpe ratio of only 0.72 (Panel B). Using industry 

portfolios and the market, the maximum Sharpe ratio is 0.76 (Panel C).  Sample Sharpe ratios 

are known to be biased when N is large relative to T.  Using the correction in Ferson and 

Siegel (2003)14 the Sharpe ratios are 0.31 and 0.38.  The hedge funds appear to offer 

impressive Sharpe ratios in comparison. However, using the efficient-with-respect-to Z 

portfolio weights the Sharpe ratios are 1.39 and 1.36 before adjustment, and 1.05 and 1.02 

after adjustment.   

                                                

13 We explicitly test dynamic intersection and confirm that it is rejected in all the sample periods and portfolio 
designs. 

14 If the unadjusted squared Sharpe ratio is S, the adjusted squared ratio is S(T – N – 2)/T – N/T. 
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 We test the null hypothesis that the hedge fund indexes offer no expansion of the mean 

variance opportunity set.  This says that the alphas in regression (9) are jointly zero when rp,t 

is the efficient portfolio formed from the test assets, excluding the hedge funds.  The test 

statistic is Equation (10), which now compares the maximum Sharpe ratios attainable with 

versus without the hedge funds.  We strongly reject the null hypothesis using the fixed-weight 

benchmark, with empirical p-values of 1.2% or less.  Using the lagged variables optimally the 

p-values range from 4.9% to 17.5%.  Thus, while the hedge funds do expand the fixed-weight 

boundary, the tests do not reject the hypothesis that the hedge fund returns could have been 

generated with nonlinear strategies based on the lagged instruments.   

 

5. Conclusions 

We develop a framework for testing asset pricing models in the presence of lagged 

conditioning information. Our tests examine the (unconditional) minimum variance efficiency 

of a portfolio with respect to the conditioning information, a version of efficiency introduced 

by Hansen and Richard (1987).  Asset pricing models identify portfolios that should be 

efficient with respect to the conditioning information, and by testing the efficiency of the 

portfolio, we test the asset pricing model.  We illustrate the approach with versions of the 

Capital Asset Pricing model and the Fama-French (1996) factors.   

Using a standard set of lagged instruments and test portfolios, the efficiency of all time-

varying combinations of the Fama-French factors is rejected.  In the same setting, the 

commonly-used “multiplicative” approach to conditioning information does not significantly 

expand the mean variance boundary, nor can it reject all the models.  The predictive power of 
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the lagged variables declines after 1995, but even during this period the optimal use of these 

variables is economically and statistically significant.   

Our paper suggests opportunities for future research.  We use the Treasury bill return as 

the risk-free rate.  It should be interesting to apply our framework in a setting where the zero 

beta rate is a parameter to be estimated, perhaps by extending results in Kandel (1984).  Some 

of our results use a maximum correlation, mimicking portfolio.  It should be possible to study 

models in which the correlation is less than the maximum, as would be implied by missing 

assets, for example, perhaps by extending results in Kandel and Stambaugh (1989).  Future 

applications of our framework should also consider alternative test statistics, test assets, asset 

pricing models and data generating processes. International asset pricing and portfolio 

performance evaluation where nonlinearities may be important, such as for hedge funds, 

could be especially interesting applications.   

 

Appendix 

Proof of Proposition 2. By the definition of covariance, ( )1 1
1

t t t
E m x Z R+ +

!" # =$ %  implies 

 ( ) ( ){ } ( )1 1 1 11 , /
t t t t t t

E x Z R Cov m x Z R E m+ + + +
! !" # " #= $% & % & . (12) 

Now, using mt+1 = A + B′RB,t+1, we find that Equation (7) is satisfied, with 
, 1 , 1p t B tR w R+ +

!= , 

),'1/( BBw !  γ0 = [A + B'E(RB,t+1)]-1, and ( )1 0
1 B!" = #" .   ▄ 

Proof of Proposition 3. Regress m on RP using a simple regression: 
P

m a bR u= + + , where 

without loss of generality a and b are constants and ( )( ) 0
P

E u E uR= = . If RP is maximum 

correlation with respect to Z, then the error also satisfies: [ ]'( ) 0  ( ) : '( )1 1E ux Z R x Z x Z= ! = .  If 
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this were not true for some ( )x Z , then ( )x Z R!  enters an expanded regression with RP and 

x'(Z)R on the right-hand side. Since the regression maximizes the squared correlation, this 

would contradict the assumption that RP is maximum correlation.  Substitute the simple 

regression into (4) to obtain ( ) ( )
P

E a bR u x Z R!" #+ +$ %  = 1 = ( ) ( )
P

E a bR x Z R!" #+$ %  

11)(':)( =! ZxZx . Proposition 2 now establishes that RP is efficient with respect to Z.   ▄ 

 

Evaluating the Tests by Simulation  

Consider first a case with no conditioning information.  For the Monte Carlo experiments we 

draw from a normal distribution with mean vector and covariance matrix set equal to the ML 

estimates for the sample period of the analysis. We replace the tested portfolio pR  by a 

portfolio whose weights maximize the Sharpe ratio at the ML estimates. The empirical 5% 

critical value is the value above which 5% of the 1,000 simulated statistics lie. The empirical 

p-value is the fraction of the 1,000 statistics that are larger than the value obtained in the 

original sample.  

We also resample using a parametric bootstrap approach. A regression of the returns on 

the conditioning information defines the conditional mean function and the matrix of  

residuals defines the unexpected returns.  We choose randomly selected rows, with 

replacement, from the matrix of residuals; the number of draws matches the length of the time 

series.  We use the conditional mean functions, evaluated at the simulated Z, and add the 

independently resampled residuals to obtain the simulated returns. 
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We model Zt as a vector AR(1) process, and the sample AR(1) coefficient matrix is a 

parameter of the simulations.  We resample from the matrix of residuals of the AR(1) model 

and build the time series of the Zt’s recursively. 

When the null hypothesis places a given portfolio on the efficient-with-respect-to-Z 

frontier, we replace the tested portfolio return with the time-varying combination of test assets 

that is ex ante efficient given the data generating process (Tables 2 through 4).  When the null 

hypothesis specifies that a fixed weight combination of factors is efficient, we replace the first 

factor with the ex ante efficient portfolio (Table 5). When the null hypothesis specifies the 

conditional efficiency of a time-varying combination of the benchmark returns, RB, we replace 

the conditional mean functions of the test assets with the expressions implied by the 

conditional beta pricing restriction: 1 0( ) ( ) [ ]k

o j j BjZ Z E R Z=µ = ! + " # $ ! , where βj(Z) is the vector 

of conditional betas on the j-th benchmark return (tables 6 and 8).  In Table 7 we set the 

alphas of the hedge funds on the efficient-with-respect-to Z portfolios equal to zero.  

Conditional Heteroskedasticity 

We evaluate the sensitivity of the tests to alternative specifications for conditional 

heteroskedasticity in the returns. The "artificial analyst" in the simulations estimates the test 

statistics as if the data were homoskedastic.  The goal of these experiments is to see how our 

inferences, based on the statistics that ignore heteroskedasticity, might be affected by 

heteroskedasticity.  

Since it may not be possible to agree on the right model for conditional heteroskedasticity, 

we use two alternative approaches.  In the first approach (method A) the heteroskedasticity is 

driven by a factor, where the conditional betas on the common factor (the CRSP value-weighted 
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stock index return) are linear functions of the lagged instruments.  The conditional betas, β(Z), 

are estimated by regressing the unexpected asset returns on the index return and the products of 

the index return with the lagged instruments.  The time-varying beta is the regression coefficient 

on the index plus the coefficients on the product terms multiplied by the lagged instruments.  The 

conditional covariance matrix is modeled as ( ) ( ) ( ) 2
' fZ Z Z µ! = " " # + !/ / , where µ!/  is the fixed 

covariance matrix of the factor model residuals and 2

f!  is the fixed conditional variance of the 

common factor, estimated from the residuals of its linear regression on the lagged Z. 

The second approach to modeling heteroskedasticity (method B) follows Davidian and 

Carroll (1987) and Ferson and Foerster (1994). The conditional standard deviations of the returns 

are assumed to be linear functions.  To estimate this model the absolute residuals from the linear 

expected return models are regressed on the instruments.  The fitted value, multiplied by / 2! , 

is the conditional standard deviation.  The conditional covariances are modeled as the products of 

the standard deviations and the fixed conditional correlations, where the correlations are 

estimated from the residuals of the mean equations. 

 The models tested in Table 6 are evaluated under heteroskedastic data in Table 8.  In 

panels A and and B the null distribution is generated by method A.  Panels C and D use the 

linear conditional standard deviation approach, method B.  The results of both approaches are 

similar.  When testing conditional efficiency the specification of the stochastic discount factor 

changes under heteroskedasticity,15 but the effect is small.  We experiment by computing the 

                                                

    15 Under conditional efficiency the stochastic discount factor is A(Z) + B(Z)'RB, and the coefficients A(Z) and 
B(Z) change when the data generating process changes. 
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sample values of the various test statistics, either using the heteroskedastic structure in the 

calculations or ignoring it, and the sample values are not very sensitive to this choice.  
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Table 1. Monthly Industry Returns 

--------------------------------------------------------------------------------------------------------------------------------------------- 
 Industry SIC codes Mean σ ρ1 

2
R   

2

HOLDOUT
R  

--------------------------------------------------------------------------------------------------------------------------------------------- 

1 Aerospace 372, 376 1.0107 0.0644 0.13 9.9  1.1 
2 Transportation 40, 45 1.0094 0.0648 0.08 9.1  0.0 
3 Banking 60 1.0086 0.0631 0.10 4.3  2.4 
4 Building materials 24, 32 1.0097 0.0608 0.09 10.4  0.0 
5 Chemicals/Plastics 281, 282, 286-289, 308 1.0094 0.0525 -0.01 8.0  2.5 
6 Construction 15-17 1.0109 0.0760 0.16 10.2  0.0 
7 Entertainment 365, 483, 484, 78 1.0135 0.0662 0.14 5.7  0.0 
8 Food/Beverages 20 1.0117 0.0449 0.05 6.6  0.2 
9 Healthcare 283, 384, 385, 80 1.0113 0.0524 0.01 2.4  0.0 
10 Industrial Mach. 351-356 1.0089 0.0587 0.05 8.2  0.0  
11 Insurance/Real Estate 63-65 1.0095 0.0581 0.15 6.4  2.3 
12 Investments 62, 67 1.0097 0.0453 0.05 8.7  4.1 
13 Metals 33 1.0075 0.0610 -0.02 4.5  0.2 
14 Mining 10, 12, 14 1.0108 0.0535 0.01 7.2  0.3 
15 Motor Vehicles 371, 551, 552 1.0095 0.0584 0.11 10.6  0.0 
16 Paper 26 1.0095 0.0536 -0.02 6.9  2.4 
17 Petroleum 13, 29 1.0102 0.0518 -0.02 4.4  0.0 
18 Printing/Publishing 27 1.0114 0.0586 0.21 11.3  0.0 
19 Professional Services 73, 87 1.0111 0.0693 0.13 8.4  2.8 
20 Retailing 53, 56, 57, 59 1.0106 0.0597 0.15 8.7  3.7 
21 Semiconductors 357, 367 1.0080 0.0559 0.08 9.0  0.0 
22 Telecommunications 366, 381, 481, 482, 489 1.0085 0.0412 -0.05 5.4  8.8 
23 Textiles/Apparel 22, 23 1.0100 0.0613 0.21 11.0  0.0 
24 Utilities 49 1.0078 0.0392 0.02 6.8  4.3 
25 Wholesaling 50, 51 1.0109 0.0614 0.13 10.7  0.0 
 
--------------------------------------------------------------------------------------------------------------------------------------------- 

Monthly returns on 25 portfolios of common stocks are from Harvey and Kirby (1996). The portfolios are 
value-weighted within each industry group, based on the SIC codes as shown.  Mean is the sample mean of 
the gross (one plus rate of) return, σ is the sample standard deviation and !

1
 is the first order autocorrelation 

of the monthly return. 2
R  is the adjusted coefficient of determination in percent from the regression of the 

returns on the lagged instruments. The sample period is February of 1963 through December of 1994 (383 
observations).  2

HOLDOUT
R  is for the 1995-2002 holdout sample (96 observations).  Negative adjusted R-

squares are reported as 0.0. 
 
 



 

   

Table 2: Tests of the Mean Variance Efficiency of the Standard and Poors 500 Stock Index. 

  

Subperiod    63-72 73-82 83-92 63-94 95-02 
Panel A: Test assets Rt,  no conditioning information: 
Wald Statistic 32.8 26.3 29.8 24.8 51.3 
    asymptotic p-value   0.14  0.39  0.23  0.48 0.001 
GRS p-value        0.45        0.71        0.57     0.57      0.10 
      
Monte Carlo 5% Critical Value       52.8 52.3 50.8 51.9 120.1 
    empirical p-value 0.43 0.71 0.58 0.59     0.44 
      
Resampling 5% Critical Value      60.1 63.9 62.3 40.0 121.4 
    empirical p-value       0.52 0.81 0.65 0.58     0.49 
Panel B: Test assets are 1)( !"!+ tfttft ZRRR :      

      
Wald Statistic NA   NA NA 348.6 NA 
    asymptotic p-value    0.00  
 GRS p-value        0.03  
      
Monte Carlo 5% Critical Value     328.0  
    empirical p-value    0.02  
      
Resampling 5% Critical Value     476.0  
    empirical p-value    0.44  
Panel C: Test assets are all Portfolios ( )1t t

x Z R!
" : 

      
Test Statistic 203.3 188.6 165.0 161.8 148.2 
      
Monte Carlo 5% Critical Value  125.7 121.6 121.6 133.3 139.9 
    empirical p-value     0.000 0.000 0.001 0.002     0.029 
      
Resampling 5% Critical Value  117.3 130.6 121.6 118.8 144.9 
    empirical p-value     0.003 0.005 0.003 0.001     0.044 
 
 
The monthly returns on 25 industry-sorted portfolios of common stocks are test assets for February 1963 
through December 1994 (T=383 observations), and ten-year subperiods. A holdout sample from January, 
1995 through December, 2002 (96 observations) is also shown. The conditioning information consists of a 
lagged Treasury bill yield, dividend yield, excess bill return, and yield spreads of long over short-term 
Government bonds and low-grade over high-grade corporate bonds. NA denotes not applicable, when the 
number of assets is larger than the number of time series observations. Asymptotic p-values are from the chi-
squared distribution. GRS p-values are from the F distribution, after the test statistic is rescaled to have an 
exact F distribution assuming normality as in Gibbons, Ross, and Shanken (1989). 



 

   

Table 3: Tests of the Mean Variance Efficiency of the Standard and Poors 500 Stock 

Index in Size and Book/Market Portfolios.  

Sample                                                                                  size/BM                                           industry 
                                                                                  63-94                 95-02                       63-94           95-02 
Panel A: No conditioning information:  
Sample Statistic  83.0 74.1  24.8  51.3 
      
GRS  p-value    0.000 0.007  0.57     0.102 
      
Resampling 5% Critical Value   45.1 131.5  40.0 121.4 
    Empirical p-value    0.000  0.277   0.58     0.49 
Panel B: Test assets are 1)( !"!+ tfttft ZRRR : 
Sample Statistic 517.1 NA  348.6 NA 
      
Resampling 5% Critical Value  508.8   476.0  
    Empirical p-value     0.040    0.44  
Panel C: Test assets are all Portfolios ( )1t t

x Z R!
" : 

Sample Statistic 272.7 210.4  161.8 148.2 
      
Resampling 5% Critical Value  107.6 135.1  118.8 144.9 
    Empirical p-value     0.000 0.003   0.001     0.044 
 

 
The size/BM returns are 25 portfolios of stocks sorted on market capitalization and book-to-market ratio, for 
the sample period July 1963 through December 1994 (T=378 observations).  A holdout sample covers 
January 1995 through December, 2002 (96 observations). The conditioning information consists of a lagged 
Treasury bill yield, dividend yield, excess bill return, and yield spreads of long over short-term Government 
bonds and low-grade over high-grade corporate bonds. NA indicates that the sample size does not allow the 
statistic to be calculated. 
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Table 4: Tests of the Hypothesis that Conditioning Information does not Expand the 

Mean Variance Boundary.  

 
                                                                                                                            size/BM                       industry 
 63-94 95-02 63-94 95-02 
Panel A: Test assets are 1)( !"!+ tfttft ZRRR : 
 Sample Statistic 356.3 NA 304.3 NA 
     
Resampling 5% Critical Value  520.4  486.0  
    Empirical p-value     0.464      0.686  
Panel B: Test assets are all Portfolios ( )1t t

x Z R!
" : 

 Sample Statistic 155.8   77.7 128.8   63.8 
     
Resampling 5% Critical Value  108.7 138.3 118.8 148.1 
    Empirical p-value  0.001     0.539     0.025     0.779 
 

 
The industry data are monthly returns on 25 industry-sorted portfolios of common stocks and a market index 
return. The size/BM returns are for 25 portfolios of stocks sorted on market capitalization and book-to-
market ratios and a market index return. The conditioning information consists of a lagged Treasury bill 
yield, dividend yield, excess bill return, and yield spreads of long over short-term Government bonds and 
low-grade over high-grade corporate bonds. NA indicates that the sample size does not allow the test statistic 
to be calculated. 
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Table 5: Tests of the Efficiency of Fixed-weight Combinations of the Fama-French 

Factors.  

 
                                                                                                                            size/BM                       industry 
 63-94 95-02 63-94 95-02 
Panel A: Test assets are Rt: 
 Sample Statistic 35.0 49.5 43.0 55.5 
     
GRS p-value 
 

0.154 0.123 0.035 0.064 

Resampling 5% Critical Value  41.6 64.0 39.2 61.2 
    empirical p-value 0.117 0.157 0.021 0.077 
Panel B: Test assets are all Portfolios 1)( !"!+ tfttft ZRRR : 
 Sample Statistic 521.9 

 
NA 415.0 

 
NA 

Resampling 5% Critical Value  319.3 NA 313.7 NA 
    empirical p-value 0.000  0.000  
Panel C: Test assets are ( )1t t

x Z R!
" : 

 Sample Statistic 340.6 181.6 180.1 174.6 
     
Resampling 5% Critical Value  70.5 128.0 75.6 118.4 
    empirical p-value 0.000 0.003 0.000 0.001 
 

 
The industry data are monthly returns on 25 industry-sorted portfolios of common stocks and a value-
weighted index. The size/BM returns are for 25 portfolios of stocks sorted on market capitalization and 
book-to-market ratio and a value-weighted return. In each design the first and 25th portfolio returns are 
replaced with the returns of the HML and SMB factors, respectively. The conditioning information consists 
of a lagged Treasury bill yield, dividend yield, excess bill return, and yield spreads of long over short-term 
Government bonds and low-grade over high-grade corporate bonds. NA indicates that the sample size does 
not allow the test statistic to be calculated. 
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 Table 6: Tests of Conditional Efficiency.  

 
                                                                                                                            size/BM                       industry 
 63-94 95-02 63-94 95-02 
Panel A: Conditional Efficiency of the Market Index 
 Sample Statistic 339.2 131.7 189.7 143.0 
     
Resampling 5% Critical Value  116.1 83.4 98.8 86.4 
    Empirical p-value 0.000 0.011 0.002 0.011 
     
Panel B: Conditional Efficiency of the Fama-French Factors 
 Sample Statistic 347.3 138.7 147.5 142.1 
     
Resampling 5% Critical Value  67.3 95.0  71.2 99.1 
    Empirical p-value 0.000 0.012 0.000 0.018 
 

 
The industry data are monthly returns on 25 industry-sorted portfolios of common stocks and a market index 
return. The size/BM returns are for 25 portfolios of stocks sorted on market capitalization and book-to-
market ratios and a market index. In each design the first and 25th portfolio returns are replaced with the 
returns of the HML and SMB factors. The conditioning information consists of a lagged Treasury bill yield, 
dividend yield, excess bill return, and yield spreads of long over short-term Government bonds and low-
grade over high-grade corporate bonds. 
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Table 7: The Efficiency of Hedge Funds   
 Sharpe 

Ratio 
Adjusted 
Sharpe 

 Panel A: Hedge Fund Indexes             
   
Convertible Arbitrage          0.49  0.49 
Dedicated Short Bias 
Equity Market Neutral 
Event Driven 
Long/Short Equity 
Hedge Fund Index 
 

-0.05 
 0.76 
 0.32 
 0.24 
 0.26 

-0.05 
 0.76 
 0.31 
 0.23 
 0.26 

 Panel B: Size and B/M Portfolios and Market Index             
   
Fixed-weight Benchmark: 
 
Sharpe ratios 
Empirical p-value 
 

 
 
0.72 
0.002 

 
 

0.31 
0.001 

Efficient wrt.Z benchmark 
 
Sharpe ratios 
Empirical p-values 
 

 
 
1.39 
0.052 

 
 

1.05 
0.049 

Panel C: Industry Portfolios and Market Index             
   
Fixed-weight Benchmark: 
 
Sharpe ratios 
Empirical p-value 
 

 
 
0.76 
0.009 

 
 

0.38 
0.012 

Efficient wrt.Z benchmark 
 
Sharpe ratios 
Empirical p-values 
 

 
 
1.36 
0.171 

 
 

1.02 
0.175 

 
 
The indexes of hedge funds are monthly total returns from Credit Suisse/Tremont. The industry portfolios 
are monthly returns on 25 industry-sorted portfolios of common stocks and a market index return. The 
size/BM returns are for 25 portfolios of stocks sorted on market capitalization and book-to-market ratios and 
a market index. In each design the first and 25th portfolio returns are replaced with the returns of the HML 
and SMB factors. The conditioning information consists of a lagged Treasury bill yield, dividend yield, 
excess bill return, and yield spreads of long over short-term Government bonds and low-grade over high-
grade corporate bonds. 
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Table 8: The Impact of Conditional Heteroskedasticity.  

 
                                                                                                                            size/BM                       industry 
 63-94 95-02 63-94 95-02 
Panel A: Conditional Efficiency of the Market Index – Method A 
 Sample Statistic 344.5 131.4 184.9 144.3 
     
Resampling 5% Critical Value  48.8 80.3 56.8 84.0 
    Empirical p-value 0.000 0.010 0.000 0.005 
Panel B: Conditional Efficiency of the Fama-French Factors – Method A 
 Sample Statistic 357.2 145.4 145.5 148.5 
     
Resampling 5% Critical Value  66.7 94.2 70.0 89.6 
    Empirical p-value 0.000 0.004 0.000 0.007 
 
Panel C: Conditional Efficiency of the Market Index – Method B 
 Sample Statistic 371.3 152.5 211.3 158.4 
     
Resampling 5% Critical Value  84.6 89.8 79.2 86.9 
    empirical p-value 0.000 0.000 0.000 0.000 
Panel D: Conditional Efficiency of the Fama-French Factors – Method B 
 Sample Statistic 371.3 174.5 152.2 174.4 
     
Resampling 5% Critical Value  79.9 117.5 90.5 108.7 
    empirical p-value 0.000 0.002 0.004 0.003 
 

 
The simulated data incorporate conditional heteroskedasticity either through a factor model with conditional 
betas that are linear functions of the lagged instruments (method A) or through a model in which the 
conditional standard deviations are linear functions of the conditioning variables and the conditional 
correlations are constant over time (method B). The industry data are monthly returns on 25 industry-sorted 
portfolios of common stocks and a market index return. The size/BM returns are for 25 portfolios of stocks 
sorted on market capitalization and book-to-market ratios and a market index. In each design the first and 
25th portfolio returns are replaced with the returns of the HML and SMB factors. The conditioning 
information consists of a lagged Treasury bill yield, dividend yield, excess bill return, and yield spreads of 
long over short-term Government bonds and low-grade over high-grade corporate bonds. 
 


