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1. Introduction 

Predictive models for common stock returns have long been a staple of financial economics.  

Early studies, reviewed by Fama (1970), used such models to examine market efficiency.  

Stock returns are assumed to be predictable, based on lagged instrumental variables, in the 

current conditional asset pricing literature.  

  The simplest predictive model is a regression for the future stock return, rt+1, on a 

lagged predictor variable: 

 (1) rt+1 = a + bZt + vt+1. 

Standard lagged variables include the levels of short-term interest rates, payout-to-price ratios 

for stock market indexes, and yield spreads between low-grade and high-grade bonds or 

between long- and short-term bonds.  Table 1 surveys major studies that propose predictor 

variables.  Many of these variables behave as persistent, or highly autocorrelated, time series.  

We study the finite sample properties of stock return predictive regressions with persistent 

lagged regressors.   

  Regression models for stock or portfolio returns on contemporaneously-measured 

market-wide factors have also long been a staple of financial economics.  Such factor models 

are used in event studies (e.g., Fama et al., 1969), in tests of asset pricing theories such as the 

Capital Asset Pricing Model (CAPM, Sharpe, 1964) and in other applications.  For example, 

when the market return rm is the factor, the regression model for the return rt+1 is:  

(2) rt+1 = α + β rm,t+1 + ut+1,  

where E(ut+1) = E(ut+1rm,t+1) = 0.  The slope coefficients are the “betas,” which measure the 

market-factor risk. When the returns are measured in excess of a reference asset like a risk-

free Treasury bill return, the intercepts are the “alphas,” which measure the expected 

abnormal return.  For example, when rm is the market portfolio excess return, the CAPM 
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implies that α = 0, and the model is evaluated by testing that null hypothesis. 

 Recent work in conditional asset pricing allows for time-varying betas modeled as 

linear functions of lagged predictor variables, following Maddala (1977).  Prominent 

examples include Shanken (1990), Cochrane (1996), Ferson and Schadt (1996), Jagannathan 

and Wang (1996) and Lettau and Ludvigson (2001).  The time-varying beta coefficient is βt = 

b0 + b1 Zt, where Zt is a lagged predictor variable.  In some cases, the intercept or conditional 

alpha is also time-varying, as αt = α0 + α1Zt (e.g. Christopherson, Ferson and Glassman, 

1998).  This results in the following regression model: 

(3) rt+1 = α0 + α1Zt + b0 rm,t+1 + b1 rm,t+1Zt +  ut+1,  

where E(ut+1) = E(ut+1[Zt rm,t+1]) = 0.  The conditional CAPM implies that α0 = 0 and α1 = 0.  

This chapter also studies the finite-sample properties of asset pricing model regressions like 

(3) when there are persistent lagged regressors. 

The rest of the chapter is organized as follows.  Section 2 discusses the issues of data 

mining and spurious regression in the simple predictive regression (1).  Section 3 discusses 

the impact of spurious regression and data mining on conditional asset pricing.  Section 4 

describes the data.  Section 4 presents the models used in the simulation experiments.  Section 

6 presents the simulation results for predictive regressions.  Section 7 presents the simulation 

results for various forms of conditional asset pricing models.  Section 7 discusses and 

evaluates solutions to the problems of spurious regression and data mining.  Section 9 

examines the robustness of results.  Section 10 concludes. 

 

 
2. Spurious Regression and Data Mining in Predictive Regressions 

In our analysis of regressions, like (1), that attempt to predict stock returns, we focus on two 

issues.  The first is spurious regression, analogous to Yule (1926), and Granger and Newbold 
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(1974).  These studies warned that spurious relations may be found between the levels of 

trending time series that are actually independent.  For example, given two independent 

random walks, it is likely that a regression of one on the other will produce a “significant” 

slope coefficient, evaluated by the usual t-statistics. 

 Stock returns are not highly autocorrelated, so you might think that spurious 

regression would not be an issue for stock returns.  Thus, one may think that spurious 

regression problems are unlikely.  However, the returns may be considered as the sum of an 

unobserved expected return, plus unpredictable noise.  If the underlying expected returns are 

persistent time series there is still a risk of spurious regression.  Because the unpredictable 

noise represents a substantial portion of the variance of stock returns, the spurious regression 

will differ from the classical setting. 

The second issue is “naïve data mining” as studied for stock returns by Lo and 

MacKinlay (1990), Foster, Smith, and Whaley (1997), and others.  If the standard instruments 

employed in the literature arise as the result of a collective search through the data, they may 

have no predictive power in the future.  Stylized “facts” about the dynamic behavior of stock 

returns using these instruments (e.g., Cochrane, 1999) could be artifacts of the sample.  Such 

concerns are natural, given the widespread interest in predicting stock returns.  Not all data 

mining is naïve.  In fact, increasing computing power and data availability have allowed the 

development of some very sophisticated data mining (for statistical foundations, see Hastie, 

Tibshirani, and Friedman, 2001). 

We focus on spurious regression and the interaction between data mining and spurious 

regression bias.  If the underlying expected return is not predictable over time, there is no 

spurious regression bias, even if the chosen regressor is highly autocorrelated.  This is 

because, under the null hypothesis that there is no predictability, the autocorrelation of the 

regression errors the same as that of the left hand side asset returns.  In this case, our analysis 

reduces to pure data mining as studied by Foster, Smith, and Whaley (1997). 

 The spurious regression and data mining affects reinforce each other.  If researchers 
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have mined the data for regressors that produce high t-statistics in predictive regressions, then 

mining is more likely to uncover the spurious, persistent regressors.  The standard regressors 

in the literature tend to be highly autocorrelated, as expected if the regressors result from this 

kind of a “spurious mining” process.  For reasonable parameter values, all the regressions that 

we review from the literature are consistent with a spurious mining process, even when only a 

small number of instruments are considered in the mining.   

 While data mining amplifies the problem of spurious regressions, persistent lagged 

variables and spurious regression also magnify the impact of data mining.  As a consequence, 

we show that standard corrections for data mining are inadequate in the presence of persistent 

lagged variables. 

These results have profound potential implications for asset pricing regressions 

because the conditional asset pricing literature has, for the most part, used variables that were 

discovered based on predictive regressions like (1).  It is important therefore to examine how 

data mining and spurious regression biases influence asset pricing regressions.  

 

 
3.  Spurious Regression, Data Mining and Conditional Asset Pricing 

 The conditional asset pricing literature using regressions like (3) has evolved from the 

literature on pure predictive regressions.  First, studies identified lagged variables that appear 

to predict stock returns.  Later studies, beginning with Gibbons and Ferson (1985), used the 

same variables to study asset pricing models.  Thus, it is reasonable to presume that data 

mining is directed at the simpler predictive regressions.  The question now is: How does this 

affect the validity of the subsequent asset pricing research that uses these variables in 

regressions like (3)? 

  Table 2 summarizes representative studies that use the regression model (3).  It lists 

the sample period, number of observations and the lagged instruments employed.  It also 
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indicates whether the study uses the full model (3), with both time-varying betas and alphas, 

or restricted versions of the model in which either the time-varying betas or time-varying 

alphas are suppressed.  Finally, the table summarizes the largest t-statistics for the coefficients 

α1 and b1 reported in each study.  If we find that the largest t-statistics are insignificant in 

view of the joint effects of spurious regression and data mining, then none of the coefficients 

are significant.  We return to this table later and revisit the evidence. 

  Using regression models like Equation (3), the literature has produced a number of 

“stylized facts.”  First, studies typically find that the intercept is smaller in the “conditional” 

model (3) than in the “unconditional” model (2):  ⏐α⏐ > ⏐α0⏐. The interpretation of these 

studies is that the conditional CAPM does a better job of “explaining” average returns than 

the unconditional CAPM.  Examples with this finding include Cochrane (1996), Ferson and 

Schadt (1996), Ferson and Harvey (1997, 1999), Lettau and Ludvigson (2001), and Petkova 

and Zhang (2005).  Second, studies typically find evidence of time varying betas: The 

coefficient estimate for b1 is statistically significant.  Third, studies typically find that the 

conditional models fail to completely explain the dynamic properties of returns: The 

coefficient estimate for α1 is significant, indicating a time-varying alpha.  Our objective is to 

study the reliability of such inferences in the presence of persistent lagged instruments and 

data mining. 

 

 
4. The Data 
 

Table 1 surveys nine of the major studies that propose instruments for predicting stock 

returns.  The table reports summary statistics for monthly data, covering various sub-periods 

of 1926 through 1998.  The sample size and period depends on the study and the variable, and 

the table provides the details.  We attempt to replicate the data series that were used in these 

studies as closely as possible.  The summary statistics are from our data.  Note that the first 
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order autocorrelations of the predictor variables frequently suggest a high degree of 

persistence.  For example, short-term Treasury-bill yields, monthly book-to-market ratios, the 

dividend yield of the S&P500 and some of the yield spreads have sample first order 

autocorrelations of 0.97 or higher. 

   

[Table 1 about here] 

 

 Table 1 also summarizes regressions for the monthly return of the S&P500 stock 

index, measured in excess of the one-month Treasury-bill return from Ibbotson Associates, on 

the lagged instruments.  These are OLS regressions using one instrument at a time.  We report 

the slope coefficients, their t-ratios, and the adjusted R-squares.  The R-squares range from 

less than one percent to more than seven percent, and eight of the 13 t-ratios are larger than 

2.0.  The t-ratios are based on the OLS slopes and Newey-West (1987) standard errors, where 

the number of lags is chosen based on the number of statistically significant residual 

autocorrelations.1   

 The small R-squares in Table 1 suggest that predictability represents a tiny fraction of 

the variance in stock returns.  However, even a small R-squared can signal economically 

significant predictability.  For example, Kandel and Stambaugh (1996) and Fleming, Kirby, 

and Ostdiek (2001) find that optimal portfolios respond by a substantial amount to small R-

squares in standard models.  Studies combining several instruments in multiple regressions 

report higher R-squares.  For example, Harvey (1989), using five instruments, reports adjusted 

R-squares as high as 17.9 percent for size portfolios.  Ferson and Harvey (1991) report R-

squares of 5.8 percent to 13.7 percent for monthly size and industry portfolio returns.  These 

                                                 
1 Specifically, we compute 12 sample autocorrelations and compare their values with a cutoff at two approximate 

standard errors: 2/√T, where T is the sample size.  The number of lags chosen is the minimum lag length at 

which no higher order autocorrelation is larger than two standard errors.  The number of lags chosen is indicated 

in the far right column. 
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values suggest that the “true” R-squared, if we could regress the stock return on its time-

varying conditional mean, might be substantially higher than we see in Table 1.  To 

accommodate this possibility, we allow the true R-squared in our simulations to vary over the 

range from zero to 15 percent.  For exposition we focus on an intermediate value of 10 

percent. 

To incorporate data mining, we compile a randomly selected sample of 500 potential 

instruments, through which our simulated analyst sifts to mine the data for predictor variables.  

All the data come from the web site Economagic.com: Economic Time Series Page, 

maintained by Ted Bos.  The sample consists of all monthly series listed on the main 

homepage of the site, except under the headings of LIBOR, Australia, Bank of Japan, and 

Central Bank of Europe.  From the Census Bureau we exclude Building Permits by Region, 

State, and Metro Areas (more than 4,000 series).  From the Bureau of Labor Statistics we 

exclude all non-civilian Labor force data and State, City, and International Employment 

(more than 51,000 series).  We use the Consumer Price Index (CPI) measures from the city 

average listings, but include no finer subcategories.  The Producer Price Index (PPI) measures 

include the aggregates and the two-digit subcategories.  From the Department of Energy we 

exclude data in Section 10, the International Energy series. 

 We first randomly select (using a uniform distribution) 600 out of the 10,866 series 

that were left after the above exclusions.  From these 600 we eliminated series that mixed 

quarterly and monthly data and extremely sparse series, and took the first 500 from what 

remained.   

 Because many of the data are reported in levels, we tested for unit roots using an 

augmented Dickey-Fuller test (with a zero order time polynomial).  We could not reject the 

hypothesis of a unit root for 361 of the 500 series and we replaced these series with their first 

differences.  The 500 series are randomly ordered, and then permanently assigned numbers 

between one and 500.  When a data miner in our simulations searches through, say 50 series, 

we use the sampling properties of the first 50 series to calibrate the parameters in the 
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simulations. 

 We also use our sample of potential instruments to calibrate the parameters that 

govern the amount of persistence in the “true” expected returns in the model.  On the one 

hand, if the instruments we see in the literature, summarized in Table 1, arise from a spurious 

mining process, they are likely to be more highly autocorrelated than the underlying "true" 

expected stock return.  On the other hand, if the instruments in the literature are a realistic 

representation of expected stock returns, the autocorrelations in Table 1 may be a good proxy 

for the persistence of the true expected returns.2  The mean autocorrelation of our 500 series is 

15 percent and the median is two percent.  Eleven of the 13 sample autocorrelations in Table 

1 are higher than 15 percent, and the median value is 95 percent.  We consider a range of 

values for the true autocorrelation based on these figures, as described below.  

 

 
5. The Models 

5.1. Predictive Regressions 

In the model for the predictive regressions, the data are generated by an unobserved latent 

variable, Zt
*, as: 

(4) rt+1 = μ + Zt
* + ut+1,  

where ut+1 is white noise with variance, σu
2.  We interpret the latent variable, Zt

* as the 

deviations of the conditional mean return from the unconditional mean, μ, where the 

                                                 
2 There are good reasons to think that expected stock returns may be persistent.  Asset pricing models like the 

consumption model of Lucas (1978) describe expected stock returns as functions of expected economic growth 

rates.  Merton (1973) and Cox, Ingersoll, and Ross (1985) propose real interest rates as candidate state variables, 

driving expected returns in intertemporal models.  Such variables are likely to be highly persistent.  Empirical 

models for stock return dynamics frequently involve persistent, auto-regressive expected returns (e.g., Lo and 

MacKinlay, 1988; Conrad and Kaul, 1988; Fama and French, 1988b; or Huberman and Kandel, 1990). 
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expectations are conditioned on an unobserved “market” information set at time t.  The 

predictor variables follow an autoregressive process:  

 (5) ( ) ( ) ( )
*

* * *
1 1

0
, ' , ' , '

0t t t t t tZ Z Z Z
ρ

ε ε
ρ − −

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
,  

where Zt is the measured predictor variable and ρ is the autocorrelation.  The assumption that 

the true expected return is autoregressive (with parameter ρ*) follows previous studies such as 

Lo and MacKinlay (1988), Conrad and Kaul (1988), Fama and French (1988b), and 

Huberman and Kandel (1990). 

 To generate the artificial data, the errors ( )*,t tε ε  are drawn randomly as a normal 

vector with mean zero and covariance matrix, Σ.  We build up the time-series of the Z and Z* 

through the vector autoregression equation (3), where the initial values are drawn from a 

normal with mean zero and variances, Var(Z) and Var(Z*).  The other parameters that 

calibrate the simulations are {μ, σu
2, ρ, ρ*, and Σ}.   

   We have a situation in which the “true” returns may be predictable, if Zt
* could be 

observed.  This is captured by the true R-squared, Var(Z*)/[Var(Z*) + σu
2].  We set Var(Z*) to 

equal the sample variance of the S&P500 return, in excess of a one-month Treasury-bill 

return, multiplied by 0.10.  When the true R-squared of the simulation is 10 percent, the 

unconditional variance of the rt+1 that we generate is equal to the sample variance of the 

S&P500 return.  When we choose other values for the true R-squared, these determine the 

values for the parameter σu
2.  We set μ to equal the sample mean excess return of the S&P500 

over the 1926 through 1998 period, or 0.71 percent per month.   

 The extent of the spurious regression bias depends on the parameters, ρ and ρ*, which 

control the persistence of the measured and the true regressor.  These values are determined 

by reference to Table 1 and from our sample of 500 potential instruments.  The specifics 

differ across the special cases, as described below. 

 While the stock return could be predicted if Zt
* could be observed, the analyst uses the 
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measured instrument Zt.  If the covariance matrix Σ is diagonal, Zt and Zt
* are independent, 

and the true value of δ in the regression (1) is zero. 

To focus on spurious regression in isolation, we specialize equation (3) as follows.  

The covariance matrix Σ is a 2 x 2 diagonal matrix with variances (σ*2, σ2).  For a given value 

of ρ* the value of σ*2 is determined as σ*2 = (1- ρ*2)Var(Z*).  The measured regressor has 

Var(Z) = Var(Z*).  The autocorrelation parameters, ρ* = ρ are allowed to vary over a range of 

values.  (We also allow ρ and ρ* to differ from one another, as described below.)  

 Following Granger and Newbold (1974), we interpret a spurious regression as one in 

which the “t-ratios” in the regression (1) are likely to indicate a significant relation when the 

variables are really independent.  The problem may come from the numerator or the 

denominator of the t-ratio: The coefficient or its standard error may be biased.  As in Granger 

and Newbold, the problem lies with the standard errors.3  The reason is simple to understand.  

When the null hypothesis that the regression slope δ = 0 is true, the error term ut+1 of the 

regression equation (1) inherits autocorrelation from the dependent variable.  Assuming 

stationarity, the slope coefficient is consistent, but standard errors that do not account for the 

serial dependence correctly, are biased.   

 Because the spurious regression problem is driven by biased estimates of the standard 

error, the choice of standard error estimator is crucial.  In our simulation exercises, it is 

possible to find an efficient unbiased estimator, since we know the “true” model that describes 

the regression error.  Of course, this will not be known in practice.  To mimic the practical 

reality, the analyst in our simulations uses the popular autocorrelation-heteroskedasticity-

consistent (HAC) standard errors from Newey and West (1987), with an automatic lag 

selection procedure.  The number of lags is chosen by computing the autocorrelations of the 

                                                 
3 While Granger and Newbold (1974) do not study the slopes and standard errors to identify the separate effects, 

our simulations designed to mimic their setting (not reported in the tables) confirm that their slopes are well 

behaved, while the standard errors are biased.  Granger and Newbold use OLS standard errors, while we focus 

on the heteroskedasticity and autocorrelation-consistent standard errors that are more common in recent studies. 
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estimated residuals, and truncating the lag length when the sample autocorrelations become 

“insignificant” at longer lags. (The exact procedure is described in Footnote 1, and 

modifications to this procedure are discussed below.)   

 This setting is related to Phillips (1986) and Stambaugh (1999).  Phillips derives 

asymptotic distributions for the OLS estimators of the regression (1), in the case where ρ = 1, 

ut+1 ≡ 0, and { }*,t tε ε  are general independent mean zero processes.  We allow a nonzero 

variance of ut+1 to accommodate the large noise component of stock returns.  We assume ρ < 

1 to focus on stationary, but possibly highly autocorrelated, regressors.  

 Stambaugh (1999) studies a case where the errors { }*,t tε ε  are perfectly correlated, or 

equivalently, the analyst observes and uses the correct lagged stochastic regressor.  A bias 

arises when the correlation between ut+1 and ε*
t+1 is not zero, related to the well-known small 

sample bias of the autocorrelation coefficient (e.g., Kendall (1954)).  In the pure spurious 

regression case studied here, the observed regressor Zt is independent of the true regressor Zt
*, 

and ut+1 is independent of ε*
t+1.  The Stambaugh bias is zero in this case.  The point is that 

there remains a problem in predictive regressions, in the absence of the bias studied by 

Stambaugh, because of spurious regression.   
 
 

5.2. Conditional Asset Pricing Models 

The data in our simulations of conditional asset pricing models are generated according to:  
 

(6)     rt+1 = βt rm,t+1 + ut+1, 

      βt = 1 + Zt
*, 

      rm,t+1 = μ + k Zt
* + wt+1. 

Our artificial analyst uses the simulated data to run the regression model (3), focusing on the 

t-statistics for the coefficients {α0, α1, b0, b1}. The variable *
tZ  in equation (6) is an 

unobserved latent variable that drives both expected market returns and time-varying betas.  
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The term βt in Equation (6) is a time-varying beta coefficient.  As *
tZ has mean equal to zero, 

the expected value of beta is 1.0.  When k ≠ 0 there is an interaction between the time 

variation in beta and the expected market risk premium.  A common persistent factor drives 

the movements in both expected returns and conditional betas.  Common factors in time-

varying betas and expected market premiums are important in asset pricing studies such as 

Chan and Chen (1988), Ferson and Korajczyk (1995), and Jagannathan and Wang (1996), and 

in conditional performance evaluation, as in Ferson and Schadt (1996).  There is a zero 

intercept, or “alpha,” in the data generating process for rt+1, consistent with asset pricing 

theory.  

  The market return data, rm,t+1, are generated as follows.  The parameter μ was 

described earlier.  The variance of the error is σw
2 = σsp

2 - k2 Var(Z*), where σsp = 0.057 

matches the S&P500 return and Var(Z*) = 0.055, is the estimated average monthly variance 

of the market betas on 58 randomly selected stocks from CRSP over the period 1926-1997.4  

The predictor variables follow the autoregressive process (3). 

 

 
6. Results for Predictive Regressions 

6.1. Pure Spurious Regression 

                                                 
4 We calibrate the variance of the betas to actual monthly data by randomly selecting 58 stocks with complete CRSP 

data for January 1926 through December 1997.  Following Fama and French (1997), we estimate simple regression 

betas for each stock's monthly excess return against the S&P500 excess return, using a series of rolling 5-year 

windows, rolling forward one month at a time.  For each window we also compute the standard error of the beta 

estimate.  This produces a series of 805 beta estimates and standard error estimates for beta for each firm.  We 

calibrate the variance of the true beta for each firm to equal the sample variance of the rolling beta estimates minus 

the average estimated variance of the estimator.  Averaging the result across firms, the value of Var(Z*) is 0.0550.  

Repeating this exercise with firms that have data from January of 1926 through the end of 2004 increases the number 

of months used from 864 to 948 but decreases the number of firms from 58 to 46.  The value of Var(Z*) in this case is 

0.0549. 
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Table 3 summarizes the results for the case of pure spurious regression, with no data mining.  

We record the estimated slope coefficient in regression (1), its Newey-West t-ratio, and the 

coefficient of determination at each trial and summarize their empirical distributions.  The 

experiments are run for two sample sizes, based on the extremes in Table 1.  These are T = 66 

and T = 824 in Panels A and B, respectively.  In Panel C, we match the sample sizes to the 

studies in Table 1.  In each case, 10,000 trials of the simulation are run; 50,000 trials on a 

subset of the cases produce similar results. 

   

[Table 3 about here] 

 

 The rows of Table 3 refer to different values for the true R-squares.  The smallest 

value is 0.1 percent, where the stock return is essentially unpredictable, and the largest value 

is 15 percent.  The columns of Table 3 correspond to different values of ρ*, the 

autocorrelation of the true expected return, which runs from 0.00 to 0.99.  In these 

experiments we set ρ = ρ*.  The sub-panels labeled Critical t-statistic and Critical estimated 

R2 report empirical critical values from the 10,000 simulated trials, so that 2.5 percent of the t-

statistics or five percent of the R-squares, lie above these values.   

 The sub-panels labeled Mean δ report the average slope coefficients over the 10,000 

trials.  The mean estimated values are always small, and very close to the true value of zero at 

the larger sample size.  This confirms that the slope coefficient estimators are well behaved, 

so that bias due to spurious regression comes from the standard errors. 

 When ρ* = 0, and there is no persistence in the true expected return, the table shows 

that spurious regression phenomenon is not a concern.  This is true even when the measured 

regressor is highly persistent.  (We confirm this with additional simulations, not reported in 

the tables, where we set ρ* = 0 and vary ρ.)  The logic is that when the slope in Equation (1) is 

zero and ρ* = 0, the regression error has no persistence, so the standard errors are well 

behaved.  This implies that spurious regression is not a problem from the perspective of 
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testing the null hypothesis that expected stock returns are unpredictable, even if a highly 

autocorrelated regressor is used.   

 Table 3 shows that spurious regression bias does not arise to any serious degree, 

provided ρ* is 0.90 or less, and provided that the true R2 is one percent or less.  For these 

parameters the empirical critical values for the t-ratios are 2.48 (T = 66, Panel A), and 2.07 (T 

= 824, Panel B).  The empirical critical R-squares are close to their theoretical values.  For 

example, for a five percent test with T = (66, 824) the F distribution implies critical R-squared 

values of (5.9 percent, 0.5 percent).  The values in Table 3 when ρ* = 0.90 and true R2 = one 

percent, are (6.2 percent, 0.5 percent); thus, the empirical distributions do not depart far from 

the standard rules of thumb. 

 Variables like short-term interest rates and dividend yields typically have first order 

sample autocorrelations in excess of 0.95, as we saw in Table 1.  We find substantial biases 

when the regressors are highly persistent.  Consider the plausible scenario with a sample of T 

= 824 observations where ρ = 0.98 and true R2 = 10 percent.  In view of the spurious 

regression phenomenon, an analyst who was not sure that the correct instrument is being used 

and who wanted to conduct a five percent, two-tailed t-test for the significance of the 

measured instrument, would have to use a t-ratio of 3.6.  The coefficient of determination 

would have to exceed 2.2 percent to be significant at the five percent level.  These cutoffs are 

substantially more stringent than the usual rules of thumb. 

 Panel C of Table 3 revisits the evidence from the literature in Table 1.  The critical 

values for the t-ratios and R-squares are reported, along with the theoretical critical values for 

the R-squares, implied by the F-distribution.  We set the true R-squared value equal to 10 

percent and ρ* = ρ in each case.  We find that seven of the 17 statistics in Table 1 that would 

be considered significant using the traditional standards, are no longer significant in view of 

the spurious regression bias.   

 While Panels A and B of Table 3 show that spurious regression can be a problem in 

stock return regressions, Panel C finds that accounting for spurious regression changes the 
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inferences about specific regressors that were found to be significant in previous studies.  In 

particular, we question the significance of the term spread in Fama and French (1989), on the 

basis of either the t-ratio or the R-squared of the regression.  Similarly, the book-to-market 

ratio of the Dow Jones index, studied by Pontiff and Schall (1998) fails to be significant with 

either statistic.  Several other variables are marginal, failing on the basis of one but not both 

statistics.  These include the short-term interest rate (Fama and Schwert, 1977; using the more 

recent sample of Breen, Glosten, and Jagannathan, 1989), the dividend yield (Fama and 

French, 1988a), and the quality-related yield spread (Keim and Stambaugh, 1986).  All of 

these regressors would be considered significant using the standard cutoffs. 

 It is interesting to note that the biases documented in Table 2 do not always diminish 

with larger sample sizes; in fact, the critical t-ratios are larger in the lower right corner of the 

panels when T = 824 than when T = 66.  The mean values of the slope coefficients are closer 

to zero at the larger sample size, so the larger critical values are driven by the standard errors.  

A sample as large as T = 824 is not by itself a cure for the spurious regression bias.  This is 

typical of spurious regression with a unit root, as discussed by Phillips (1986) for infinite 

sample sizes and nonstationary data.5  It is interesting to observe similar patterns, even with 

stationary data and finite samples.   

 Phillips (1986) shows that the sample autocorrelation in the regression studied by 

Granger and Newbold (1974) converges in limit to 1.0.  However, we find only mildly 

inflated residual autocorrelations (not reported in the tables) for stock return samples as large 

as T = 2000, even when we assume values of the true R2 as large as 40 percent.  Even in these 

extreme cases, none of the empirical critical values for the residual autocorrelations are larger 

                                                 
5 Phillips derives asymptotic distributions for the OLS estimators of equation (1), in the case where ρ = 1, ut+1 ≡ 

0.  He shows that the t-ratio for δ diverges for large T, while t(δ)/√T,  δ, and the coefficient of determination 

converge to well-defined random variables.  Marmol (1998) extends these results to multiple regressions with 

partially integrated processes, and provides references to more recent theoretical literature.  Phillips (1998) 

reviews analytical tools for asymptotic analysis when nonstationary series are involved. 



 18 

than 0.5.  Since ut+1 = 0 in the cases studied by Phillips, we expect to see explosive 

autocorrelations only when the true R2 is very large.  When R2 is small the white noise 

component of the returns serves to dampen the residual autocorrelation. Thus, we are not 

likely to see large residual autocorrelations in stock return regressions, even when spurious 

regression is a problem.  The residuals-based diagnostics for spurious regression, such as the 

Durbin-Watson tests suggested by Granger and Newbold, are not likely to be very powerful in 

stock return regressions.  For the same reason, typical application of the Newey-West 

procedure, where the number of lags is selected by examining the residual autocorrelations, is 

not likely to resolve the spurious regression problem. 

 Newey and West (1987) show that their procedure is consistent for the standard errors 

when the number of lags used grows without bound as the sample size T increases, provided 

that the number of lags grows no faster than T1/4.  The lag selection procedure in Table 3 

examines 12 lags.  Even though no more than nine lags are selected for the actual data in 

Table 1, more lags would sometimes be selected in the simulations, and an inconsistency 

results from truncating the lag length.6  However, in finite samples an increase in the number 

of lags can make things worse.  When “too many” lags are used the standard error estimates 

become excessively noisy, which thickens the tails of the sampling distribution of the t-ratios.  

This occurs for the experiments in Table 2.  For example, letting the procedure examine 36 

autocorrelations to determine the lag length (the largest number we find mentioned in 

published studies) the critical t-ratio in Panel A, for true R2 = 10 percent and ρ* = 0.98, 

increases from 2.9 to 4.8.  Nine of the 17 statistics from Table 1 that are significant by the 

usual rules of thumb now become insignificant.  The results calling these studies into question 

are therefore even stronger than before.  Thus, simply increasing the number of lags in the 

                                                 
6 At very large sample sizes, a huge number of lags can control the bias.  We verify this by examining samples as 

large as T = 5000, letting the number of lags grow to 240.  With 240 lags the critical t-ratio when the true R2 = 10 

percent and ρ = 0.98 falls from 3.6 in Panel B of Table 2, to a reasonably well-behaved value of 2.23. 
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Newey-West procedure is not likely to resolve the finite sample, spurious regression bias.7 

We discuss this issue in more detail in Section 8.1. 

 We draw several conclusions about spurious regression in stock return predictive 

regressions.  Given persistent expected returns, spurious regression can be a serious concern 

well outside the classic setting of Yule (1926) and Granger and Newbold (1974).  Stock 

returns, as the dependent variable, are much less persistent than the levels of most economic 

time series.  Yet, when the expected returns are persistent, there is a risk of spurious 

regression bias.  The regression residuals may not be highly autocorrelated, even when 

spurious regression bias is severe.  Given inconsistent standard errors, spurious regression 

bias is not avoided with large samples.  Accounting for spurious regression bias, we find that 

seven of the 17 t-statistics and regression R-squares from previous studies of predictive 

regressions that would be significant by standard criteria, are no longer significant.   

 

6.2. Spurious Regression and Data Mining  

We now consider the interaction between spurious regression and data mining in the 

predictive regressions, where the instruments to be mined are independent as in Foster, Smith, 

and Whaley (1997).  There are L measured instruments over which the analyst searches for 

the “best” predictor, based on the R-squares of univariate regressions.  In equation (5), Zt 

becomes a vector of length L, where L is the number of instruments through which the analyst 

sifts.  The error terms ( )*,t tε ε  become an L + 1 vector with a diagonal covariance matrix; 

thus, ε*
t is independent of εt.   

 The persistence parameters in equation (5) become an (L + 1)-square, diagonal matrix, 

with the autocorrelation of the true predictor equal to ρ*.  The value of ρ* is either the average 

                                                 
7 We conduct several experiments letting the number of lags examined be 24, 36, or 48, when T = 66 and T = 

824.  When T = 66 the critical t-ratios are always larger than the values in Table 2.  When T = 824 the effects are 

small and of mixed sign.  The most extreme reduction in a critical t-ratio, relative to Table 2, is with 48 lags, true 

R2 = 15 percent, and ρ* = 0.99, where the critical value falls from 4.92 to 4.23. 
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from our sample of 500 potential instruments, 15 percent, or the median value from Table 1, 

95 percent.  The remaining autocorrelations, denoted by the L-vector, ρ, are set equal to the 

autocorrelations of the first L instruments in our sample of 500 potential instruments.8  When 

ρ* = 95 percent, we rescale the autocorrelations to center the distribution at 0.95 while 

preserving the range in the original data.9  The simulations match the unconditional variances 

of the instruments, Var(Z), to the data.  The first element of the covariance matrix Σ is equal 

to σ*2.  For a typical i-th diagonal element of Σ, denoted by σi, the elements of ρ(Zi) and 

Var(Zi) are matched to the data, and we set σi
2 = [1 - ρ(Zi)2]Var(Zi).   

Table 4 summarizes the results.  The columns correspond to different numbers of 

potential instruments, through which the analyst sifts to find the regression that delivers the 

highest sample R-squared.  The rows refer to the different values of the true R-squared. 

   

[Table 4 about here] 

 

 The rows with true R2 = 0 refer to data mining only, similar to Foster, Smith and 

Whaley (1997).  The columns where L = 1 correspond to pure spurious regression bias.  We 

hold fixed the persistence parameter for the true expected return, ρ*, while allowing ρ to vary 

depending on the measured instrument.  When L = 1, we set ρ = 15 percent.  We consider two 

values for ρ*, 15 percent or 95 percent.   

                                                 
8 We calibrate the true autocorrelations in the simulations to the sample autocorrelations, adjusted for first-order 

finite-sample bias as: ρ̂  + (1 + 3 ρ̂ )/T, where ρ̂  is the OLS estimate of the autocorrelation and T is the sample 

size. 
9 The transformation is as follows.  In the 500 instruments, the minimum bias-adjusted autocorrelation is -0.571, 

the maximum is 0.999, and the median is 0.02.  We center the transformed distribution about the median in 

Table 1, which is 0.95.  If the original autocorrelation ρ is less than the median, we transform it to: 

0.95 + (ρ-0.02){(0.95+0.571 )/(0.02+0.571)}. 

If the value is above the median, we transform it to: 

0.95 + (ρ-0.02){(0.999-0.95)/(0.999-0.02)}. 
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 Panels A and B of Table 4 show that when L = 1 (there is no data mining) and ρ* = 15 

percent, there is no spurious regression problem, consistent with Table 2.  The empirical 

critical values for the t-ratios and R-squared statistics are close to their theoretical values 

under normality.  For larger values of L (there is data mining) and ρ* = 15 percent, the critical 

values are close to the values reported by Foster, Smith, and Whaley (1997) for similar 

sample sizes.10  There is little difference in the results for the various true R-squares.  Thus, 

with little persistence in the true expected return there is no spurious regression problem, and 

no interaction with data mining. 

 Panels C and D of Table 4 tell a different story.  When the underlying expected return 

is persistent (ρ* = 0.95) there is a spurious regression bias.  When L = 1 we have spurious 

regression only.  The critical t-ratio in Panel C increases from 2.3 to 2.8 as the true R-squared 

goes from zero to 15 percent.  The bias is less pronounced here than in Table 2, with ρ = ρ* = 

0.95, which illustrates that for a given value of ρ*, spurious regression is worse for larger 

values of ρ.  

 Spurious regression bias interacts with data mining.  Consider the extreme corners of 

Panel C.  Whereas, with L = 1 the critical t-ratio increases from 2.3 to 2.8 as the true R-

squared goes from zero to 15 percent, with L = 250, the critical t-ratio increases from 5.2 to 

6.3 as the true R-squared is increased.  Thus, data mining magnifies the effects of the spurious 

regression bias.  When more instruments are examined, the more persistent ones are likely to 

be chosen, and the spurious regression problem is amplified.  The slope coefficients are 

centered near zero, so the bias does not increase the average slopes of the selected regressors.  

Again, spurious regression works through the standard errors. 

 We can also say that spurious regression makes the data mining problem worse.  For a 

given value of L the critical t-ratios and R2 values increase moving down the rows of Table 4.  

                                                 
10 Our sample sizes, T, are not the same as in Foster, Smith, and Whaley (1997).  When we run the experiments 

for their sample sizes, we closely approximate the critical values that they report. 
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For example, with L = 250 and true R2 = 0, we can account for pure data mining with a critical 

t-ratio of 5.2.  However, when the true R-squared is 15 percent, the critical t-ratio rises to 6.3.  

The differences moving down the rows are even greater when T = 824, in Panel D.  Thus, in 

the situations where the spurious regression bias is more severe, its impact on the data mining 

problem is also more severe. 

 Finally, Panel E of Table 4 revisits the studies from the literature in view of spurious 

regression and data mining.  We report critical values for L, the number of instruments mined, 

sufficient to render the regression t-ratios and R-squares insignificant at the five percent level.  

We use two assumptions about persistence in the true expected returns: (1) ρ* is set equal to 

the sample values from the studies, as in Table 1, or (2) ρ* = 95 percent.  With only one 

exception, the critical values of L are 10 or smaller.  The exception is where the instrument is 

the lagged one-month excess return on a two-month Treasury-bill, following Campbell 

(1987).  This is an interesting example because the instrument is not very autocorrelated, at 

eight percent, and when we set ρ* = 0.08 there is no spurious regression effect.  The critical 

value of L exceeds 500.  However, when we set ρ* = 95 percent in this example, the critical 

value of L falls to 10, illustrating the strong interaction between the data mining and spurious 

regression effects. 

 

 
7. Results for Conditional Asset Pricing Models 

7.1. Cases with Small Amounts of Persistence 

We first consider a special case of the model where we set ρ* = 0 in the data generating 

process for the market return and true beta, so that Z* is white noise and σ2(ε*) = Var(Z*).  In 

this case the predictable (but unobserved by the analyst) component of the stock market return 

and the betas follow white noise processes.  We allow a range of values for the 

autocorrelation, ρ, of the measured instrument, Z, including values as large as 0.99.  For a 
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given value of ρ, we choose σ2(ε) = Var(Z*)(1 - ρ2), so the measured instrument and the 

unobserved beta have the same variance.  We find in this case that the critical values for all of 

the coefficients are well behaved.  Thus, when the true expected returns and betas are not 

persistent, the use of even a highly persistent regressor does not create a spurious regression 

bias in the asset pricing regressions of equation (3). 

It seems intuitive that there should be no spurious regression problem when there is no 

persistence in Z*.  Since the true coefficient on the measured instrument, Z, is zero, the error 

term in the regression is unaffected by the persistence in Z under the null hypothesis.  When 

there is no spurious regression problem there can be no interaction between spurious 

regression and data mining.  Thus, standard corrections for data mining (e.g. White, 2000) can 

be used without concern in these cases. 

In our second experiment the measured instrument and the true beta have the same 

degree of persistence, but their persistence is not extreme. We fix Var(Z) = Var(Z*) and 

choose, for a given value of ρ* = ρ, σ2(ε) = σ2(ε*) = Var(Z*)(1 - ρ2).  For values of ρ < 0.95 

and all values of the true predictive R-squared, Rp
2 the regressions seem generally well-

specified, even at sample sizes as small as T = 66.  These findings are similar to the findings 

for the predictive regression (1).  Thus, the asset pricing regressions (3) also appear to be well 

specified when the autocorrelation of the true predictor is below 0.95. 

 

7.2. Cases with Persistence 

Table 5 summarizes simulation results for a case that allows data mining and spurious 

regression.  In this experiment, the true persistence parameter ρ* is set equal to 0.95. The table 

summarizes the results for time-series samples of T = 66, T = 350 and T = 960.  The number 

of variables over which the artificial agent searches in mining the data, ranges from one to 

250. We focus on the two abnormal return coefficients, {α0, α1} and on the time-varying beta 

coefficient, b1.  
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[Table 5 about here] 

 

Table 5 shows that the means of the coefficient α0, the fixed part of the alpha, are 

close to zero, and they get closer to zero as the number of observations increases, as expected 

of a consistent estimator.  The 5% critical t-ratios for α0 are reasonably well specified at the 

larger sample sizes, although there is some bias at T = 66, where the critical values rise with 

the extent of data mining.  Data mining has little effect on the intercepts at the larger sample 

sizes.  Since the lagged instrument has a mean of zero, the intercept is the average conditional 

alpha. Thus, the issue of data mining for predictive variables appears to have no serious 

implications for measures of average abnormal performance in the conditional asset pricing 

regressions, provided T > 66. This justifies the use of such models for studying the cross-

section of average equity returns.  

The coefficients α1, which represent the time-varying part of the conditional alphas, 

present a different pattern. We would expect a data mining effect, given that the data are 

mined based on the coefficients on the lagged predictor in the simple predictive regression.  

The presence of the interaction term, however, would be expected to attenuate the bias in the 

standard errors, compared with the simple predictive regression.  The table shows only a 

small effect of data mining on the α1 coefficient, but a large effect on its t-ratio.  The overall 

effect is the greatest at the smaller sample size (T = 66), where the critical t-ratios for the 

intermediate Rp
2 values (10% predictive R2) vary from about 2.4 to 5.2 as the number of 

variables mined increases from one to 250.  The bias diminishes with T, especially when the 

number of mined variables is small, and for L = 1 there is no substantial bias at T = 360 or T = 

960 months. 

The results on the α1 coefficient are interesting in three respects.  First, the critical t-

ratios vary by only small amounts across the rows of the table.  This indicates very little 

interaction between the spurious regression and data mining effects.  Second, the table shows 

a smaller data mining effect than observed on the pure predictive regression.  Thus, standard 
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data mining corrections for predictive regressions will overcompensate in this setting.  Third, 

the critical t-ratios for α1 become smaller in Table 5 as the sample size is increased.  This is 

just the opposite of what is found for the simple predictive regressions, where the 

inconsistency in the standard errors makes the critical t-ratios larger at larger sample sizes.  

Thus, the sampling distributions for time-varying alpha coefficients are not likely to be well 

approximated by simple corrections.11 

Table 5 does not report the t-statistics for b0, the constant part of the beta estimate.  

These are generally unbiased across all of the samples, except that the critical t-ratios are 

slightly inflated at the smaller sample size (T = 66) when data mining is not at issue (L = 1). 

 Finally, Table 5 shows results for the b1 coefficients and their t-ratios, which capture 

the time-varying component of the conditional betas.  Here, the average values and the critical 

t-ratios are barely affected by the number of variables mined. When T = 66 the critical t-ratios 

stay in a narrow range, from about 2.5 to 2.6, and they cluster closely around a value of 2.0 at 

the larger sample sizes.  There are no discernible effects of data mining on the distribution of 

the time-varying beta coefficients except when the R2 values are very high.  This is an 

important result in the context of the conditional asset pricing literature, which we 

characterize as having mined predictive variables based on the regression (1).  Our results 

suggest that the empirical evidence in this literature for time-varying betas, based on the 

regression model (3), is relatively robust to the data mining. 

 

7.3. Suppressing Time-Varying Alphas 

Some studies in the conditional asset pricing literature use regression models with interaction 

terms, but without the time-varying alpha component (e.g. Cochrane (1996), Ferson and 

Schadt (1996), Ferson and Harvey, 1999).  Since the time-varying alpha component is the 
                                                 
11 We conducted some experiments in which we applied a simple local-to-unity correction to the t-ratios, 

dividing by the square root of the sample size.  We found that this correction does not result in a t-ratio that is 

approximately invariant to the sample size. 
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most troublesome term in the presence of spurious regression and data mining effects, it is 

interesting to ask if regressions that suppress this term may be better specified.  Table 6 

presents results for models in which the analyst runs regressions without the α1 coefficient.  

The results suggest that the average alpha coefficient, α0, and its t-statistic remain well 

specified regardless of data mining and potential spurious regression.  Thus, once again we 

find little cause for concern about the inferences on average abnormal returns using the 

conditional asset pricing regressions, even though they use persistent, data mined lagged 

regressors.   

The distribution of the average beta estimate, b0, is not shown in Table 6.  The results 

are similar to those obtained in a factor model regression where no lagged instrument is used.  

The coefficients and standard errors generally appear well specified.  However, we find that 

the coefficient measuring the time-varying beta is somewhat more susceptible to bias than in 

the regression that includes α1. The b1 coefficient is biased, especially when T = 66, and its 

mean varies with the number of instruments mined. The critical t-ratios are inflated at the 

higher values of Rp
2 and when more instruments are mined. 

 

[Table 6 about here] 

 

These experiments suggest that including the time-varying alpha in the regression (3) 

helps “soak up” the bias so that it does not adversely effect the time varying beta estimate.  

We conclude that if one is interested in obtaining good estimates of conditional betas, then in 

the presence of potential data mining and persistent lagged instruments, the time-varying 

alpha term should be included in the regression.   

 

7.4. Suppressing Time-Varying Betas 

There are examples in the literature where the regression is run with a linear term for a time-

varying conditional alpha but no interaction term for a time varying conditional beta (e.g. 
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Jagannathan and Wang, 1996). Table 7 considers this case.   

 

[Table 7 about here] 

 

First, the coefficient for the average beta in the regression with no b1 term (not shown in the 

table) is reasonably well specified and largely unaffected by data mining on the lagged 

instrument. We find that the coefficients for alpha, α0 and α1, behave similarly to the 

corresponding coefficients in the full regression model (3).  The estimates of the average 

alpha are reasonably well behaved, and only mildly affected by the extent of data mining at 

smaller sample sizes. The bias in α1 is severe. The bias leads the analyst to overstate the 

evidence for a time-varying alpha, and the bias is worse as the amount of data mining 

increases. Thus, the evidence in the literature for time-varying alphas, based on these asset-

pricing regressions, is likely to be overstated.   

 

7.5. A Cross-Section of Asset Returns   

We extend the simulations to study a cross-section of asset returns.  We use five book-to-

market (BM) quintile portfolios, equally weighted across the size dimension, as an 

illustration.  The data are courtesy of Kenneth French. In these experiments the cross-section 

of assets features cross-sectional variation in the true conditional betas. Instead of βt = 1 + Zt
*, 

the betas are βt = β0 + β1 Zt
*, where the coefficients β0 and β1 are the estimates obtained from 

regressions of each quintile portfolio’s excess return on the market portfolio excess return and 

the product of the market portfolio with the lagged value of the dividend yield.  The set of β0’s 

is {1.259, 1.180, 1.124, 1.118, 1.274}, the set of β1’s is {-1.715, 1.000, 3.766, 7.646, 8.970}.12  

                                                 
12 The β1 coefficient for the BM2 portfolio is 1.0, replacing the estimated value of 0.047. When the β1 coefficient 

is 0.047 the simulated return becomes nearly perfectly correlated with rm and the simulation is uninformative. 

The dividend yield is demeaned and multiplied by 10. The dividend yield has the largest average sample 

correlation with the five BM portfolios among the standard instruments we examine. 
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The true predictive R-squared in the artificial data generating process is set to 0.5 percent.  

This value matches the smallest R-squared from the regression of the market portfolio on the 

lagged dividend yield with a window of 60 months.   

Table 8 shows simulation results for the conditional model with time-varying alphas 

and betas.  The means of the b0 and b1 coefficients are shown in excess of their true values in 

the simulations. The critical t-statistics for both α1 and b1 are generally similar to the case 

where Rp
2 = 0.5 percent in Table 5. As before, there is a large bias in the t-statistic for α1 that 

increases with data mining but decreases somewhat with the sample size. The t-statistics for 

the time-varying betas are generally well specified.  

 

[Table 8 about here] 

 

We conduct additional experiments using the cross section of asset returns, where the 

conditional asset pricing regression suppresses either the time-varying alphas or the time-

varying betas. The results are similar to those in Table 8.  When the time-varying betas are 

suppressed there is severe bias in α1 that diminishes somewhat with the sample size. When 

time-varying alphas are suppressed there is a mild bias in b1. 

 

7.6. Revisiting Previous Evidence 

In this section, we explore the impact of the joint effects of data mining and spurious 

regression bias on the asset pricing evidence based on regression (3).  First, we revisit the 

studies listed in Table 2.  Consider the models with both time-varying alphas and betas.  If the 

data mining searches over 250 variables predicting the test asset return and T = 350, the 5% 

cut-off value to apply to the t-statistic for α1 is larger than 3.8 in absolute value.  For smaller 

sample sizes, the cut-off value is even higher.  Note from Table 2 that the largest t-statistic for 

α1 in Shanken (1990) with a sample size of 360 is -3.57 on the T-bill volatility, while the 

largest t-statistic for α1 in Christopherson, Ferson and Glassman (1998) with a sample size of 
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144 is 3.72 on the dividend yield.  This means that the significance of the time-varying alphas 

in both of these studies is questionable.  However, the largest t-statistic for b1 in Shanken 

(1990) exceeds the empirical 5% cut-off, irrespective of spurious regression and data mining 

adjustments.  This illustrates that the evidence for time-varying beta is robust to the joint 

effects of data mining and spurious regression bias, while the evidence for time-varying 

alphas is fragile. 

Now consider the model with no time-varying alpha.  If the data mining searches over 

250 variables to predict the test asset return, the 5% cut-off value to apply to the t-statistic on 

b1 is less than 3.5 in absolute value.  Cochrane (1996) reports a t-statistic of -4.74 on the 

dividend yield in a time-varying beta, with a sample of T = 186.  Thus, we find no evidence to 

doubt the inference that there is a time-varying beta.  (However, the significance of the term 

premium in the time-varying beta, with a t-statistic of -1.76, is in doubt at the 10% level.) 

Finally, consider the model with no time-varying beta.  If the data mining searches 

over 25 variables to predict the test asset return, then the 5% cut-off value to apply to the t-

statistic on α1 is larger than 3.1 in absolute value.  The largest t-statistic in Jagannathan and 

Wang (1996) with a sample size of 330 is 3.1.  Therefore, their evidence for a time-varying 

alpha does not survive even with a modest amount of data mining. 

We conclude that some aspects of the conditional asset pricing regression (3) are 

robust to data mining over persistent predictor variables, while others are not.  The regression 

delivers reliable estimates of average abnormal returns and betas.  However, the estimates of 

time-varying alphas may have vastly overstated statistical significance when standard tests are 

used. 

 

 
8. Solutions to the problems of Spurious Regression and Data Mining 

8.1. Solutions in Predictive Regressions 
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 The essential problem in dealing with the spurious regression bias is to get the right standard 

errors.  We examine the Newey-West (1987) style standard errors that have been popular in 

recent studies.  These involve a number of "lag" terms to capture persistence in the regression 

error.  We use the automatic lag selection procedure described in footnote 1, and we compare 

it to a simple ordinary least squares (OLS) regression with no adjustment to the standard 

errors, and to a heteroskedasticity-only correction due to White (1980).  Table 9 shows the 

critical t-ratios you would have to use in a 5%, two-tailed test, accounting for the possibility 

of spurious regression.  Here we consider an extreme case with ρ* = 99%, because if we can 

find a solution that works in this case it should also work in most realistic cases.  The critical 

t-ratios range from 2.24 to 6.12 in the first three columns.  None of the approaches delivers 

the right critical value, which should be 1.96.  The table shows that a larger sample size is no 

insurance against spurious regression.  In fact, the problem is the worst at the largest sample 

size. 

  The Newey-West approach is consistent, which means that by letting the number of 

lags grow when you have longer samples, you should eventually get the right standard error 

and solve the spurious regression problem.  So, the first potential solution we examine is 

simply to use more lags in the consistent standard errors.  Unfortunately, it is hard to know 

how many lags to use.  The reason is that in stock return regressions the large unexpected part 

of stock returns is in the regression error, and this "noise" masks the persistence in the 

expected part of the return.  If you use too few lags the standard errors are biased and the 

spurious regression remains.  The “White” example in column two is an illustration where the 

number of lags is zero.  If you use too many lags the standard errors will be inefficient and 

inaccurate, except in the largest sample sizes.  We use simulations to evaluate the strategy of 

letting the number of lags grow large.  We find that in realistic sample sizes, more lags do not 

help the spurious regression problem.  The fourth column of Table 9 (denoted NW(20)) shows 

an example of this where 20 lags are used in monthly data.  The critical t-ratios are still much 

larger than two.  In the smaller sample size (T = 60) it is actually better to use the standard 
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procedure, without any adjustments. 

  A second potential solution to the spurious regression problem is to include a lagged 

value of the dependent variable as an additional right-hand side variable in the regression.  

The logic of this approach is that the spurious regression problem is caused by autocorrelation 

in the regression residuals, which is inherited from the dependent variable.  Therefore, logic 

suggests that putting a lagged dependent variable in the regression should “soak up” the 

autocorrelation, leaving a clean residual.  The columns of Table 9 labeled “lagged return” 

evaluate this approach.  It helps a little bit, compared with no adjustment, but the critical t-

ratios are still much larger than two at the larger sample sizes.  For a hypothetical monthly 

sample with 350 observations, a t-ratio of 3.7 is needed for significance.  The reason that this 

approach doesn't work very well is the same reason that increasing the number of lags in the 

Newey-West method fails to work in finite samples.  It is peculiar to stock return regressions, 

where the ex ante expected return may be persistent but the actual return includes a large 

amount of unpredictable noise.  Spurious regression is driven in this case by persistence in the 

ex ante return, but the noise makes the lagged return a poor instrument for this persistence.13 

 

[Table 9 about here] 

 

  Of the various approaches we tried, the most practically useful insurance against 

spurious regression seems to be a form of "stochastic detrending" of the lagged variable, 

advocated by Campbell (1991).  The approach is very simple.  Just transform the lagged 

variable by subtracting off a trailing moving average of its own past values.  Instead of 

regressing returns on Zt, regress them on: 

                                                 
13 More formally, consider a case where the ex ante return is an AR(1) process, in Box-Jenkins notation.  The 

realized return is distributed as an AR(1) plus noise, which is ARMA(1,1).  Regressing the return on the lagged 

return, the residual may still be highly persistent.  
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(7) Xt = Zt − (1/τ) Σj=1,...,τ Zt-j. 

 While different numbers of lags could be used in the detrending, Campbell uses 12 

monthly lags, which seems natural for monthly data.  We evaluate the usefulness of his 

suggestion in the last two columns of Table 9.  With this approach the critical t-ratios are less 

than 2.5 at all sample sizes, and much closer to 1.96 than any of the other examples.  The 

simple detrending approach works pretty well.  Detrending lowers the persistence of the 

transformed regressor, resulting in autocorrelations that are below the levels where spurious 

regression becomes a problem.  Stochastic detrending can do this without destroying the 

information in the data about a persistent ex ante return, as would be likely to occur if the 

predictor variable is simply first differenced.  Overall, we recommend stochastic detrending 

as a simple method for controlling the problem of spurious regression in stock returns. 

 

8.2. Solutions in Conditional Asset Pricing Models  

Since detrending works relatively well in simple predictive regressions, one would think of 

using it also in conditional asset pricing tests to correct the inflated t-statistics on the time-

varying alpha coefficient.  However, as we observed above, the bias in the t-statistic on a1 is 

largely due to data mining rather than spurious regression.  As a result, high t-statistics on a1 

for large number of data mining searches come not from the high autocorrelation of Zt but 

rather from its high cross-correlation with the asset return.  Therefore, simple detrending does 

not work in this case because chosen instruments may not necessarily have high persistency.14 
 

 

9. Robustness of the Asset Pricing Results 

This section summarizes the results of a number of additional experiments. We extend the 
                                                 
14 Note that the more the asset return volatility resembles that of the entire market (i.e., if it is lower than in our 
simulations) the higher is the likelihood of finding more evidence of spurious regression bias.  Then a simple 
detrending will help adjusting the t-statistics of both a1 and b1 just as it did in the predictive regression case.  
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simulations of the asset pricing models to consider examples with more than a single lagged 

instrument. We consider asset pricing models with multiple factors, motivated by Merton’s 

(1973) multiple-beta model. We also examine models where the data mining to select the 

lagged instruments focuses on predicting the market portfolio return instead of the test asset 

returns. 

 

9.1. Multiple Instruments 

The experiments summarized above focus on a single lagged instrument, while many studies 

in the literature use multiple instruments. We modify the simulations, assuming that the 

researcher mines two independent instruments with the largest absolute t-statistics and then 

uses both of them in the conditional asset pricing regression (3) with time-varying betas and 

alphas. (Thus, there are two a1 coefficients and two b1 coefficients.) These simulations reveal 

that the statistical behavior of both coefficients are similar to each other and similar to our 

results as reported in Table 5. 

 

9.2. Multiple-Beta Models 

We extend the simulations to study models with three state variables or factors. In building 

the three-factor model, we make the following assumptions. All three risk premiums are linear 

functions of one instrument, Z*.  The factors differ in their unconditional means and their 

disturbance terms, which are correlated with each other.  The variance-covariance matrix of 

the disturbance terms matches that of the residuals from regressions of the three Fama-French 

(1993, 1996) factors on the lagged dividend yield.  The true coefficients for the asset return on 

all three factors and their interaction terms with the correct lagged instrument, Z*, are set to 

unity. Thus, the true conditional betas on each factor are equal to 1 + Z*.  We find that the 

bias in the t-statistic for α1 remains and is similar to the simulation in Table 5.  There are no 

biases in the t-statistics associated with the b1's for the larger sample sizes.   

 



 34 

9.3. Predicting the Market Return 

Much of the previous literature looked at more than one asset to select predictor variables. For 

the examples reported in the previous tables, the data mining is conducted by attempting to 

predict the excess returns of the tests assets.  But a researcher might also choose instruments 

to predict the market portfolio return. We examine the sensitivity of the results to this change 

in the simulation design.  The results for the conditional asset pricing model with both time-

varying alphas and betas are re-examined.  Recall that when the instrument is mined to predict 

the test asset return, there is an upward bias in the t-statistic for α1.  The bias increases with 

data mining and decreases somewhat with T.  When the instruments are mined to predict the 

market, the bias in α1 is small and is confined to the smaller sample size, T = 66.  Mining to 

predict the market return has little impact on the sampling distribution of b1.  

 

9.4. Simulations under the Alternative Hypothesis 

Note that the return generating process (6) does not include an intercept or alpha, consistent with 

asset pricing theory.  Thus, the data are generated under the null hypothesis that an asset pricing 

model holds exactly.  However, no asset pricing model is likely to hold exactly in reality.  We 

therefore conduct experiments in which the data generating process allows for a nonzero alpha.  

We modify equation (6) as follows: 
 

(8)     rt+1 = a1Zt
* + βt rm,t+1 + ut+1, 

      βt = 1 + Zt
*, 

      rm,t+1 = μ + k Z*
t + wt+1. 

 

In the system (8), there is a time-varying alpha, proportional to Zt
*.  We set the coefficient a1 = k 

and estimate the model (3) again.  With this modification, the bias in the time-varying alpha 

coefficient , α1, is slightly worse at the larger R2 values and larger values of L than it was before.  

The overall patterns, including the reduction in bias for larger values of T, are similar.  We also 
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run the model with no time-varying beta, and the results are similar to those reported above for 

that case. 

 

 
10. Conclusions 
 

Our results have distinct implications for tests of predictability and model selection.  In tests 

of predictability, the researcher chooses a lagged variable and regresses future returns on the 

variable. The hypothesis is that the slope coefficient is zero.  Spurious regression presents no 

problem from this perspective, because under the null hypothesis the expected return is not 

actually persistent.  If this characterizes the academic studies of Table 1, the eight t-ratios 

larger than two suggest that ex ante stock returns are not constant over time.  

  The more practical problem is model selection.  In model selection, the analyst 

chooses a lagged instrument to predict returns, for purposes such as implementing a tactical 

asset allocation strategy, active portfolio management, conditional performance evaluation or 

market timing.  Here is where the spurious regression problem rears its ugly head.  You are 

likely to find a variable that appears to work on the historical data, but will not work in the 

future.  A simple form of stochastic detrending lowers the persistence of lagged predictor 

variables, and can be used to reduce the risk of finding spurious predictive relations.  

  The pattern of evidence for the lagged variables in the academic literature is similar to 

what is expected under a spurious data mining process with an underlying persistent ex ante 

return.  In this case, we would expect instruments to be discovered, then fail to work with 

fresh data. The dividend yield rose to prominence in the 1980s, but apparently fails to work 

for post-1990 data (Goyal and Welch, 2003; Schwert, 2003). The book-to-market ratio also 

seems to have weakened in recent data.  When more data are available, new instruments 

appear to work (e.g. Lettau and Ludvigson, 2001; Lee et al., 1999).  Analysts should be wary 

that the new instruments, if they arise from the spurious mining process that we suggest, are 
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likely to fail in future data, and thus fail to be practically useful. 

  We also study regression models for conditional asset pricing models in which lagged 

variables are used to model conditional betas and alphas.  The conditional asset pricing 

literature has, for the most part used the same variables that were discovered based on simple 

predictive regressions, and our analysis characterizes the problem by assuming the data 

mining occurs in this way.  Our results relate to several stylized facts that the literature on 

conditional asset pricing has produced.   

  Previous studies find evidence that the intercept, or average alpha, is smaller in a 

conditional model than in an unconditional model, suggesting, for example, that the 

conditional CAPM does a better job of explaining average abnormal returns.  Our simulation 

evidence finds that the estimates of the average alphas in the conditional models are 

reasonably well specified in the presence of spurious regression and data mining, at least for 

samples larger than T = 66.  Some caution should be applied in interpreting the common 60-

month rolling regression estimator, but otherwise we take no issue with the stylized fact that 

conditional models deliver smaller average alphas.   

  Studies typically find evidence of time varying betas based on significant interaction 

terms. Here again we find little cause for concern.  The coefficient estimator for the 

interaction term is well specified in larger samples, and largely unaffected by data mining in 

the presence of persistent lagged regressors.  There is an exception when the model is 

estimated without a linear term in the lagged instrument.  In this case, the coefficient 

measuring the time-varying beta is slightly biased.  Thus, when the focus of the study is to 

estimate accurate conditional betas, we recommend that a linear term be included in the 

regression model.  

  Studies also find that even conditional models fail to explain completely the dynamic 

properties of stock returns. That is, the estimates indicate time-varying conditional alphas.  

We find that this result is the most problematic. The estimates of time variation in alpha 

inherit biases similar to, if somewhat smaller than, the biases in predictive regressions. We 
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use our simulations to revisit the evidence of several prominent studies.  Our analysis suggests 

that the evidence for time-varying alphas in the current literature should be viewed with some 

suspicion.  Perhaps, the current generation of conditional asset pricing models do a better job 

of capturing the dynamic behavior of asset returns than existing studies suggest. 

  Finally, we think that our study, as summarized in this chapter, represents the 

beginning of what could be an important research direction at the nexus of econometrics and 

financial economics.  The literature in this area has arrived at a good understanding of a 

number of econometric issues in asset pricing research; the two issues that we take on are 

only part of a much longer list that includes stochastic regressor bias, unit roots, cointegration, 

overlapping data, time aggregation, structural change, errors-in-variables, and many more.  

But what is less understood is how these econometric issues interact with each other.  We 

have seen that the interaction of data mining and spurious regression is likely to be a problem 

of practical importance.  Many of other econometric issues also occur in combination in our 

empirical practice.  We need to study these other interactions in future research. 
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Table 1 
Common Instrumental Variables: Sources, Summary Statistics and OLS Regression Results 

This table summarizes variables used in the literature to predict stock returns.  The first column indicates the published study. The second column denotes the 
lagged instrument.  The next two columns give the sample (Period) and the number of observations (Obs) on the stock returns.  Columns five and six report the 
autocorrelation (ρΖ) and the standard deviation of the instrument (σΖ), respectively.  The next three columns report regression results for Standard & Poors 500 
excess return on a lagged instrument.  The slope coefficient is β, the t-statistic is t, and the coefficient of determination is R2.  The last column (HAC) reports the 
method used in computing the standard errors of the slopes.  The method of Newey-West (1987) is used with the number of lags given in parentheses.  The 
abbreviations in the table are as follows.  TB1y is the yield on the one-month Treasury bill. Two-one, Six-one, and Lag(two)-one are computed as the spreads on 
the returns of the two and one-month bills, six and one-month bills, and the lagged value of the two-month and current one-month bill.  The yield on all corporate 
bonds is denoted as ALLy.  The yield on AAA rated corporate bonds is AAAy and UBAAy is the yield on corporate bonds with a below BAA rating.  The variable 
“Cay” is the linear function of consumption, asset wealth, and labor income.  The book-to-market ratios for the Dow Jones Industrial Average and the S&P500 
are respectively DJBM and SPBM.   
 

(1) 
Reference 

(2) 
Predictor 

(3) 
Period 

(4) 
Obs 

(5) 
ρΖ 

(6) 
σΖ 

(7) 
β 

(8) 
t 

(9) 
R2 

(10) 
HAC 

Breen, Glosten & Jagannathan (89) TB1y 5404-8612 393 0.97 0.0026 -2.49 -3.58 0.023 NW(5) 
Campbell (87) Two–one 5906-7908 264 0.32 0.0006 11.87 2.38 0.025 NW(0) 
 Six–one 5906-7908 264 0.15 0.0020 2.88 2.13 0.025 NW(0) 
 Lag(two) − one 5906-7908 264 0.08 0.0010 9.88 2.67 0.063 NW(6) 
Fama (90) ALLy–AAAy 5301-8712 420 0.97 0.0040 0.88 1.46 0.005 MA(0) 
Fama & French (88a) Dividend yield 2701-8612 720 0.97 0.0013 0.40 1.36 0.007 MA(9) 
Fama & French (89) AAAy–TB1y 2601-8612 732 0.92 0.0011 0.51 2.16 0.007 MA(9) 
Keim & Stambaugh (86) UBAAy 2802-7812 611 0.95 0.0230 1.50 0.75 0.002 MA(9) 
 UBAAy–TB1y 2802-7812 611 0.97 0.0320 1.57 1.48 0.007 MA(9) 
Kothari & Shanken (97) DJBM 1927-1992 66 0.66 0.2270 0.28 2.63 0.078 MA(0) 
Lettau & Ludvigson (01) “Cay” 52Q4-98Q4 184 0.79 0.0110 1.57 2.58 0.057 MA(7) 
Pontiff & Schall (98) DJBM 2602-9409 824 0.97 0.2300 2.96 2.16 0.012 MA(9) 
 SPBM 5104-9409 552 0.98 0.0230 9.32 1.03 0.001 MA(5) 
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Table 2 
Representative Studies on Conditional Asset Pricing Models 

This table summarizes representative conditional asset pricing and performance evaluation studies.  The first column indicates the published study.  The second 
column specifies the lagged instruments used.  The next two columns give the sample (Period) and the number of observations (Obs) on the stock returns.  
Columns five and six indicate whether the conditional model includes time-varying alpha (αt) and the time-varying beta (βt), respectively.  The last five columns 
summarize the regression results.  Column seven shows the ratio of an intercept (a pricing error) in the conditional model to that of the unconditional.  Columns 8 
and 9 report the point estimates of the time-varying alpha, α1, and their corresponding t-statistics, t(α).  Columns 10 and 11 report the point estimates of the time-
varying beta coefficient, b1, and their corresponding t-statistics, t(b1).  For each predictor, the table reports regression estimates corresponding to the largest in 
absolute value t-statistics.  The abbreviations in the table are as follows.  TB1y and TB1vol are the yield and volatility on the one-month Treasury bill, 
respectively. Three-one is the difference between the lagged returns of a three-month and a one-month T-bill.  The variable “Cay” is the linear function of 
consumption, asset wealth, and labor income.  DY is the dividend yield of the CRSP index. Term is a spread between long-term and short-term bonds.  Default is 
a spread between low-grade and high-grade corporate bonds.  “None” stands parameter values not used in the study, “NA” stands for results not reported. 
 

(1) 
Reference 

(2) 
Predictor 

(3) 
Period 

(4) 
Obs 

(5) 
αt 

(6) 
βt 

 (7) 
|α0/α| 

(8) 
α1 

(9) 
t(α1) 

(10) 
b1 

(11) 
t(b1) 

Shanken (90) 
 

TB1y 
TB1vol 

5301-8212 360 Yes Yes NA -0.48 
-5.70 

-1.17 
-3.56 

1.42 
-8.40 

5.92 
-4.42 

Cochrane (96) 
 

DY 
Term 

47Q1-93Q4 188 No Yes NA None None -0.53 
-0.31 

-4.74 
-1.76 

Ferson & Schadt (96) 
 

TB1y 
DY 

Term 
Default 

6801-9012 276 No Yes 0.72 None None NA NA 

Jagannathan & Wang (96) 
 

Default 6307-9012 330 Yes No 1.53 -65.7 -3.10 None None 

Christopherson et al. (98) 
 

TB1y 
DY 

Term 

7901-9012 144 Yes Yes 0.77 -0.21 
1.22 
-0.21 

-2.01 
3.72 
-1.85 

NA NA 

Lettau & Ludvigson (01) 
 

“Cay” 63Q3-98Q3 144 Yes Yes 0.84 NA NA NA NA 

Petkova & Zhang (05) TB1y 
DY 

Term 
Default 

2701-0112 900 No Yes 0.97 None None NA NA 



Table 3 
The Monte Carlo Simulation Results for Regressions with a Lagged Predictor Variable 

The table reports the 97.5 percentile of the Monte Carlo distribution of 10,000 Newey-West t-statistics, the 95 
percentile for the estimated coefficients of determination, and the average estimated slopes from the regression 

11 ++ +δ+α= ttt vZr , 
where rt+1 is the excess return, Zt is the predictor variable, and t=1,...,T.  The parameter ρ∗ is the autocorrelation 
coefficient of the predictors, *

tZ  and Zt.  The R2 is the coefficient of determination from the regression of excess 
returns 1+tr  on the unobserved, true instrument *

tZ .  Panel A depicts the results for T = 66 and Panel B for T = 
824.  Panel C gives the simulation results for the number of observations and the autocorrelations in Table 1.  In 
Panel C, the true R2 is set to 0.1.  The theoretical critical R2 is from the F-distribution. 
 

Panel A: 66 Observations 
R2/ ρ∗ 0 0.5 0.9 0.95 0.98 0.99 
 Means: δ 
0.001 -0.0480 -0.0554 -0.0154 -0.0179 -0.0312 -0.0463 
0.005 -0.0207 -0.0246 -0.0074 -0.0088 -0.0137 -0.0193 
0.010 -0.0142 -0.0173 -0.0055 -0.0066 -0.0096 -0.0129 
0.050 -0.0055 -0.0075 -0.0029 -0.0037 -0.0040 -0.0042 
0.100 -0.0033 -0.0051 -0.0023 -0.0030 -0.0026 -0.0021 
0.150 -0.0024 -0.0040 -0.0020 -0.0026 -0.0020 -0.0012 
 Critical t-statistics 
0.001 2.1951 2.3073 2.4502 2.4879 2.4746 2.4630 
0.005 2.2033 2.3076 2.4532 2.5007 2.5302 2.5003 
0.010 2.2121 2.3123 2.4828 2.5369 2.5460 2.5214 
0.050 2.2609 2.3335 2.6403 2.7113 2.7116 2.6359 
0.100 2.2847 2.3702 2.8408 2.9329 2.9043 2.7843 
0.150 2.2750 2.3959 3.0046 3.1232 3.0930 2.9417 
 Critical estimated R2 
0.001 0.0593 0.0575 0.0598 0.0599 0.0610 0.0600 
0.005 0.0590 0.0578 0.0608 0.0607 0.0616 0.0604 
0.010 0.0590 0.0579 0.0619 0.0623 0.0630 0.0612 
0.050 0.0593 0.0593 0.0715 0.0737 0.0703 0.0673 
0.100 0.0600 0.0622 0.0847 0.0882 0.0823 0.0766 
0.150 0.0600 0.0649 0.0994 0.1032 0.0942 0.0850 
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Table 3 (continued) 
 
 

Panel B: 824 Observations 
R2/ ρ∗ 0 0.5 0.9 0.95 0.98 0.99 
 Means: δ 
0.001 0.0150 0.0106 0.0141 0.0115 0.0053 -0.0007 
0.005 0.0067 0.0049 0.0069 0.0055 0.0021 -0.0011 
0.010 0.0048 0.0035 0.0052 0.0040 0.0014 -0.0012 
0.050 0.0021 0.0017 0.0029 0.0021 0.0003 -0.0014 
0.100 0.0015 0.0013 0.0023 0.0016 0.0001 -0.0014 
0.150 0.0012 0.0011 0.0021 0.0014 -0.0000 -0.0014 
 Critical t-statistics 
0.001 1.9861 2.0263 2.0362 2.0454 2.0587 2.0585 
0.005 1.9835 2.0297 2.0429 2.1123 2.1975 2.2558 
0.010 1.9759 2.0279 2.0655 2.1479 2.3578 2.4957 
0.050 1.9878 2.0088 2.2587 2.5685 3.1720 3.7095 
0.100 1.9862 2.0320 2.3758 2.7342 3.6356 4.4528 
0.150 2.0005 2.0246 2.4164 2.8555 3.8735 4.9151 
 Critical estimated R2 
0.001 0.0046 0.0047 0.0047 0.0047 0.0049 0.0049 
0.005 0.0046 0.0047 0.0048 0.0051 0.0056 0.0059 
0.010 0.0046 0.0047 0.0050 0.0054 0.0065 0.0073 
0.050 0.0046 0.0047 0.0066 0.0085 0.0132 0.0183 
0.100 0.0047 0.0049 0.0084 0.0125 0.0220 0.0316 
0.150 0.0046 0.0050 0.0104 0.0166 0.0308 0.0450 

 
 

Panel C: Table 1 simulation  

Obs  ρ∗ Critical 
theoretical R2 

Critical t-
statistic 

Critical 
estimated R2 

393 0.97 0.0098 3.2521 0.0311 
264 0.32 0.0146 2.0645 0.0151 
264 0.15 0.0146 2.0560 0.0151 
264 0.08 0.0146 2.0318 0.0146 
420 0.97 0.0092 3.2734 0.0304 
720 0.97 0.0053 3.2005 0.0194 
732 0.92 0.0053 2.3947 0.0103 
611 0.95 0.0063 2.8843 0.0167 
611 0.97 0.0063 3.2488 0.0219 
66 0.66 0.0586 2.4221 0.0656 

184 0.79 0.0209 2.2724 0.0270 
824 0.97 0.0047 3.1612 0.0173 
552 0.98 0.0070 3.6771 0.0293 
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Table 4 
The Monte Carlo Simulation Results of Regressions with Spurious Regression 

and Data Mining, with Independent Regressors 
The table reports the 97.5 percentile of the Monte Carlo distribution of 10000 Newey-West t-statistics, the 95 
percentile for the estimated coefficients of determination, and the average estimated slopes from the regression 

11 ++ +δ+α= ttt vZr , 
where rt+1 is the excess return, Zt is the predictor variable, and t=1,...,T.  The R2 is the coefficient of 
determination from the regression of excess returns 1+tr  on the unobserved, true instrument *

tZ , which has the 
autocorrelation ρ*.  The parameter L is the number of instruments mined, where the one with the highest 
estimated R2 is chosen.  Panels A and B depict the results for T = 66 and T = 824 respectively, when the 
autocorrelation of the true predictor, ρ* = 0.15.  Panels C and D depict the results for T = 66 and T = 824, 
respectively, when the autocorrelation of the true predictor, ρ* = 0.95, the median autocorrelation in Table I.  In 
Panel E, the true R2 is set to 0.1 and the original distribution of instruments is transformed so that their median 
autocorrelation is set at 0.95.  The left-hand-side of Panel E gives the critical L for the given number of 
observations and autocorrelation that is sufficient to generate critical t-statistics or R2’s in excess of the 
corresponding statistics in Table 1.  The right-hand-side of Panel E gives the critical L that is sufficient to 
generate critical t-statistics or R2’s in excess of the corresponding statistics in Table 1 when ρ* = 0.95.  
 
 

Panel A: 66 Observations; ρ* = 0.15 
R2/L 1 5 10 25 50 100 250 
 Means: δ 
0 -0.0004 0.0002 -0.0002 0.0004 -0.0001 0.0001 0.0005 
0.001 -0.0114 0.0044 -0.0069 0.0208 -0.0078 0.0012 0.0162 
0.005 -0.0050 0.0017 -0.0017 0.0113 -0.0014 -0.0031 0.0109 
0.010 -0.0035 0.0008 -0.0014 0.0076 -0.0002 -0.0011 0.0098 
0.050 -0.0014 0.0004 -0.0004 0.0018 -0.0023 -0.0013 0.0063 
0.100 -0.0009 0.0006 -0.0004 0.0014 -0.0013 -0.0007 0.0044 
0.150 -0.0007 0.0007 -0.0002 0.0009 -0.0010 -0.0010 0.0035 
 Critical t-statistics 
0 2.2971 3.2213 3.5704 4.1093 4.4377 4.8329 5.2846 
0.001 2.2819 3.2105 3.5418 4.1116 4.4351 4.8238 5.2803 
0.005 2.2996 3.2250 3.5466 4.1190 4.4604 4.7951 5.2894 
0.010 2.2981 3.2109 3.5492 4.1198 4.4728 4.7899 5.2900 
0.050 2.2950 3.2416 3.5096 4.0981 4.4036 4.8803 5.2527 
0.100 2.3175 3.2105 3.5316 4.1076 4.4563 4.8772 5.2272 
0.150 2.3040 3.2187 3.5496 4.0644 4.5090 4.8984 5.2948 
 Critical estimated R2 
0 0.0594 0.0974 0.1153 0.1387 0.1548 0.1738 0.1944 
0.001 0.0589 0.0969 0.1149 0.1386 0.1546 0.1739 0.1944 
0.005 0.0591 0.0972 0.1151 0.1383 0.1545 0.1734 0.1948 
0.010 0.0592 0.0967 0.1158 0.1386 0.1544 0.1733 0.1950 
0.050 0.0596 0.0970 0.1163 0.1390 0.1557 0.1738 0.1955 
0.100 0.0608 0.0969 0.1165 0.1392 0.1570 0.1738 0.1954 
0.150 0.0612 0.0975 0.1165 0.1397 0.1577 0.1745 0.1967 
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Table 4 (continued) 
 
 

Panel B: 824 Observations; ρ* = 0.15  
R2/L 1 5 10 25 50 100 250 
 Means: δ 
0 0.0000 0.0000 0.0000 0.0000 -0.0001 -0.0002 0.0000 
0.001 -0.0004 0.0032 -0.0017 0.0000 -0.0028 -0.0058 0.0015 
0.005 -0.0002 0.0012 -0.0004 0.0000 -0.0020 -0.0031 0.0007 
0.010 -0.0001 0.0009 -0.0004 -0.0003 -0.0015 -0.0020 0.0004 
0.050 -0.0001 0.0005 0.0000 -0.0005 -0.0006 -0.0009 0.0004 
0.100 0.0000 0.0005 -0.0001 -0.0003 -0.0001 -0.0002 0.0003 
0.150 0.0000 0.0003 -0.0003 -0.0003 0.0001 -0.0002 0.0002 
 Critical t-statistics 
0 2.0283 2.5861 2.8525 3.1740 3.3503 3.5439 3.8045 
0.001 2.0369 2.6000 2.8534 3.1785 3.3616 3.5443 3.7928 
0.005 2.0334 2.6043 2.8565 3.1769 3.3625 3.5440 3.7906 
0.010 2.0310 2.6152 2.8694 3.1782 3.3544 3.5477 3.7917 
0.050 2.0272 2.6229 2.8627 3.1846 3.3450 3.5552 3.8039 
0.100 2.0115 2.6304 2.8705 3.1807 3.3648 3.5673 3.8041 
0.150 2.0044 2.6327 2.8618 3.1766 3.3691 3.5723 3.7965 
 Critical estimated R2 
0 0.0047 0.0079 0.0096 0.0116 0.0130 0.0145 0.0166 
0.001 0.0047 0.0079 0.0096 0.0116 0.0130 0.0145 0.0166 
0.005 0.0047 0.0080 0.0096 0.0116 0.0129 0.0145 0.0166 
0.010 0.0047 0.0080 0.0096 0.0115 0.0129 0.0145 0.0166 
0.050 0.0047 0.0081 0.0096 0.0116 0.0130 0.0145 0.0167 
0.100 0.0047 0.0081 0.0097 0.0117 0.0131 0.0146 0.0168 
0.150 0.0047 0.0082 0.0096 0.0117 0.0130 0.0146 0.0168 
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Table 4 (continued) 
 
 

Panel C: 66 Observations; ρ* = 0.95 
R2/L 1 5 10 25 50 100 250 
 Means: δ 
0 -0.0005 0.0002 0.0006 -0.0001 -0.0006 -0.0003 0.0017 
0.001 -0.0140 0.0069 0.0212 -0.0105 -0.0134 -0.0112 0.0557 
0.005 -0.0060 0.0042 0.0082 -0.0068 -0.0024 -0.0033 0.0240 
0.010 -0.0042 0.0031 0.0051 -0.0029 -0.0018 -0.0027 0.0145 
0.050 -0.0016 0.0006 0.0035 -0.0023 -0.0016 -0.0019 0.0012 
0.100 -0.0010 -0.0002 0.0021 -0.0013 -0.0017 -0.0005 0.0028 
0.150 -0.0007 -0.0005 0.0015 -0.0008 -0.0011 -0.0001 0.0013 
 Critical t-statistics 
0 2.3446 3.3507 3.6827 4.1903 4.4660 4.9412 5.2493 
0.001 2.3641 3.3547 3.6776 4.1756 4.5157 4.9201 5.2441 
0.005 2.4030 3.3864 3.7013 4.1984 4.5625 4.9381 5.2760 
0.010 2.3939 3.4197 3.7308 4.1952 4.6039 4.9718 5.3083 
0.050 2.5486 3.5482 3.9676 4.4703 4.9512 5.2027 5.5539 
0.100 2.6955 3.7336 4.1899 4.7485 5.2335 5.5027 5.9006 
0.150 2.8484 3.9724 4.4329 4.9748 5.5547 5.8256 6.2563 
 Critical estimated R2 
0 0.0579 0.0974 0.1140 0.1374 0.1515 0.1689 0.1885 
0.001 0.0587 0.0981 0.1143 0.1376 0.1518 0.1692 0.1884 
0.005 0.0596 0.0987 0.1153 0.1385 0.1530 0.1699 0.1895 
0.010 0.0604 0.1002 0.1166 0.1402 0.1543 0.1711 0.1910 
0.050 0.0691 0.1113 0.1307 0.1552 0.1711 0.1859 0.2057 
0.100 0.0802 0.1265 0.1508 0.1774 0.1952 0.2099 0.2307 
0.150 0.0911 0.1451 0.1728 0.2021 0.2209 0.2370 0.2587 

 
 



 49 

Table 3 (continued) 
 
 

Panel D: 824 Observations; ρ* = 0.95 
R2/L 1 5 10 25 50 100 250 
 Means: δ 
0 -0.0001 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 
0.001 -0.0027 -0.0016 -0.0007 0.0005 0.0015 0.0072 0.0039 
0.005 -0.0012 -0.0004 0.0003 0.0006 -0.0008 0.0029 0.0026 
0.010 -0.0009 -0.0005 0.0000 0.0003 -0.0008 0.0013 0.0006 
0.050 -0.0004 -0.0005 0.0001 -0.0002 0.0007 -0.0006 0.0001 
0.100 -0.0003 -0.0002 -0.0001 -0.0003 0.0000 0.0001 -0.0004 
0.150 -0.0003 0.0000 0.0000 -0.0002 0.0001 0.0002 -0.0002 
 Critical t-statistics 
0 1.9807 2.6807 2.8535 3.1579 3.3640 3.5673 3.8103 
0.001 1.9989 2.6876 2.8758 3.1745 3.3702 3.5792 3.8252 
0.005 2.0406 2.7588 2.9269 3.2218 3.4497 3.6493 3.9075 
0.010 2.1108 2.8538 3.0150 3.3500 3.5548 3.7836 4.0351 
0.050 2.4338 3.3118 3.6292 4.1202 4.3685 4.6795 4.9741 
0.100 2.6274 3.6661 4.0003 4.5660 4.9129 5.2567 5.6937 
0.150 2.7413 3.8720 4.2048 4.8481 5.2200 5.5846 6.0420 
 Critical estimated R2 
0 0.0045 0.0080 0.0096 0.0113 0.0129 0.0145 0.0164 
0.001 0.0046 0.0082 0.0097 0.0115 0.0130 0.0146 0.0167 
0.005 0.0048 0.0086 0.0102 0.0121 0.0137 0.0153 0.0176 
0.010 0.0050 0.0092 0.0108 0.0131 0.0146 0.0163 0.0187 
0.050 0.0077 0.0145 0.0173 0.0216 0.0244 0.0273 0.0314 
0.100 0.0113 0.0216 0.0264 0.0331 0.0374 0.0421 0.0482 
0.150 0.0151 0.0293 0.0356 0.0446 0.0508 0.0568 0.0647 

 
 

Panel E: Table 1 Simulation  

Obs ρ∗ Critical L 
(t-statistic) 

 

Critical L 
(R2) 

ρ∗ Critical L 
(t-statistic) 

Critical L 
(R2) 

393 0.97 2 1 0.95 4 2 
264 0.32 2 5 0.95 1 1 
264 0.15 2 5 0.95 1 1 
264 0.08 5 >500 0.95 1 10 
420 0.97 1 1 0.95 1 1 
720 0.97 1 1 0.95 1 1 
732 0.92 1 1 0.95 1 1 
611 0.95 1 1 0.95 1 1 
611 0.97 1 1 0.95 1 1 
66 0.66 2 2 0.95 1 2 

184 0.79 2 7 0.95 1 3 
824 0.97 1 1 0.95 1 2 
552 0.98 1 1 0.95 1 1 

 



Table 5 
Simulating a Conditional Asset Pricing Model 

The table shows the results of 10,000 simulations of the estimates from the conditional asset pricing model, allowing 
for possible data mining of the lagged instruments.  The regression model is: 

rt+1 = α0 + α1Zt + b0 rm,t+1 + b1 rm,t+1Zt +  ut+1. 

T is the sample size, L is the number of lagged instruments mined, Rp
2 is the true predictive R2 in the artificial data 

generating process.   
 
 T=66 T=350 T=960 
Rp2 L=1 L=25 L=250 L=1 L=25 L=250 L=1 L=25 L=250 

Means: α0 
0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.01 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.05 -0.001 -0.001 -0.001 0.000 -0.001 0.000 0.000 0.000 0.000 
0.1 -0.002 -0.002 -0.002 0.000 -0.001 -0.001 0.000 0.000 0.000 
0.15 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001 0.000 0.000 0.000 

Critical 5% t-statistics for α0 
0.001 2.280 2.603 2.855  1.999 2.061 2.146  1.996 2.005 2.115 
0.005 2.266 2.540 2.792  1.994 2.058 2.135  2.013 2.002 2.104 
0.01 2.253 2.508 2.759  2.000 2.045 2.125  2.016 2.002 2.098 
0.05 2.153 2.408 2.728  1.974 1.998 2.094  2.021 1.991 2.100 
0.1 2.088 2.388 2.652  1.977 2.000 2.030  2.058 2.008 2.073 
0.15 2.065 2.382 2.597  1.968 1.960 1.987  2.069 2.031 2.041 

Means: α1 
0.001 0.001 0.007 -0.003 -0.001 -0.002 0.003 -0.001 -0.002 -0.001 
0.005 0.001 0.005 -0.001 -0.001 -0.001 0.002 -0.001 -0.002 -0.001 
0.01 0.001 0.005 0.000 -0.001 -0.001 0.002 -0.001 -0.002 -0.001 
0.05 0.001 0.005 -0.002 -0.001 -0.001 0.002 -0.001 -0.001 -0.002 
0.1 0.001 0.005 0.000 -0.001 -0.001 0.002 -0.001 -0.001 0.000 
0.15 0.001 0.004 0.000 -0.001 0.000 0.002 -0.001 -0.001 0.001 

Critical 5% t-statistics for α1 
0.001 2.392 3.992 5.305  2.023 3.240 3.891  1.910 3.097 3.748 
0.005 2.390 3.961 5.252  2.024 3.206 3.874  1.905 3.092 3.719 
0.01 2.387 3.912 5.198  2.025 3.198 3.872  1.902 3.091 3.712 
0.05 2.412 3.924 5.237  2.039 3.172 3.855  1.902 3.062 3.706 
0.1 2.426 3.912 5.163  2.036 3.159 3.837  1.912 3.040 3.690 
0.15 2.423 3.913 5.086  2.024 3.155 3.785  1.909 3.024 3.629 

Means: b1 
0.001 -0.041 -0.017 0.026 -0.003 -0.002 0.011 0.010 0.008 -0.009 
0.005 -0.038 -0.019 0.061 -0.003 0.001 0.002 0.009 0.007 -0.005 
0.01 -0.038 -0.012 0.055 -0.003 0.000 0.004 0.008 0.004 -0.006 
0.05 -0.039 -0.014 0.077 -0.003 0.006 -0.003 0.006 0.001 0.001 
0.1 -0.040 -0.018 0.058 -0.003 0.010 0.003 0.005 0.000 0.004 
0.15 -0.041 -0.015 0.062 -0.003 0.014 0.007 0.004 0.001 0.000 

Critical 5% t-statistics for b1 
0.001 2.576 2.534 2.634  2.122 2.098 2.175  1.996 2.013 2.075 
0.005 2.574 2.579 2.611  2.116 2.138 2.210  2.022 2.036 2.075 
0.01 2.583 2.574 2.597  2.114 2.133 2.219  2.027 2.071 2.126 
0.05 2.603 2.588 2.597  2.149 2.212 2.336  2.027 2.121 2.219 
0.1 2.612 2.614 2.596  2.157 2.297 2.451  2.024 2.188 2.475 
0.15 2.610 2.601 2.657  2.156 2.361 2.614  2.018 2.322 2.722 
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Table 6 
Simulating a Conditional Asset Pricing Model with no Time-Varying Alpha 

The table shows the results of 10,000 simulations of the estimates from the conditional asset pricing model with no 
time-varying alpha, allowing for the possibility of data mining for the lagged instruments. The regression model is: 

rt+1 = α0 + b0 rm,t+1 + b1 rm,t+1Zt +  ut+1. 

T is the sample size, L is the number of lagged instruments mined, Rp
2 is the true predictive R2 in the artificial data 

generating process.   
 

 T=66 T=350 T=960 
Rp2 L=1 L=25 L=250 L=1 L=25 L=250 L=1 L=25 L=250 

Means: α0 
0.001 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.005 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.01 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.05 -0.002 -0.002 -0.002 0.000 0.000 -0.001 0.000 0.000 0.000 
0.1 -0.002 -0.002 -0.003 0.000 -0.001 -0.001 0.000 0.000 0.000 
0.15 -0.003 -0.003 -0.003 -0.001 -0.001 -0.001 0.000 0.000 -0.001 

Critical 5% t-statistics for α0 
0.001 2.165 2.146 2.123  1.951 1.988 1.947  1.990 1.965 1.934 
0.005 2.138 2.114 2.089  1.949 1.981 1.929  1.983 1.961 1.922 
0.01 2.132 2.102 2.054  1.944 1.966 1.918  1.992 1.956 1.931 
0.05 2.042 2.020 1.986  1.907 1.921 1.917  1.983 1.970 1.921 
0.1 1.984 1.956 1.929  1.896 1.910 1.885  1.988 1.962 1.904 
0.15 1.949 1.922 1.893  1.900 1.884 1.829  1.993 1.965 1.869 

Means: b1 
0.001 0.007 -0.006 -0.043 -0.008 0.004 -0.001 -0.003 0.013 -0.012 
0.005 0.008 -0.017 -0.060 -0.006 -0.003 0.000 -0.003 0.013 -0.008 
0.01 0.008 -0.015 -0.064 -0.006 -0.003 -0.004 -0.003 0.010 -0.007 
0.05 0.010 -0.031 -0.047 -0.003 -0.003 -0.003 -0.002 0.007 -0.001 
0.1 0.010 -0.020 -0.035 -0.002 -0.005 -0.001 -0.002 0.000 0.001 
0.15 0.010 -0.029 -0.042 0.000 -0.003 -0.003 -0.002 0.002 -0.002 

Critical 5% t-statistics for b1 
0.001 2.630 2.605 2.639  2.157 2.128 2.218  1.987 2.136 2.147 
0.005 2.636 2.646 2.631  2.156 2.145 2.246  1.991 2.162 2.170 
0.01 2.661 2.665 2.643  2.163 2.150 2.256  1.987 2.154 2.216 
0.05 2.656 2.748 2.739  2.146 2.257 2.441  1.988 2.267 2.476 
0.1 2.629 2.811 2.861  2.175 2.378 2.618  1.994 2.395 2.639 
0.15 2.607 2.857 3.001  2.201 2.466 2.755  2.008 2.479 2.828 
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Table 7 
Simulating a Conditional Asset Pricing Model with no Time-Varying Beta 

The table shows the results of 10,000 simulations of the estimates from the conditional asset pricing model with no 
time-varying beta, allowing for the possibility of data mining for the lagged instruments.  The regression model is: 

rt+1 = α0 + α1Zt + b0 rm,t+1 +  ut+1. 

T is the sample size, L is the number of lagged instruments mined, Rp
2 is the true predictive R2 in the artificial data 

generating process.   
 

 T=66 T=350 T=960 
Rp2 L=1 L=25 L=250 L=1 L=25 L=250 L=1 L=25 L=250 

Means: α0 
0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.01 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.05 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.1 -0.002 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.15 -0.002 -0.002 -0.002 -0.001 -0.001 0.000 0.000 0.000 0.000 

Critical 5% t-statistics for α0 
0.001 2.239 2.592 2.794  1.991 2.080 2.182  2.004 2.047 2.092 
0.005 2.219 2.533 2.764  1.982 2.070 2.147  2.014 2.036 2.084 
0.01 2.206 2.511 2.731  1.988 2.069 2.150  2.013 2.018 2.089 
0.05 2.124 2.429 2.656  1.970 2.056 2.148  2.019 2.012 2.130 
0.1 2.065 2.389 2.607  1.968 2.034 2.158  2.035 2.010 2.160 
0.15 2.015 2.356 2.546  1.978 2.033 2.177  2.072 2.010 2.167 

Means: α1 
0.001 0.001 0.000 0.002 -0.001 0.001 0.000 0.000 -0.001 0.000 
0.005 0.001 0.000 0.001 -0.001 0.001 0.001 0.000 -0.001 0.001 
0.01 0.001 0.000 0.001 -0.001 0.001 0.001 0.000 -0.001 0.001 
0.05 0.000 0.001 0.003 -0.001 0.001 0.001 0.000 -0.001 0.002 
0.1 0.000 0.001 0.005 -0.001 0.000 0.000 0.000 0.000 0.001 
0.15 0.000 0.000 0.003 -0.001 0.000 -0.001 0.000 -0.001 0.000 

Critical 5% t-statistics for α1 
0.001 2.307 4.015 5.298  2.068 3.172 3.912  2.020 3.073 3.794 
0.005 2.311 4.005 5.169  2.066 3.149 3.890  2.017 3.061 3.761 
0.01 2.312 3.998 5.142  2.061 3.148 3.891  2.017 3.058 3.754 
0.05 2.322 3.968 5.040  2.054 3.156 3.885  2.003 3.029 3.739 
0.1 2.323 3.908 5.041  2.056 3.138 3.849  2.012 3.001 3.713 
0.15 2.323 3.901 5.075  2.056 3.124 3.783  2.005 3.003 3.659 
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Table 8 
Conditional Asset Pricing Models with a Cross-section of Returns 

The table shows the results of 10,000 simulations from a conditional asset pricing model, allowing for the possibility 
of data mining for the lagged instruments.  The dependent variables are book-to-market quintile portfolios.  The 
regression model is: 

rt+1 = α0 + α1Zt + b0 rm,t+1 + b1 rm,t+1Zt +  ut+1. 

T is the sample size and L is the number of lagged instruments mined. The true predictive R2 in the artificial data 
generating process is 0.005.   
 

 
 T=66 T=350 T=960 
BM quintile L=1 L=25 L=250 L=1 L=25 L=250 L=1 L=25 L=250 

Means: α0 
BM1 (low) -0.002 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 
BM2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
BM3 0.000 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.003 
BM4 0.001 0.003 -0.001 0.004 0.005 0.006 0.005 0.006 0.007 
BM5 (high) 0.004 0.002 0.006 0.006 0.006 0.005 0.008 0.007 0.006 

Critical 5% t-statistics for α0 
BM1 (low) 2.157 2.593 2.705  1.691 1.847 1.914  1.526 1.618 1.651 
BM2 2.297 2.523 2.742  1.916 2.067 2.156  1.960 2.034 2.056 
BM3 2.296 2.681 2.916  2.093 2.218 2.380  2.143 2.206 2.301 
BM4 2.343 2.686 3.060  2.059 2.253 2.399  2.132 2.233 2.368 
BM5 (high) 2.369 2.659 3.099  2.135 2.233 2.326  2.269 2.284 2.359 

Means: α1 
BM1 (low) 0.002 0.000 0.001 -0.001 -0.004 0.002 0.000 0.000 0.000 
BM2 0.000 0.000 0.002 0.001 0.000 0.001 0.000 0.000 0.001 
BM3 0.009 0.006 -0.008 -0.001 -0.005 -0.008 0.001 0.007 0.001 
BM4 0.019 -0.027 -0.004 0.007 -0.003 0.012 -0.003 -0.003 0.005 
BM5 (high) 0.021 0.028 -0.068 0.005 0.028 0.027 0.002 -0.006 -0.009 

Critical 5% t-statistics for α1 
BM1 (low) 2.381 4.088 5.382  2.037 3.243 3.917  1.962 3.115 3.813 
BM2 2.390 3.884 4.956  2.025 3.145 3.793  1.971 3.044 3.637 
BM3 2.418 4.146 5.720  1.972 3.264 3.999  1.952 3.148 3.804 
BM4 2.403 4.263 5.705  2.078 3.240 3.934  1.999 3.179 3.807 
BM5 (high) 2.417 4.227 5.594  2.005 3.271 4.076  2.021 3.134 3.817 

Means: b1 
BM1 (low) 0.018 0.007 -0.054 -0.007 0.002 0.051 0.021 -0.001 0.004 
BM2 -0.003 0.032 -0.015 0.000 -0.004 -0.009 -0.010 0.000 -0.002 
BM3 0.108 0.050 0.128 0.066 -0.033 -0.042 -0.041 -0.004 0.034 
BM4 -0.230 -0.050 -0.062 -0.016 -0.054 0.087 0.028 -0.068 0.032 
BM5 (high) -0.479 0.075 -0.389 0.041 0.113 -0.006 -0.136 0.032 0.058 

Critical 5% t-statistics for b1 
BM1 (low) 2.612 2.522 2.548  2.065 2.168 2.181  2.045 2.115 2.061 
BM2 2.521 2.591 2.559  2.146 2.126 2.149  2.056 2.056 2.067 
BM3 2.573 2.501 2.585  2.083 2.159 2.089  2.103 2.023 2.061 
BM4 2.624 2.556 2.552  2.048 2.114 2.091  2.130 2.004 2.035 
BM5 (high) 2.628 2.640 2.536  2.177 2.149 2.068  2.084 2.050 1.982 
 

 



 54 

Table 9 
Possible Solutions to the Spurious Regression Problem: Critical t-ratios 

Each cell contains the critical t-ratios at the 97.5 percentiles of 10,000 Monte Carlo simulations.  OLS contains 
the critical t-ratios without any adjustment to the standard errors, in the White column the t-stats are formed 
using White’s standard errors, the NW(auto) t-stats use Newey-West standard errors based on the automatic lag 
selection, the NW(20) t-stats use the Newey-West procedure with 20 lags.  The regression model of stock returns 
in columns two-to-five has one independent variable, the lagged instrument; in columns six and seven – two 
independent variables, the lagged instrument and the lagged return; in the last two columns the only independent 
variable, the lagged instrument, is stochastically detrended using a trailing 12-month moving average.  The 
autocorrelation parameter of the ex ante expected return and the lagged predictor variable is set to 99% and the 
ex ante return variance is 10% of the total return variance. 

 

     Lagged return Detrended (12) 

Observations OLS White NW(auto) NW(20) OLS NW(auto) OLS NW(auto)

60 2.24 2.36 2.71 3.81 2.19 2.67 2.06 2.46 
350 4.04 4.10 3.87 3.77 3.74 3.73 2.28 2.21 

2000 6.08 6.12 4.62 4.17 5.49 4.58 2.33 1.94 
 

  


