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ABSTRACT 

 

 

Measuring the Timing Ability of Fixed  Income Mutual Funds 
 

 

This paper evaluates the ability of bond funds to "market time" factors related to bond markets. 

 Timing ability generates nonlinearity in fund returns, but there are several non-timing-related 

sources of nonlinearity.  We find that controlling for non-timing-related nonlinearity is 

important.  Funds' returns are more concave than benchmark returns, relative to nine common 

factors, and this would appear as poor timing ability in naive models.  With the controls, the 

overall distribution of the timing coefficients appears neutral to weakly positive.  The timing-

adjusted performance of many bond funds appears significantly negative on an after-cost basis, 

but many funds have positive performance on a before-cost basis. 

 

 

 



1. Introduction 

The amount of academic research on bond fund performance is small in comparison to the 

economic importance of bond funds.  Recently the total net assets of U.S. bond funds has been 

about 1/6 the amount in equity-style mutual funds and similar to the value of hedge funds.  Large 

amounts of additional fixed-income assets are held in professionally managed portfolios outside of 

mutual funds, for example in pension funds, trusts and insurance company accounts.  The 

turnover of a typical bond mutual fund far exceeds that of a typical equity fund, suggesting that 

active portfolio management is important in bond funds.  Thus, it is important to understand the 

performance of bond fund managers.  

 Elton, Gruber and Blake (EGB, 1993, 1995) and Ferson, Henry and Kisgen (2006) study 

US bond mutual fund performance, concentrating on the funds' risk-adjusted returns, or alphas.  

They find that the typical risk-adjusted, average performance is slightly negative and largely 

driven by funds' expenses.  This might suggest that investors would be better off selecting low-cost 

passive funds, and EGB draw this conclusion.  However, performance may be decomposed into 

components, such as timing and selectivity ability.  If investors place value on timing ability, for 

example a fund that can mitigate losses in down markets, they would be willing to pay for this 

insurance with lower average returns.  This is one of the first papers to comprehensively study the 

ability of US bond funds to time their markets.1  

 Timing ability on the part of a fund manager is the ability to use superior information 

about the future realizations of common factors that affect bond market returns.2  Selectivity 

                                           

    1 Brown and Marshall (2001) develop an active style model and an attribution model for fixed 

income funds, isolating managers' bets on interest rates and spreads.  Comer, Boney and Kelly 

(2005) study timing ability in a sample of 84 high quality corporate bond funds, 1994-2003, using 

variations on Sharpe's (1992) style model.  Aragon (2005) studies the timing ability of balanced 

funds for bond and stock indexes. 

    2 We do not explicitly study "market timing" in the sense recently taken to mean trading by 

investors in a fund to exploit stale prices reflected in the fund's net asset values. But we will see 

that these issues can affect measures of a fund manager's ability. 
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refers to the use of security-specific information.  If common factors explain a relatively large 

part of the variance of bond returns, it follows that a relatively large fraction of the potential 

performance of bond funds might be attributed to timing.  However, measuring the timing ability 

of bond funds is a subtle problem.   

 Traditional models of market timing ability rely on convexity in the relation between the 

fund's returns and the common factors.3  In bond funds, perhaps even more clearly than in equity 

funds, convexity or concavity can arise for various reasons unrelated to timing ability.  We find 

that other sources of nonlinearity are important, and our empirical analysis attempts to control 

for other sources of nonlinearity.   

 We find that funds' returns are typically more concave, in relation to a set of nine bond 

market factors, than are unmanaged benchmarks.  Thus, without controls for non-timing-related 

nonlinearity, funds would appear to have poor (negative) market timing ability.  When we 

introduce the controls the overall distribution of the timing coefficients appears neutral to weakly 

positive.  After adjusting for timing ability the performance of many bond funds is significantly 

negative on an after-cost basis but many funds have significant ability on a before cost basis.  

 The rest of the paper is organized as follows.  Section 2 describes the models and methods.  

Section 3 describes the data.  Section 4 presents our empirical results and Section 5 offers some 

concluding remarks. 

 

2.  Models and Methods  

A traditional view of performance separates timing ability from security selection ability, or 

                                           

    3 The alternative approach is to directly examine managers' portfolio weights and trading 

decisions to see if they can predict returns and factors (e.g. Grinblatt and Titman, 1989).  Comer 

(2006) and Moneta (2008) are early steps in this direction for bond funds.  Of course, weight-based 

approaches cannot capture market timing that occurs between weight reporting intervals, which 

can be up to six months in length. 
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selectivity.  Timing is closely related to asset allocation, where funds rebalance the portfolio 

among asset classes and cash.  Selectivity essentially means picking good securities within the asset 

classes.   

 Like equity funds, bond funds engage in activities that may be viewed as selectivity or 

timing.  Bond funds may attempt to predict issue-specific supply and demand or changes in credit 

risks associated with particular bond issues.  Funds can also attempt to exploit liquidity 

differences across bonds, for example on-the-run versus off-the-run issues.  These trading activities 

can be classified as security selection.  In addition, managers may tune the interest rate sensitivity 

(e.g., duration) of the portfolio to time changes in interest rates in anticipation of the influence of 

economic developments.  They may vary the allocation to asset classes differing in credit risk or 

liquidity, and which are likely to have different exposures to economic factors.   Since these 

activities relate to anticipating market-wide factors, they may naturally be considered as market 

timing. 

 Classical models of market-timing use the convexity in the relation between the fund's 

return and the "market" return to indicate timing ability.  In these models the manager observes a 

private signal about the future performance of the market and adjusts the market exposure of the 

portfolio.  If the response is assumed to be a linear function of the signal as modelled by Admati, 

Bhattacharya, Ross and Pfleiderer (1986), the portfolio return is a convex quadratic function of 

the market return as in the regression model of Treynor and Mazuy (1966).  If the manager shifts 

the portfolio weights discretely, as modelled by Merton and Henriksson (1981), the convexity may 

be modelled with call options.  Our models modify the classical setup for bond market factors and 

to control for nonlinearities that are unrelated to managers' timing ability.   

 

2.1 Nonlinearity Unrelated to Timing 

 There are many reasons apart from timing ability that a fund's return could have a 
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nonlinear relation to a market factor.  We group these reasons into four general categories.  This 

section explains the intuition for each effect. 

 First, the underlying assets held by a fund may have a nonlinear relation to market 

factors.  While nonlinearity may occur in equities, it is very likely in bonds.  Even simple bond 

returns are nonlinearly related to interest rate changes.  As we show in Table 3 below, unmanaged 

bond benchmark returns are often convex functions of common factors.  Thus, to measure timing 

ability it is important to control for this nonlinearity. 

 A second potential cause of nonlinearity is "interim trading," studied by Goetzmann, 

Ingersoll and Ivkovic (2000), Ferson and Khang (2002) and Ferson, Henry and Kisgen (2006).  

This refers to a situation where fund managers trade more frequently than the fund's returns are 

measured.  With mutual funds interim trading definitely occurs.  A related effect is derivatives or 

other securities with option-like payoffs.  For example, a fund that holds call options bears a 

convex relation to the underlying asset (Jagannathan and Korajczyk, 1986).  Derivatives may often 

be replicated by high frequency trading, so if we can control for interim trading we also control 

for these derivatives.4   

 The potential impact of interim trading can be illustrated with an example.  For the 

example we use daily data for 1989-2003 on the Lehman US Government Total Return Index, Rg, 

and the daily return to "cash," Rc, which we proxy with a 3-month Treasury bill.5  A hypothetical 

fund trades each day, rebalancing in response to the flow of new money at the end of the previous 

                                           

    4 Brown et al. (2004) explore arguments that incentives and behavioral biases can induce 

managers without superior information to engage in option-like trading within performance 

measurement periods. 

    5 Specifically, to form the daily return we take the daily 3-month Treasury yield from the 

Federal Reserve H.15 release and assume that it corresponds to the purchase price of a newly 

issued, 91-day bill.  On the next trading day the bill is assumed to be sold based on the new yield 

quote and its now shorter maturity.  The price change, relative to the initial price, determines the 

daily return. 



 
 

 5 

day.  The new money flows in response to public expectations about the Government bond's return. 

 This follows Ferson and Warther (1996), who find that new money flows into equity funds when 

instruments for public expectations of equity returns are high.  The public information is 

modelled for this example by regressing the daily excess return, Rg-Rc, on the lagged change in the 

3-month yield, Δy, where we get a slope coefficient b=0.28 (t-statistic = 2.78).  The funds weight 

each morning is 10% in cash plus the percentage flow from the previous night, and the rest in the 

government index. The fund rebalances to 10% cash at the close of each day, prior to the learning 

of the new money flow.  The 10% target is assumed to represent three standard deviations of the 

daily percentage cash flows, and the fitted values of the regression, scaled to match, represent the 

cash flows.  The daily return of the fund is therefore Rp = (1-x)Rg + xRc,  where x= 0.10 + F and F 

is the cash flow of the previous day.  We compound the daily portfolio returns to monthly returns. 

 Regressing the 177 monthly excess returns on the Government index excess return and its square, 

the coefficient on the square is 0.09 and its t-ratio is 2.34.  The example shows that interim 

trading can result in a fund return that is nonlinear relative to the benchmark index.  Thus, a 

fund with interim trading can appear to have market timing ability if we fail to control for the 

interim trading effect.  

 A third potential reason for nonlinearity unrelated to timing ability is stale pricing of a 

fund's assets.  Thin or nonsynchronous trading has long been known to bias downward the 

estimates of beta for a portfolio (e.g., Fisher (1966), Scholes and Williams, 1977).  If the degree of 

stale pricing is related to a market factor, we show below that such "systematic" stale pricing can 

create spurious concavity or convexity in the measured return.  

 Systematic stale pricing can be illustrated with another example using monthly returns on 

the Government Index, Rg, for 1989-2003.  The measured return on a hypothetical fund is Rpt = (1-

θt)Rgt + θtRgt-1, where θt ε [0,1] captures the extent of stale pricing.  We set E(θt)=0.15, which 

roughly says that 15% of the measured prices are stale.  The stale pricing is systematic, or 



 
 

 6 

correlated with the return of the index: θt = 0.15 + b1[Rgt-E(Rg)].  We set b1 so that the minimum 

value of θt is zero, implying b1= -2.71.  Thus, prices become more stale when the index return is 

low.  The Scholes and Williams effect says that the fund's measured beta on the index will be 

biased toward zero, to a greater extent when the pricing is more stale.  Thus, the measured betas 

will be too low when the index return is low.  This creates a spurious impression of market timing 

ability.  Regressing the 177 monthly measured excess returns on the government index excess 

return and its square, the coefficient on the squared term is 0.23 and its t-ratio is 2.00.  Thus, a 

fund with systematic stale pricing can appear to have timing ability if we fail to control for the 

stale pricing effect.  A fourth reason for nonlinearity unrelated to timing ability arises if there is 

public information about future asset returns.  As shown by Ferson and Schadt (1996), even if the 

conditional relation between the fund and a benchmark return is linear, the response of managed 

portfolio weights to public information can induce nonlinearities in the unconditional relation.  

The portfolio betas may be correlated with market returns because of their common dependence on 

public information.  Other examples of public information effects on equity fund timing 

coefficients are provided by Ferson and Warther (1996), Becker, et al (1999), Christopherson, 

Ferson and Turner (1999) and Ferson and Qian (2004).    

 In summary, in order to measure the market timing ability of bond funds we need to 

control for nonlinearity in the benchmark assets and for nonlinearity that may arise from interim 

trading, public information effects and systematic stale pricing.  In the following subsections we 

modify the classical market timing model to allow for nonlinearity in the benchmark returns and 

develop controls for interim trading, public information effects and systematic stale pricing. 

 

2.2  Classical Market Timing Models 

 The classical market-timing regression of Treynor and Mazuy (1966) is:  

 rpt  = ap  +  bp ft +  Λp ft
2 +  ut,                                                                             (1) 
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where rpt is the fund's portfolio return, measured in excess of a short-term Treasury bill.  With 

equity market timing, as considered by Treynor and Mazuy, ft is the excess return of the stock 

market index.  Treynor and Mazuy (1966) argue that  Λp>0  indicates market-timing ability.  The 

logic is that when the market is up, the successful market-timing fund will be up by a 

disproportionate amount.  When the market is down, the fund will be down by a lesser amount.  

Therefore, the fund's return bears a convex relation to the market factor.  

 It seems natural to replace the equity market excess return with changes in the systematic 

factors for bond returns, like interest rate levels and spreads.  However, if a factor is not an excess 

return, the appropriate sign for the timing coefficient might not be obvious.  For example, bond 

returns move in the opposite direction as interest rates, so a signal that interest rates are about to 

rise means bond returns are likely to be low.  We show in the Appendix that market timing 

ability still implies a positive coefficient on the squared factor.   

 Stylized market-timing models confine the fund to a single risky-asset portfolio and cash.  

This makes sense theoretically, from the perspective of the Capital Asset Pricing Model (CAPM, 

Sharpe, 1964).  Under that model's assumptions there is two-fund separation and all investors hold 

the market portfolio and cash.  But two-fund separation is generally limited to single-factor term 

structure models, and there is no central role for a "market portfolio" of bonds in most fixed 

income models.  In practice, however, bond funds often manage to a "benchmark" portfolio that 

defines the peer group or investment style.  We use style-specific benchmarks to replace the 

market portfolio. 

 

2.3  Addressing Nonlinearity in Benchmark Assets 

 We model nonlinearity in the relation between the benchmark asset returns and the 

common factors with a nonlinear regression: 

 rBt  = aB  +  bB(ft) +  uBt,                                                                                 (2) 
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where bB(f) is a nonlinear function of the factor changes and we assume that uB and bB(f) are 

normal and independent.  The Appendix derives the generalization of the market-timing 

regression that incorporates the nonlinear benchmark: 

 

 rpt  = ap  +  bp [bB(ft)] +  Λp ft
2 +  ut.                                                                   (3) 

 

The intuition of Equation (3) is that the nonlinearity of the benchmark return determines the 

nonlinearity of the fund's return.  If there is no market-timing ability (Λp=0) the nonlinearity of 

the fund's return mirrors that of the benchmark through the second term of the regression.  A 

successful timer's return has a more convex relation than the benchmark, and thus Λp>0.  We 

combine equations (2) and (3), and estimate the model by the Generalized Method of Moments 

(Hansen, 1982). 

 One of the forms for bB(f) that we consider is a quadratic function, which has an 

interesting interpretation in terms of systematic coskewness.  Asset-pricing models featuring 

systematic coskewness are studied, for example, by Kraus and Litzenberger (1976).  Equation (1) 

is, in fact, equivalent to the quadratic "characteristic line" used by Kraus and Litzenberger.  

Under their interpretation the coefficient on the squared factor changes does not measure market 

timing, but measures the systematic coskewness risk.  Thus, a fund's return can bear a convex 

relation to the factor because it holds assets with coskewness risk.  Equations (2) and (3) allow the 

benchmark to have coskewness risk and measure timing ability as the fund's convexity in excess of 

its benchmark coskewness risk.   

 

2.4  Addressing Interim Trading  

 Interim trading means that fund managers trade more frequently than the fund's returns 

are measured.  This can lead to incorrect inferences about market timing ability, as shown by 
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Jiang, Yao and Yu (2005) and to incorrect inferences about total performance, as shown by Ferson 

and Khang (2002).  Ferson, Henry and Kisgen (2006) propose a solution using a continuous-time 

asset pricing model, where the time-aggregated model prices all portfolio strategies that may trade 

within the period as nonanticipating functions of the state variables in the model.  Thus, a 

manager with no ability will not record abnormal performance.  If the manager wastes resources 

by interim trading that generates trading costs, the portfolio return will be low and this should be 

detected as negative average performance.  If the continuous-time model can price derivatives by 

replication with dynamic strategies, the use of derivatives is also covered by this approach. 

 Ferson, Henry and Kisgen show that the time-aggregated stochastic discount factor (SDF) 

from a set of popular term structure models is:6: 

 

 t-1mt = exp(a - Ar
t + b'Ax

t + c'[x(t) - x(t-1)]).                                                               (4) 

 

In Equation (4) x(t) is the vector of state variables in the model at time t.  The terms Ax
t = Σi=1,...1/Δ 

x(t-1+(i-1)Δ)Δ  approximate the integrated levels of the state variables over the period from t-1 to 

t.  The monthly measurement period is divided into (1/Δ) intervals of length Δ=one trading day.  

Ar
t is the time-averaged level of the short-term interest rate.  The empirical "factors," ft, in the 

SDF thus include the usual discrete monthly changes in the state variables, but also include their 

time averages and the time-averaged short term interest rate: ft = {[x(t) - x(t-1)], Ax
t, A

r
t}.   

 With the approximation ef  1+f, which is accurate for numerically small f, the SDF is 

linear in the expanded set of empirical factors.  Since a linear SDF is equivalent to a beta pricing 

model, this motivates including the time-averaged variables {Ax
t, Ar

t} as additional "factors" to 

control for interim trading.  That is the approach we take in this paper. 

                                           

    6 A stochastic discount factor is a random variable, t-1mt, that "prices" assets through the 

equation Et-1{t-1mt(1+Rt)}=1. 
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2.5  Addressing Public Information  

 Conditional timing models control for public information effects by allowing funds' betas 

to vary over time with public information.  Ferson and Schadt (1996) and Becker, et al. (1999) 

find that conditional timing models for equity funds are better specified than models that do not 

control for public information.  In particular, Ferson and Schadt (1996) propose a conditional 

version of the market timing model of Treynor and Mazuy (1966):7  

 

 rpt  = ap  +  bp ft + Cp'(Zt-1 ft) +  Λp ft
2 +  ut,                                                          (5) 

 

where the interaction term  Cp'(Zt-1 ft)  controls for nonlinearity due to the public information, Zt-

1.  We include similar interaction terms in this paper to control for public information effects. 

 

2.6 Addressing Stale Prices 

 Thin or nonsynchronous trading in a portfolio biases estimates of the portfolio beta (e.g., 

Scholes and Williams, 1977), and a similar effect occurs when the measured value of a fund 

reflects stale prices, possibly due to illiquid assets (e.g. Getmansky, Lo and Makarov, 2004).  If the 

extent of stale pricing is related to a common factor we call it systematic stale pricing.  To address 

systematic stale pricing we use a simple model generalizing Getmansky, Lo and Makarov.  Let rt 

be the true return on a fund's assets.  The true return would be the observed return if no prices 

were stale.  We assume rt is independent over time with mean μ.  The measured return on the 

fund, rt
*, is given by: 

  

                                           

    7 Ferson and Schadt (1996) also derive a conditional version of the market timing model of 

Merton and Henriksson (1981), which views successful market timing as analogous to producing 

cheap call options.  This model is considerably more complex than the conditional Treynor-

Mazuy model, but they find that it produces similar results. 
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 rt
* = θtrt-1 + (1-θt)rt,                                                                                                (6) 

 

where the coefficient θt ε [0,1] measures the extent of stale pricing at time t.  Getmansky, Lo and 

Makarov allow K>1 lagged returns in Equation (6) to capture longer term smoothing in hedge 

fund returns, but they assume that the smoothing coefficients, θt, are constant over time.  Our 

model allows for time-varying smoothing coefficients but we restrict to a single lag.  With K lags, 

the measured returns have n K-th order moving average structure.  In our bond fund portfolio 

returns we find significant first order autocorrelations, but the second order autocorrelations are 

insignificant, suggesting a first-order moving average structure.   

 Assume that the market or factor return rmt, with mean μm and variance ζm
2, is 

independent and identically distributed over time and measured without stale prices.8  To model 

systematic stale pricing consider a regression of θt on the market factor: 

 

 θt = δ0 + δ1(rmt - μm) + εt,                                                                                       (7) 

 

where we assume that εt is independent of the other variables in the model.  We are interested in 

moments of the true return like Cov(rt,rmt
2), which measures the timing ability.  Straightforward 

calculations relate the moments of the observable variables to the moments of the unobserved 

variables, as follows. 

E(r*) = μ                                                                                        (8a) 

Cov(rt
*,rmt) = Cov(r,rm)(1- δ0 + 2δ1μm) - δ1 {μ ζm

2 + Cov(r,rm
2)}                    (8b) 

                                           

    8 While this modelling assumption is certainly false, it might be a reasonable approximation 

when rm is a highly-traded Treasury index or one of the Lehman bond indexes.  Lehman's pricing 

staff employs a daily matrix pricing approach based on traders' daily quotes and bond 

characteristics, and they market several products that focus on providing timely prices to clients 

(see Lehman Brothers, 2006). 
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Cov(rt
*,rmt

2)= Cov(r,rm
2)(1- δ0 + δ1μm)  

               - δ1{ μE(rm
3) + Cov(r,rm

3) - [Cov(r,rm)+μμm](μm
2+ζm

2)}             (8c) 

Cov(rt
*,rmt) + Cov(rt

*,rmt-1) = Cov(r,rm)                                                   (8d) 

Cov(rt
*,rmt

2) + Cov(rt
*,rmt-1

2) = Cov(r,rm
2)                                                (8e) 

Cov(rt
*,rmt

3) + Cov(rt
*,rmt-1

3) = Cov(r,rm
3)                                                (8f) 

 

Equation (8a) shows that stale prices will not affect the measured average returns.9  Thus, for 

example we can use funds' average returns net of the benchmark as a simple performance measure. 

 Equation (8b) captures the bias in the measured covariance with the market.  The market beta is 

proportional to this covariance.  Equation (8c) shows the measured covariance with the squared 

market return.  When stale pricing is systematic the true beta contaminates the measured timing 

ability and timing ability contaminates the measured beta.    

 Fortunately, equation (8e) reveals a simple way to control for a biased timing coefficients 

due to systematically stale prices.  The sum of the covariances of the measured return with the 

squared factor changes and the lagged squared factor changes delivers the correct timing 

coefficient.  This is similar to the bias correction for betas in the models of Scholes and Williams 

(1977) and Dimson (1979), as revealed in Equation (8d).   

 

2.7  Combining the Effects  

 In summary, the general form of the model is a system including Equation (2) and 

                                           

    9 Qian (2006) studies the effects of stale prices on the measured average performance of equity 

style funds, and finds that if staleness is correlated with new money flows there can be effects on 

average returns.  See also Zeitowitz (2003) and Edelin (1999).  Under reasonable assumptions 

bounding the magnitudes of flows, however, we can show that a model with flows produces the 

same reduced-form implications for the measurement of market timing as the model presented 

here.    
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Equation (9): 

  rpt
* = a + β'Xt + Λp [ft

2 + ft-1
2] + upt,                                                                 (9) 

 

where Xt is a vector of control variables observed at t or before.  The nonlinear function bB(ft) is 

included in Xt to control for nonlinearity in the underlying benchmark assets.  The time-averaged 

factor and short-term interest rate, {Af, Ar}, control for interim trading.  The products of the 

factors with lagged state variables control for public information effects.  Lagged values of the 

factor changes, ft-1, are included in Xt and in the timing term of (9) to control for systematic stale 

pricing. 

 

3. The Data   

We first describe our sample of bond funds.  We then describe the interest rate and other 

economic data that we use to construct the factors relative to which we study timing ability.  

Finally, we describe the funds' style-related benchmark returns. 

 

3.1 Bond Funds 

 The mutual fund data are from the Center for Research in Security Prices (CRSP) mutual 

fund data base, and include returns for the period from January of 1962 through December of 

2007.  We select open-end funds whose stated objectives indicate that they are bond funds.10  We 

                                           

    10 Prior to 1990 we consider funds whose POLICY code is B&P, Bonds, Flex, GS or I-S or 

whose OBJ codes are I, I-S, I-G-S, I-S-G, S, S-G-I or S-I.  We screen out funds during this period 

that have holdings in bonds plus cash less than 70% at the end of the previous year.  In 1990 and 

1991 only the three digit OBJ codes are available.  We take funds whose OBJ is CBD, CHY, 

GOV, MTG or IFL.  If the OBJ code is other than GOV, we delete those funds with holdings in 

bonds plus cash totalling less than 70%.  After 1991 we select funds whose OBJ is CBD, CHY, 

GOV, MTG, or IFL or whose ICDI_OBJ is BQ, BY, GM or GS, or whose SI_OBJ is BGG, 

BGN, BGS, CGN, CHQ, CHY, CIM, CMQ, CPR, CSI, CSM, GBS, GGN, GIM, GMA, GMB, GSM 

or IMX.  From this group we delete 116 fund years for which the POLICY code is IG or CS. 
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exclude money market funds and municipal securities funds.  We subject the fund data to a 

number of screens as described in the Appendix.  We group the funds into equally-weighted 

portfolios according to eight mutually exclusive investment styles: Index, Global, Short-term, 

Government, Mortgage, Corporate, High Yield and Other.11   

 Summary statistics for the style-grouped funds' returns are reported in Panel A of Table 1. 

 The mean returns are between 0.37 and 0.74% per month.  The standard deviations of return range 

between 0.46% and 1.85% per month.  The first-order autocorrelations range from 14% for Index 

funds to 30% for Short Term funds.  The minimum return across all of the style groups in any 

month is -7.3%, suffered in October of 1979 by the Corporate bond funds.  The maximum return is 

almost 11%, also earned by the Corporate funds, in November of 1981. 

 Table 1 also reports the second order autocorrelations of the fund returns.  The stylized 

stale pricing model assumes that all the assets are priced within two months.  This implies that 

the measured returns have an MA(1) time-series structure, and the second order autocorrelations 

should be zero.  The largest second order autocorrelation in the panel is 14.9%, with an 

approximate standard error of 1/T = 1/159 = 7.9%.  For the portfolio of all funds, where the 

number of observations is the greatest, the second order autocorrelation is -7.1%, with an 

approximate standard error of 1/543 = 4.3%.  Thus, none of the second order autocorrelations is 

significantly different from zero, consistent with the assumptions of the model. 

 We group the funds into equally-weighted portfolios according to various fund 

                                           

    11 Global funds are coded SI_OBJ=BGG or BGN.  Short-term funds are coded SI_OBJ=CSM, 

CPR, BGS, GMA, GMS, GBS or GSM.  Government funds are coded OBJ=GS POLICY=GOV, 

ICDI_OBJ=GS, or SI_OBJ=GIM or GGN.  Mortgage funds are coded ICDI_OBJ=GM, 

OBJ=MTG or SI_OBJ=GMB.  Corporate funds are coded as OBJ=CBD, ICDI_OBJ=BQ, 

POLICY=B&P or SI_OBJ=CHQ, CIM, CGN or CMQ.  High Yield funds are coded as 

ICDI_OBJ=BY, SI_OBJ=CHY or OBJ=CHY or OBJ=I-G and Policy=Bonds.  Index funds are 

identified by searching for the word "index" in the fund name.  Other funds are defined as funds 

that we classify as bond funds (see the previous footnote), but which meet none of the above 

criteria.   
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characteristics, measured at the end of the previous year.  Since the characteristics are likely to be 

associated with fund style, we form characteristic groups within each of the style classifications.  

The characteristics include fund age, total net assets, percentage cash holdings, percentage of 

holdings in options, reported income yield, turnover, load charges, expense ratios, the average 

maturity of the funds' holdings, and the lagged return for the previous year.  The Appendix 

provides the details.   

 

3.2  Bond Market Factor Data 

 We use daily and weekly data to construct monthly empirical factors.  Most of the data are 

from the Federal Reserve (FRED) and the Center for Research in Security Prices (CRSP) 

databases.  The daily interest rates are from the H.15 release.  The factors reflect the term 

structure of interest rates, credit and liquidity spreads, exchange rates, a mortgage spread and two 

equity market factors.  The Appendix provides the details. 

 Table 2 presents summary statistics for the monthly series starting in January of 1962 or 

later, depending on data availability, and ending in December 2007.  Missing values are excluded 

and the units are percent per year (except for the US dollar index and Equity values, represented 

as the price/dividend ratio).  Panel A presents the levels of the variables and panel B presents the 

monthly first differences.  The time-averaged values used as controls for interim trading effects 

look similar to the levels in Panel A and are not shown.   

 The average term structure slope was positive, at just over 80 basis points during the 

sample period.  The average credit spread was about one percent, but varied between 32 basis 

points to about 2.8%.  The average mortgage spread over Treasuries was just over 2% for the period 

starting in 1971, and varied between -0.4% to 5.6%.  The liquidity spread averaged 0.4%, with a range 

between -0.15% and 2.2% over the 1971-2007 period. 

 In their levels the variables shown in Table 2 are highly persistent time series, as indicated 
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by the first order autocorrelation coefficients.  Five of the nine autocorrelations exceed 95%.  

Moving to first differences, the series look more like innovations.12  We use the first differences of 

these variables to represent the factor changes in our analysis. 

 

3.3 Style Index Returns 

 We form style-related benchmark returns for the mutual funds using two alternative 

methods.  The first method is to simply assign a benchmark based on a fund's declared style.  This 

has the advantage that the benchmark is determined ex ante and nothing has to be estimated.  It 

has the disadvantage of relying on the fund's self-declared style.  If a fund strategically 

misrepresents its style or is more accurately represented as a hybrid style, then the benchmark will 

be inaccurate. 

 We select seven benchmarks based on funds' declared styles.  Global funds are paired with 

the Lehman Global Bond Index.  Short-term bond funds are paired with a portfolio of US 

Treasury bond returns with less than or equal to 48 months to maturity.  This best matches the 

reported maturities of their holdings (see the Appendix).  Mortgage funds are paired with the 

Lehman US Mortgage Backed Securities Index.  Corporate bond funds are paired with the 

Lehman US AAA Credit Index, while High-yield funds are paired with the Merrill Lynch High-

Yield US Master Index.13  For two of the styles we use combinations of Lehman bond indexes, 

                                           

    12 Given the relatively high persistence and the fact that some of the factors have been studied 

before exposes us to the risk of spurious regression compounded with data mining, as studied by 

Ferson, Sarkissian and Simin (2003).  However, Ferson, Sarkissian and Simin (2008) find that 

biases from these effects are largely confined to the coefficients on the persistent regressors, while 

the coefficients on variables with low persistence are well behaved.  Thus, the slopes on our 

persistent control variables and thus the regression intercepts may be biased, but the market 

timing coefficients should be well behaved.  

    13 We splice the Blume, Keim and Patel (1991) low grade bond index prior to 1991, with the 

Merrill Lynch High Yield US Master Index after that date. 
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weighted in proportion to their contributions to the Lehman US Aggregate bond index.  Because 

Government style funds hold significant amounts of mortgage-backed securities in the latter part 

of the sample period, we pair the Government bond funds with a combination of the Lehman 

mortgage backed index and a long-term Treasury bond index.14  Finally, we pair the catch-all 

Other bond funds and the Index funds with a combination of the Treasury bond index, the 

mortgage backed index and the corporate bond index.15 

 Our second, alternative method follows Sharpe (1992).  Historical returns are used to 

estimate a fund-specific tracking portfolio of passive asset class returns.  This has the advantages 

of not relying on a fund's self-declared style and of allowing a fund to be represented as a hybrid 

style.  It has the disadvantage that the portfolio weights must be estimated, and the estimates will 

be imprecise for funds with a limited sample of returns.  If the portfolio weights for a particular 

period are estimated using any future returns data, there may be a look-ahead bias in the analysis 

for the future period.  The details of this approach are discussed in the Appendix. 

 Panel B of Table 1 presents the Sharpe style-index weights for the style-based portfolios.  

The weights present sensible patterns, suggesting that both the style classification of the funds and 

Sharpe's procedure are reasonably valid.  The Global funds load most heavily on global bonds.  

                                           

    14 We splice the Ibbotson Associates 20 year government bond return series for 1962-1971, with 

the CRSP greater than 120 month government bond return after 1971.  

    15 The aggregate weights are from Lehman (2006), in percent: 

 

Year Government Credit Mortgage 

1976 49 42 5 

1986 56 19 23 

1996 52 17 30 

2001 34 27 35. 

 

We use the most recent ex ante weight to form the benchmark in a given year.  Prior to 1977 we 

pair the Government funds with the long-term Treasury return index and we pair the Other and 

Index funds with the Corporate bond index. 
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Short term funds have most of their weight in bonds with less than 48 months to maturity.  

Mortgage funds have their greatest weights on mortgage backed securities.  Corporate funds have 

more than 70% of their weight in high or low grade corporate bonds.  High yield funds have 77% of 

their weight in low grade corporate bonds.  Government funds do load highly on mortgage-backed 

securities (21%), consistent with the observations of Comer (2006) and Moneta (2008).   

 

4. Empirical Results 

We first examine the empirical relations between the factors and passive investment strategies 

proxied by the style benchmarks.  We evaluate the effects of the controls for nonlinearities on 

these portfolios and on broad portfolios of the mutual funds.  We then apply the models to 

individual funds.  

 

4.1 Factor Model Regressions 

 We begin the empirical analysis with regressions of the style benchmark returns on 

changes and squared changes in the factors, looking for convexity or concavity.  Nonlinearities in 

the relations between the factors and the benchmarks suggest what would happen given a naive 

application of the timing regression (1) for funds, if funds simply held the benchmark portfolios.  

If the benchmark returns are nonlinearly related to the factors, it suggests that controls for 

nonlinearities could be important.   

 Table 3 summarizes the t-ratios for the regression coefficients on the squared factors.  Only 

t-ratios that exceed 1.6 in absolute value are shown; otherwise a zero is recorded.  Panel A of 

Table 3 shows that out of 72 cases (8 styles times 9 factors) there are 25 heteroskedasticity-

consistent t-ratios with absolute values larger than 1.6.  Nine of the absolute t-ratios are above 2.0. 

 Thus, there is significant evidence of nonlinearity in the benchmark returns.  Most of the large 

coefficients are positive, indicating convexity.  Using the Sharpe style benchmarks (not shown in 
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the table) the evidence for convexity is even stronger.  This implies that we would measure positive 

timing ability, based on regression (1), if funds simply held the benchmarks.  Thus, controlling 

for nonlinearity of the benchmark returns is likely to be important for measuring the timing 

ability of bond funds.  

 Comparing the funds with the benchmarks, we see the effects of active management.  The 

coefficients for the mutual funds are summarized in Panel B of Table 3.  Here we find 11 

absolute t-ratios larger than two and 19 in excess of 1.6.  This is more than expected by chance; 

thus, the mutual fund returns are significantly nonlinearity related to the factors.16  The 

coefficients on the squared factors are negative in about half of the cases.  Thus, the fund returns 

appear more concave in relation to the factors than do the benchmark returns.  This might suggest 

poor market timing ability on the part of the mutual funds, but we would not expect to find much 

evidence of market timing for an entire style portfolio of mutual funds.  More likely, nonlinearity 

that differs from the benchmark reflects derivatives, interim trading, public information or stale 

pricing effects that are not found in the benchmarks.  Note that marginally significant t-ratios are 

found for the index funds on three of the nine factors, as shown in the first row of Panel B.  This 

further suggests that the nonlinearity is unrelated to timing, as index funds are unlikely to be 

actively market timing. 

 We also examine regressions like Table 3 where the fund style returns net of the 

benchmark returns are the dependent variables.  The evidence of concavity is much stronger in 

these regressions, as would be expected.  We find 27 or 28 absolute t-ratios larger than 1.6 and all 

but one or two are negative, depending on the type of style benchmark.  Thus, simply measuring 

fund returns net of a benchmark will not control for the nonlinearities.  If we naively ran the 

                                           

    16 Using a simple binomial model assuming independence, the t-ratio associated with finding 

11 "rejections," when the probability of observing a rejection is 5%, is  

(11/72 - .05)/(.05(.95)/72)0.5 = 4.00. 
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regression (1) using fund returns net of benchmark returns on the left hand side, we would find 

strong evidence of negative timing ability. 

 Finally, Table 3 reports the adjusted R-squares of the regressions when all nine factors 

and their squares are included.  We would expect the R-squares to be higher for the benchmarks 

than for the funds if active management in the form of security selection creates nonsystematic 

noise in the funds.  We would expect higher R-squares for the funds if managers are timing 

systematic factors.  A large difference in the R-squares could also indicate bad benchmarks.  The 

average R-squared across the funds is 51.6% and the average across the benchmarks is 53.8%.  The 

R-squares vary across the styles with similar patterns for both the funds and the benchmarks; e.g. 

the index styles have the highest R-squares and High yield styles have the lowest.  While there 

are some differences between the funds and the benchmarks, the magnitudes of these differences 

suggest no obvious problems.  

 

4.2  Evaluating the Controls 

 The next step in the analysis is to evaluate the impact of the controls for non-timing-

related nonlinearity in the general model represented by Equations (2) and (9).  To control for 

benchmark nonlinearity the function bB(ft) is used.  We consider three specifications for bB(f): 

Quadratic, exponential and piecewise linear.  As described earlier, a quadratic function can be 

motivated by coskewness.  An exponential function can be motivated by a continuous-time model, 

however, since ef1+f when f is numerically small, the linear function well approximates the 

exponential for small factor changes.  We find no empirically measurable impact of an 

exponential function, compared with a linear function.    

 The piecewise linear specification is bB(f) = bf + c f*I(f>0), where I(f>0) is an indicator 

function for a positive change in the factor.  A piecewise linear function can be motivated as 

approximating an option payoff.  We use zero as the breakpoint in the piecewise linear function 
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for simplicity and to avoid estimating a breakpoint parameter.  This will be useful when we apply 

the model at the level of the individual funds, where short time series often limit the degrees of 

freedom.   

 We revisit the factor model regressions of Table 3 using the piecewise linear function in 

place of the quadratic function to capture nonlinearity.  The results for the benchmark returns are 

similar.  The coefficient, c, is positive, indicating convexity in the benchmarks, and the t-ratio is 

large in significant fractions of the cases.  The coefficients for the fund portfolios are a mix of 

positives and negatives, with large t-ratios in a significant fraction of the cases.  The funds are 

typically more concave in the factor changes than are the benchmarks. 

 Table 4 summarizes the impact of the controls for nonlinearity in the fund-style-and-

characteristic portfolio returns, as measured by the t-ratios of the timing coefficients.  The table 

reports the fractions of the cases where the t-ratios are above +2.0 or below -2.0.  Panel A sorts the 

cases by fund style.  There are 180 possible cases for each style (9 factors times 20 characteristics-

sorted portfolios).  Panel B sorts by the factors, which enter the models one at a time.  There are 

160 possible cases for each factor.  Results for the Sharpe style benchmarks are shown.   

 The first column of Table 4 shows the results when there are no controls for nonlinearity 

in the models.  We find negative timing coefficients on the fund-characteristic portfolios, as we 

would expect from the evidence in Table 3.  For example in panel A, the Global, Short Term, 

Government and High yield portfolios have more than 7.5% of the t-ratios below -2.0.  Where we 

saw the largest differences between the t-ratios for the funds versus the benchmarks in Table 3, we 

tend to find thicker tails in the same direction in the models with no controls.  For example, we 

find positive coefficients on the US dollar factor and negative coefficients on the short term 

interest rate factor. 

 In the second and third columns of Table 4 we introduce the quadratic and piecewise 

linear controls for benchmark nonlinearity.  These have a substantial impact on the distributions 
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of the timing coefficients.  In most of the cases the controls for benchmark nonlinearity reduces 

the incidence of large t-ratios, relative to the models with no controls.  With the quadratic 

specification all of the fractions of large t-ratios are 6.5% or fewer.  With the piecewise linear 

specification only the equity volatility factor produces a fraction above 7.5%, but this is sensitive to 

the benchmark portfolio used.   

  The controls for interim trading, stale pricing and public information have a 

smaller impact on the distributions of the t-ratios.  We ran an alternative version of this 

experiment, where the took the model with all the controls and compared the timing coefficients 

with a model where one control at a time was removed.  Here, we found that the controls for 

interim trading, stale pricing and public information had marginally significant effects, with 

interim trading being the largest. 

 The far right column of Table 4 summarizes models with all of the controls in place.  The 

piecewise linear specification is used for benchmark nonlinearity.  Here only three of 32 

experiments produce fractions of large t-ratios above 7.5%.  With the self-declared benchmarks 

none of these is larger than 7.5%.  Most of the other patterns in the table are not sensitive to which 

type of style benchmark is used.  Interestingly, none of the cases with large t-ratios in this model 

indicate negative timing coefficients.  The full models thus suggest neutral to perhaps slightly 

positive timing ability at the level of the fund style-and-characteristics portfolios. 

 We draw several conclusions from the analysis of Table 4.  First, it is important to control 

for nonlinearity in funds' benchmarks with respect to the factors.  Second, a model that combines 

the various controls produces an overall distribution of the timing coefficients that appears 

neutral to perhaps slightly positive at the level of fund portfolios.  

 

4.3 Fund level Analysis  

 We expect to find little timing ability when funds are grouped into large portfolios, but 
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there could be individual funds with significant timing ability.  We estimate the market timing 

coefficients by combining equations (2) and (9) for each fund with at least 36 monthly returns.  

The results using the piecewise linear bB(f) function and all of the controls are summarized in 

Table 5 (the results are similar using the quadratic function as noted below). 

 There are at least 1100 eligible funds for each factor, and we summarize the distributions 

of the timing coefficients across the funds.  The first column lists selected fractiles of a null 

distribution of estimated timing coefficients.  For each factor we set the timing coefficient in 

regression (9) equal to zero and simulate the each fund return as the fitted values of the regression 

with this modification, plus the randomly rescrambled residuals.  Estimating the model on this 

simulated data, we sort the timing coefficients and find the critical values at each fractile.  The 

fractions in the remaining columns are the fractions of the estimated timing coefficients in the 

original fund data that exceed these critical values. (For left tail areas we show the fractions that 

lie below the critical values.) 

 To evaluate these figures, consider a binomial random variable that equals 1.0 with 

probability p, when a timing coefficient is larger than the critical value for the fractile p.  If the 

correlation of the trials is ρ the variance of the fraction of funds above the critical value is [p(1-

p){1/n -(1-1/n)ρ}].  The correlation ρ depends on the correlation of the funds' returns.  We 

approximate ρ by estimating the pairwise correlations of all the funds' returns using all pairs 

with at least 36 months in common.  The summary statistics in Table 1 suggest that if two funds' 

return series are separated by more than a month in calendar time, their average correlation is 

statistically zero.17  We therefore scale each contemporaneous correlation by the fraction of the 

sample where the two series overlap.  We make the conservative assumption in this calculation, 

                                           

    17 Recall that the autocovriance of a portfolio return is approximately the average of the lagged 

cross covariances of the securities in the portfolio.  Since the second order autocorrelations in 

Table 1 are statistically zero, it suggests no lagged cross correlation of individual fund returns 

beyond the first lag. 
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that the correlations at one lag are equal to the contemporaneous correlations and we set the 

correlations beyond lag one to zero.  The resulting estimate of ρ is 0.083.  This implies that the 

standard deviations of the fractions in Table 5 are approximately 0.14, 0.085, 0.06 and 0.045 

respectively, for the 0.50, 0.10, 0.05 and 0.025 fractiles. 

 Overall, the timing coefficients are mildly skewed toward positive values, relative to the 

null distributions, excepting the coefficients on the slope and curvature factors, which are mildly 

negatively skewed.  For most of the factors, however, the distributions of the coefficients are not 

significantly different from the null distributions.  For the US dollar factor, we do find 

significant positive timing, with more than 82% of the funds' timing coefficients above the median 

from the null distribution, but the 5% and 2.5% tails conform closely to the null distribution.  

(Using the quadratic bB(f) there are significant positive timing coefficients in the tail as well.)  

There is marginally significant evidence that some funds can time the credit, liquidity and equity 

value factors.  For the curvature factor, we find more negative coefficients, with only 28% of the 

funds' coefficients above the median from the null distribution.  (Using the quadratic bB(f) the 

negative coefficients are significant below the median.) 

 Panel B reports the estimated correlations of the timing coefficients with the ten fund 

characteristics described earlier.  With about 1200 observations, the standard error of these 

correlations is about 0.03.  There are 38 out of 171 correlations larger than 0.06.  Assuming a 5% 

significance of two standard errors, the binomial t-statistic, accounting for correlation across trials 

equal to 0.08, is 2.7.  Thus, there are significant correlations.  The strongest correlations with the 

timing coefficients are found for the short rate, slope and US dollar factors.  For these, timing is 

negatively related to the expense ratio, the lagged return and the global style dummy, but the other 

correlations are mixed.  
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4.4 Timing-adjusted Performance  

 The idea in most measures of investment performance is to compare the average return of a 

managed portfolio over some evaluation period to the return of a benchmark portfolio.  The 

benchmark portfolio ideally represents a feasible investment alternative to the managed portfolio. 

 If the objective is to evaluate the investment ability of the portfolio manager or management 

company, the benchmark should be equivalent in all of the return-relevant aspects to the managed 

portfolio being evaluated, except that it should not reflect the investment ability of the firm or 

manager.  Aragon and Ferson (2007) call such a portfolio an "Otherwise Equivalent" (OE) 

portfolio.  In order to operationalize the OE portfolio it is necessary to have a model to determine 

what aspects of a portfolio or its return should lead to higher or lower expected returns.  Perhaps 

the simplest example is the CAPM, where the relevant characteristic is the market beta, leading to 

Jensen's (1968) alpha as the measure of performance.   

 The intercept in the Treynor-Mazuy regression (1) has been naively interpreted as a 

"timing adjusted" selectivity measure in several studies.  This is incorrect, except in unlikely 

special cases of stylized "perfect" market timing ability, as discussed by Aragon and Ferson (2007). 

 The reason the intercept does not properly measure performance is that ft
2 is not a portfolio's 

excess return.  However, the model can be modified to capture the difference between the return of 

the fund and that of an OE portfolio.  Our approach to performance measurement follows Aragon 

and Ferson (2007).   

 Let rh2 be the excess return of the maximum-squared-correlation portfolio for the squared 

factor changes, ft
2.   This portfolio is estimated by the regression: 

 

   ft
2 = a + H'rt + ut,                                                                             (10) 

 

where the weights that define the mimicking portfolio rh2 are proportional to the regression 
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coefficients, H.  The base assets in rt are the seven assets we use to form the Sharpe style 

benchmarks, excluding the short term Treasury rate, and the returns are in excess of this Treasury 

rate.  The expected value of the excess return, E(rh2) is the risk premium associated with the 

squared factor, which we call the convexity premium.18  Our goal is to form an OE portfolio for 

each fund that has the same loadings on its style benchmark and rh2 as does the fund.  This makes 

the simplifying assumption that style benchmark exposure and timing are the return-relevant 

characteristics.  Our measure of alpha is the excess return of the fund net of the excess return of 

its OE portfolio.  The OE portfolio is formed using the following regression: 

 

  rpt = ap + bp rBt + cp rBt-1 + dp rh2t + ep rh2t-1 + vt.                                               (11) 

 

The loading on the benchmark, rB, is estimated following Scholes and Williams (1977) as βp = bp 

+ cp to account for stale pricing in the fund returns.  Similarly, the loading on the hedge portfolio 

is Ωp = dp + ep.  The OE portfolio return for fund p is βp rB + Ωp rh2.  This portfolio has the same 

benchmark exposure as the fund and the same conditional exposure to the hedge portfolio (given 

the nonlinearity captured by the style benchmark return).  The contribution of rh2 to the OE 

portfolio is the premium in the market that is required to replicate the fund's exposure to the 

squared factor.  The fund's performance is its average return net of what the unmanaged strategy 

would cost to produce these return characteristics. 

 Table 6 presents the analysis of timing adjusted performance.  The second and third 

                                           

    18 An alternative approach is to use cross-sectional regressions of returns on betas to estimate 

mimicking portfolios and factor risk premiums.  While we have a large cross section of mutual 

funds, using the funds with this approach would contaminate the premium estimates with the 

abnormal returns due to manager ability, if any.  We have a small cross section of passive 

benchmark assets.  We therefore use time-series as opposed to cross-sectional regressions to 

estimate the mimicking portfolios.  (See Balduzzi and Robotti, 2007 for comparisons of the two 

methods.) 
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columns of Panel A summarize the mean excess return over a short term treasury and the mean 

return over the style benchmark at selected fractiles of their distributions across the funds.  The 

average excess returns are percent per month.  The remaining columns of Panel A of Table 6 

report the fractions of funds with alphas larger than (for the right tail and median) or smaller 

than (for the left tail) the critical values for the indicated fractiles from the null distribution in 

which the true alphas are zero.  Panel B summarizes the average risk premiums for the squared 

factors (denoted convexity premiums), which are the average excess returns of mimicking 

portfolios for the squared factors.  It also summarizes the distributions of loadings on style 

benchmarks and the hedge portfolios for the squared factors.  

 The median fund excess return is 0.46% per month, about 20 basis points below the mean in 

Table 1.  This reflects a skewed cross-sectional distribution of funds' average returns.  The upper 

10% tail of the returns distribution is above 0.71% while the lower 10% tail is below 0.29%.  The 

median return net of benchmark is -0.07%, consistent with previous studies that find bond funds 

return less than benchmarks on average.  The distribution is skewed to the left, with 5% of the 

funds below -0.28% and 5% above 0.10%.   

 The third column of Table 6 shows the values of the estimated alphas under the null 

hypothesis that the true alphas are zero, taken at various fractiles of the distribution across funds. 

 These critical values suggest that the estimates of alpha have smaller variation than the average 

returns net of the style benchmarks.  Thus, they should provide more precision in measuring 

performance than the returns net of benchmark.  For example, the range between the top and 

bottom 10% of the alphas is 0.13%.  The range is 0.23% for the returns net of benchmark.   

 Many funds appear to have significantly negative timing-adjusted alphas.  Depending on 

the factor, 78-86% of the funds have alphas below the median value of zero under the null.  

Between 10-18% of the funds have alphas below -0.15% per month, which is at the left 2.5% tail of 

the null distribution.  The alphas in the right tails, by contrast, are not significantly different 



 
 

 28 

from the null distributions.  The table provides strong evidence of negative timing-adjusted 

performance on an after-cost basis. 

 Panel B of Table 6 digs more deeply into the structure of the timing adjusted alpha 

analysis.  We first summarize the funds' loadings on the style benchmarks.  Funds' loadings vary 

widely in the cross section, with the 10% tails spanning loadings between 0.42 and 1.38.  This 

shows that the returns net of benchmark are crude performance measures.  They assume that all 

of the betas equal 1.0.   

 The average convexity premiums vary from -2.93% per month for equity volatility to 3.5% 

for equity values, but the range of funds' loadings on these factors is narrow, with 80% of the funds 

between -0.12 and +0.09.  The rest of the convexity premiums are an order of magnitude smaller 

than these.  If market timing or convexity is valuable, we expect negative return premiums for 

portfolios that are positively correlated with squared factor changes.  This implies that the 

convexity premiums, given by the mean of rh2, multiplied by the sign of the correlation between 

the maximum-squared-correlation portfolio and the factor changes should be negative.  This 

correlation is shown in the last line of Table 6.  The product is negative for each of the nine 

factors, excepting the interest rate curvature factor. 

 The largest effect of the timing adjustments on funds' required returns is the short rate 

convexity factor exposure, which contributes (0.415)(0.134)=0.06% per month for a fund in the 

upper ten percentile.  For the median fund the affect is slightly positive.  For a given fund return, 

these positive timing adjustments imply smaller alphas. 

 We estimate the correlations of the alphas with the ten fund characteristics described 

earlier.  Statistically significant correlations are found, with 68 out of 171 correlations in excess of 

0.06.  The strongest correlations are again found when the factors are the short rate and term 

slope, although significant correlations are found for other factors.  We find a strong negative 

relation of alpha to the fund expense ratio and a positive relation to turnover for all factors.  
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These correlations are consistent with what other studies have found for equity funds.  There is 

also positive correlation with the Corporate and Global style dummies, and a weak negative 

relation with the fund's reported yield.  

 

4.5  Before-Cost Performance 

 Since the OE portfolio pays no trading costs while the bond funds do, the alphas reflect a 

mixed message.  This is consistent with the approach in much of the performance measurement 

literature.  If investors could replicate the OE portfolios at negligible cost, then these alphas proxy 

for the value added for investors.  In this section we replicate the analysis with the funds' returns 

measured on a before-cost basis.  If a fund returns more than the OE portfolio on a before cost 

basis, we have evidence of investment ability.  To obtain the before-cost returns we add back the 

average expense ratio plus a measure of trading costs.  The trading costs for each fund are a 

round-trip trading cost estimate based on the fund's style multiplied by the average reported 

turnover of the fund.19 

 Table 7 presents the results.  The median fund return is about 0.11% higher than in Table 

6, reflecting a transactions cost of about 1.3% per year.  The median return net of the style 

                                           

    19 The round trip transaction cost figures are as follows.  For Global bond funds we use 31 basis 

point, based on figures in Bias and Declerk (2006).  This is an average of twice the half-spreads 

from their Table 5 plus the information content from their Table 10, weighted in proportion to 

the numbers of eurobonds and Sterling bonds in their sample.  For corporate bonds we use 48 

basis points and for high yield bonds we use 75 basis points.  These figures are averages from 

Edwards, Harris and Piwowar (2006), Bessembinder, Maxwell and Venkataraman (2006) and 

Hotchkiss et al. (2006) for intermediate trade sizes.  For Government funds we use 12.5 basis 

points, following Ferson, Henry and Kisgen (2006).  For Mortgage funds and Short-term funds we 

use 20 basis points.  For Index funds and Other bond funds, we use the average of these figures, or 

34 basis points.  We checked these figures with a trader at Smith-Breeden, John Sprow, who 

suggested the figures for Mortgage and Short-term bond funds and confirmed that the other 

numbers seemed reasonable for trade sizes typical of mutual funds under average market 

conditions. 
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benchmark is 0.03% per month, which suggests some investment ability for the median fund.  The 

distributions of the before-cost alphas are markedly different from those in Table 6.  About 75% of 

the funds generate before-cost alphas above the median under the null hypothesis that the before 

cost alphas are all zero.  Between 10-15% of the funds have alphas above 0.149% per month, which 

is at the upper 2.5% tail of the null distribution.  The alphas in the left tails, by contrast, are not 

significantly different from the null distributions.  

 Comparing tables 6 and 7, the story is similar to what the literature finds for equity funds. 

 After paying costs a significant number of funds have poor performance, and few can generate 

significant positive performance.  Before costs are subtracted, just the opposite is true.  A 

significant number of funds have investment ability, and the performance is consistent with the 

null of no ability in the left tails.   

 

5. Concluding Remarks  

 A priori, if bond market factors explain a large part of the variance of a typical bond 

return, a large fraction of the potential performance of fixed income funds could be attributable to 

timing common factors.  Thus, the nonlinear payoff profiles of bond funds, as implied by market 

timing, could in principle justify the low expected returns of bond funds that previous studies 

have documented.  Models of market timing measure convexity in the relation between the fund's 

return and the common factors.  However, convexity or concavity is likely to arise for reasons 

unrelated to timing ability.  We adapt classical market timing models to bond funds by 

controlling for other sources of nonlinearity, such as the use of dynamic trading strategies or 

derivatives, portfolio strategies that respond to publicly available information, nonlinearity in the 

benchmark assets and systematically stale prices. 

 We find that controlling for non-timing-related nonlinearity matters, and naive 

applications of market timing models without these controls would be misleading.  Bond funds' 
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returns are typically more concave, in relation to a broad set of bond market factors, than are 

unmanaged benchmarks.  Thus, without controls for non-timing-related nonlinearity, funds would 

appear to have very poor (i.e., negative) market timing ability.  When we introduce the controls 

the distribution of the timing coefficients appears neutral at the fund style-group level and 

neutral to slightly positive in the sample of individual mutual funds.  

 The magnitudes of the timing-related components of funds' average returns seem small, 

and many funds' timing adjusted alphas are significantly negative.  These results appear broaden 

the "puzzle" of active mutual fund management as posed by Gruber (1996).  When we add expense 

ratios and estimates of trading costs based on fund turnover back to the funds' returns, the 

adjusted performance is markedly better.   About 75% of the funds earn positive before-cost alphas, 

adjusted for market timing, and the distribution of fund performance is significantly better than 

would be expected if the null hypothesis that alpha was zero is true.  Thus, we find evidence of 

investment ability in bond funds, but no evidence of value added for investors.  

 Our paper also contributes to the emerging literature on bond fund performance by laying 

out a set of methodological issues and suggesting questions that deserve more research.  We find 

that simple returns net of style benchmarks are not likely to be reliable performance measures 

because funds' loadings on the benchmarks differ substantially from 1.0.  More precision is 

available with alpha estimates that adjust for timing-related nonlinearity. 

 Goetzmann et. al (2000) find that successful market timing at a daily frequency by equity 

funds may produce returns that do not show up as convexity in monthly returns; so monthly data 

may have low power to detect market timing ability.  Bollen and Busse (2xxx) find evidence of 

timing ability for equity funds using daily data.  However, the evidence using daily data for bond 

funds is not known.  Future research should adapt our controls to the study of bond fund timing 

using daily data.  Non-timing-related nonlinearities are likely to remain important in daily data, 

and daily bond fund returns data present new challenges.  For example, income distributions are 
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sometimes treated as accrued interest in bond funds (Morey and O'Neal, 2005) which complicates 

the interpretation of daily returns.  However, the potentially improved power motivates more work 

along these lines.   

 

Appendix  

A.1 Market Timing Models 

Assume that the fund manager combines a benchmark portfolio with return RB and a short-term 

Treasury security or "cash" with known return Rf.  The portfolio weight on RB is x(s), where s is 

the private timing signal.  The managed portfolio return is Rp = x(s)RB + [1-x(s)]Rf.  The signal is 

observed and the weight is set at time t-1, the returns are realized at time t, and we suppress the 

time subscripts when not needed for clarity.  In the simplest example the factor changes and the 

benchmark's excess returns are related by a linear regression (we allow for nonlinearities below):   

 

  rBt  = μB  +  bB ft +  uBt,                                                                         A.1) 

 

where  rB = RB - RF  is the excess return,  μB=E(rB), the factor changes are normalized to have 

mean zero and  uBt  is independent of ft.  Assume that the signal  s = f + v,  where  v  is an 

independent, mean zero noise term with variance, ζv
2.  The manager is assumed to maximize the 

expected value of an increasing, concave expected utility function, E{U(rp)|s}.  Finally, assume that 

the random variables (r,f,s) are jointly normal and let ζf
2 = Var(f).  With these assumptions the 

optimal portfolio weight of the market timer is:20 

                                           

    20 The first order condition for the maximization implies: 

E{U'(.)rB|s} = 0 = E{U'(.)|s} E{rB|s} + Cov(U'(.),rB|s}, where U'(.) is the derivative of the utility 

function.  Using Stein's (1973) lemma, write the conditional covariance as: Cov(U'(.),rB|s} = 

E{U''(.)|s} x(s) Var(rB|s).  Solving for x(s) gives the result, with 

λ =  -E{U'(.)|s}/E{U''(.)|s} > 0. 
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   x(s) = λ E(rB|s)/ζB
2,                                                                        (A.2) 

 

where λ > 0 is the Rubinstein (1976) measure of risk tolerance, which is assumed to be a fixed 

parameter, and ζB
2 = Var(rB|s), which is a fixed parameter under normality.   

 The implied regression for the managed portfolio's excess return follows from the optimal 

timing weight x(s) and the regression (A.1).  We have rp = x(s) rB, then substituting from (A.1) 

and (A.2) and using E(rB|s) = μB + bB [ζf
2/(ζf

2 + ζv
2)] (f+v), we obtain equation (1), where ap = 

λμB
2/ζB

2,  bp = (λμBbB/ζB
2) [1 + ζf

2/(ζf
2+ζv

2)] and Λp = (λ/ζB
2)bB

2 [ζf
2/(ζf

2+ζv
2)].  The error term 

upt in the regression is a linear function of uB, v, vuB, fuB and vf.  The assumptions of the model 

imply that the regression error is well specified, with E(up f) = 0 = E(up) = E(up f
2).     

 The model shows that timing ability implies convexity between the fund's return and the 

systematic factor changes, independent of the direction of the relation between the factor changes 

and the benchmark return.  That is, since λ>0 the coefficient Λp  0, independent of the sign of bB. 

 If the manager does not receive an informative signal then Λp=0 because E(rB|s) and x(s) are 

constants. 

 

A.2 Nonlinearity 

 The manager's market-timing signal is now assumed to be s = bB(f) + v, where v is normal 

independent noise with variance, ζv
2.  This captures the idea that the manager focuses on the 

return implications of information about the factor changes. 

 The optimal weight function in (A.2) obtains with: 

E(rB|s) = μB [ζv
2/(ζf

*2 + ζv
2)] + [ζf

*2/(ζf
*2 + ζv

2)][aB + bB(f) + v],  where ζf
*2=Var(bB(f)).  

Substituting as before we derive the nonlinear regression for the portfolio return: 
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  rpt  = ap  +  bp [bB(ft)] +  Λp [bB(ft)
2] +  ut,                                                A.3) 

 

with:     ap = λ aB(μB ζv
2 + aB ζf

*2)/[ζB
2(ζf

*2+ζv
2)],   

    bp = λ(μB ζv
2 + 2aB ζf

*2)/[ζB
2(ζf

*2+ζv
2)], 

and    Λp = (λ/ζB
2)[ζf

*2/(ζf
*2+ζv

2)].   

 

The reduced form Equation (3) of the text ignores some of the restrictions in (A.3); for example, if 

bB(f) is quadratic there are restrictions involving f3 and f4.  In our data we find that these higher 

order terms are empirically negligible.  For this reason we replace bB(ft)
2 with ft

2 in Equation (3). 

 

A.3 Screening the Fund Sample 

 There are a total of 40,390 fund-year records in our initial sample.  In order to address 

back-fill bias we remove the first year of returns for new funds, and any returns prior to the year 

of fund organization, a total of 2,625 records.  Data may be reported prior to the year of fund 

organization, for example, if a fund is incubated before it is made publicly available (see Elton, 

Gruber and Blake (2001) and Evans, 2006).  Extremely small funds are more likely to be subject 

to back-fill bias.  We delete cases where the reported total net assets of the fund is less than $5 

million.  This removes 5,698 records.  We delete all cases where the reported equity holdings at the 

end of the previous year exceeds 10%.  This removes 1,017 records.  We identify cases where funds 

report multiple share classes.  Multiple classes are identified when two ICDI codes for the same 

year have a common fund name and a different share class code.  We retain the share class with 

the largest Total Net Assets and delete the other share classes.  This removes another 10,723 

records.  After these screens we are left with 20,236 fund-years.  The number of funds with some 

monthly return data in a given year is four at the beginning of 1962, rises to 14 at the beginning 

of 1973, to 564 by 1993 and to 1,054 at the beginning of 2007.  
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A.4 Funds Grouped by Characteristics 

 The fund characteristics include age, total net assets, percentage cash holdings, percentage 

of holdings in options, reported income yield, turnover, load charges, expense ratios, the average 

maturity of the funds' holdings, and the lagged return for the previous year.  Each year we sort 

the funds of a given style with nonmissing characteristic data from high to low on the basis of the 

previous year's value of a characteristic and break them into thirds.  We form equally weighted 

portfolio returns from the funds in the high group and the low group for each month of the next 

year. 

 

A.5 Bond Market Factor Data 

 Three factors represent the term structure of Treasury yields:  A short-term interest rate, a 

measure of the term slope and a measure of the curvature of the yield curve.  The short-term 

interest rate is the three-month Treasury rate.  The slope of the term structure is the ten-year 

yield less the one-year yield.  The curvature measure is: y3 - (y7 + 2y1)/3, where yj is the j-year 

fixed-maturity yield. 

 Since our funds hold corporate bonds subject to default risk and mortgage backed securities 

subject to prepayment risks, we construct associated factors.  Our credit spread series is the yield of 

Baa corporate bonds minus Aaa bonds, from the FRED.  These series are measured as the weekly 

averages of daily yields.  We use the averages of the weeks in the month for our time-averaged 

version of the spread.  For the discrete changes in the spread we use the first differences of the 

last weekly values for the adjacent months.  The first difference series may not be as clean as with 

daily data, but we are limited by the data available to us.  Our mortgage spread is the difference 

between the average contract rate on new conventional mortgages, also available weekly from the 

FRED, and the yield on a three-year, fixed maturity Treasury bond.  Here we use daily data on 

the Treasury bond and weekly data on the mortgage yield to construct the time averages and 
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discrete changes. 

 For market timing we are interested in market-wide fluctuations in liquidity.  Our 

measure follows Gatev and Strahan (2006), who advocate a spread of commercial paper over 

Treasury yields as a measure of short term liquidity in the corporate credit markets.  (See also, 

Bernanke (1983) who interprets the spread as a monetary policy factor.)  We use the yield 

difference between three-month nonfinancial corporate commercial paper rates and the three 

month Treasury yield.  The commercial paper rates are measured weekly, as the averages over 

business days.  

 Some of the funds in our sample are global bond funds, so we include a factor for currency 

risks.  Our measure is the value of the US dollar, relative to a trade-weighted average of major 

trading partners, from the FRED.  This index is measured weekly, as the averages of daily figures, 

and we treat it the same way we treat the other weekly data.   Corporate bond funds, 

and high-yield funds in particular, may be exposed to equity-related factors.  We therefore include 

two equity market factors in our analysis.  We measure equity volatility with the VIX-OEX index 

implied volatility.  This series is available starting in January of 1986.  We also include an equity 

market valuation factor, measured as the price/dividend ratio for the CRSP value-weighted index. 

 The dividends are the sum of the dividends over the past twelve months, and the value is the cum-

dividend value of the index.  The level of this ratio is a state variable for valuation levels in the 

equity market, and its monthly first difference is used as a factor. 

 

A.6 Sharpe Style Indexes  

 Following Sharpe (1992) we combine the asset class returns, Ri, using a set of portfolio 

weights, {wi}, to minimize the "tracking error" between the return of the fund group, Rp, and the 

portfolio, ΣiwiRi.  The portfolio weights are required to sum to 1.0 and must be non-negative, 

which rules out short positions: 
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  Min{wi} Var[Rp - Σi wiRi],                                                   (A.4) 

  subject to: Σi wi = 1,  wi  0 for all i, 

 

where Var[.] denotes the variance.  We solve the problem numerically.  The asset class returns 

include US Treasury bonds of three maturity ranges from CRSP (less than 12 months, less than 48 

months and greater than 120 months), the Lehman Global bond index, the Lehman US Mortgage 

Backed Securities index, the Merrill Lynch High Yield US Master index and the Lehman US 

Credit Aaa bond index. 

 

References 

 

Admati, Anat, Sudipto Bhattacharya, Paul Pfleiderer and Stephen A. Ross, 1986, On timing and 

selectivity, Journal of Finance 61, 715-732.  

 

Aragon, George, 2005, Timing multiple markets: Theory and evidence from balanced mutual 

funds, working paper, Arizona State.  

 

Becker, C., W. Ferson, D. Myers and M. Schill, 1999, Conditional Market timing with Benchmark 

investors, Journal of Financial Economics 52, 119-148. 

 

Bernanke, Benjamin, 1983, Nonmonetary effects of financial crisis in the propagation of the 

Great Depression, American Economic Review 73, 257-276.  

 

Bessembinder, Hendrick, W. Maxwell and K. Venkataraman, 2006, Optimal market transparency: 

Evidence from the initiation of trade reporting in corporate bonds, Journal of Financial 

Economics (forthcoming). 

 

Biais, Bruno and Fany Declerk, 2006, Liquidity and price discovery in the european corporate 

bond market, working paper, Toulouse University. 

 

Blake, Christopher R., Edwin J. Elton and Martin J. Gruber, 1993, The performance of bond 

mutual funds, Journal of Business 66, 371-403. 

 

Blume, Marshall, D. Keim and J. Patel, 1991,  Returns and volatility of low-grade bonds: 

1977:1989, Journal of Finance 46, 49-74. 



 
 

 38 

 

Brown, Stephen, David R. Gallagher, Ono W. Steenbeck and Peter L. Swan, 2004, Double or 

nothing: Patterns of equity fund holdings and transactions, working paper, New York University. 

   

Brown, David T. and William J. Marshall, 2001, Assessing fixed income manager style and 

performance from historical returns, Journal of Fixed Income 10 (March). 

 

Chapman, David A., John B. Long and Neil D. Pearson, 2001, Using proxies for the short rate: 

When are three months like an instant? Journal of Finance  

 

Chiang, I-Hsuan Ethan, 2006, Skewness and coskewness in bond returns, working paper, Boston 

College. 

 

Comer, George, 2006, Evaluating Bond Fund Sector Timing Skill, working paper, Georgetown 

University. 

 

Comer, George, Vaneesha Boney and Lynne Kelley, 2005, High quality bond funds: Market timing 

ability and performance, working paper, Georgetown University. 

 

Cornell, Bradford and Kevin Green, 1991, The investment performance of low-grade bond funds, 

Journal of Finance 46, 29-48. 

 

Dimson, Elroy, 1979, Risk management when shares are subject to infrequent trading, Journal of 

Financial Economics 7, 197-226.   

 

Dybvig, Phillip H. and Jonathan Ingersoll, 1982, Mean variance theory in complete markets, 

Journal of Business 55, 233-251. 

 

Edelen, Roger, 1999, Investor flows and the assessed performance of open-ended mutual funds, 

Journal of Financial Economics 53, 439-466. 

 

Edwards, A., L. Harris and M. Piwowar, 2006, Corporate bond market transparency and 

transactions costs, Journal of Finance (forthcoming). 

 

Elton, Edwin, Martin J. Gruber and Christopher R. Blake, 1995, Fundamental Economic 

Variables, Expected returns and bond fund performance, Journal of Finance 50, 1229-1256. 

 

Elton, Edwin, Martin J. Gruber and Christopher R. Blake, 2001, A first look at the Accuracy of 

the CRSP and Morningstar Mutual fund databases, Journal of Finance 56, 2415-2430. 

 

Evans, Richard, 2006, Mutual fund incubation: The market for fund returns, working paper, 

Boston College. 

 



 
 

 39 

Farnsworth, Heber K., Wayne Ferson, David Jackson and Steven Todd, Performance Evaluation 

with Stochastic Discount Factors, 2002, Journal of Business 75, 473-504. 

 

Ferson, Wayne E., 1995, Theory and Empirical Testing of Asset Pricing Models, Chapter 5 in 

Finance, Handbooks in Operations Research and Management Science, by Jarrow, Maksimovic 

and Ziemba (editors), Elsevier, 145-200.   

 

Ferson, W., Tyler Henry and Darren Kisgen, 2006, Evaluating Goverment Bond Funds using 

Stochastic Discount Factors, Review of Financial Studies 19, 423-455. 

 

Ferson, W. and Kenneth Khang, 2002, Conditional performance measurement using portfolio 

weights: Evidence for pension funds, Journal of Financial Economics 65, 249-282. 

 

Ferson, Wayne E. and Meijun Qian, 2004, Conditional Performance Evaluation Revisited, 

Research Foundation Monograph of the CFA Institute ISBN 0-943205-69-7, 84 pages.  

 

Ferson, W. and Rudi Schadt, 1996, Measuring fund strategy and performance in changing 

economic conditions, Journal of Finance 51, 425-462.     

 

Ferson, Sarkissian and Simin, 2003, Spurious regressions in Financial Economics? Journal of 

Finance 58, 1393-1414. 

 

Ferson, W., S. Sarkissian and T. Simin, 2008, Asset Pricing Models with Conditional Alphas and 

Betas: The Effects of Data Snooping and Spurious Regression, Journal of Financial and 

Quantitative Analysis 43, 331-354.  

 

Ferson, W. and Vincent A. Warther, 1996, Evaluating Fund Performance in a Dynamic Market," 

Financial Analysts Journal 52, no. 6, pp.20-28. 

 

Fisher, Lawrence, 1966, An algorithm for finding exact rates of return, Journal of Business 39, 

111-118.  

  

Gatev, Evan and Phillip Strahan, 2006, Banks' advantage in supplying liquidity: Theory and 

evidence from the commercial paper market, Journal of Finance 61, 867-892.  

 

Getmansky, Mila, Andrew W. Lo and Igor Makarov, 2004, An econometric model of serial 

correlation and illiquidity in hedge fund returns, Journal of Financial Economics 74, 529-610. 

 

Goetzmann, W., Ingersoll J., Ivkovic Z., 2000,  Monthly measurement of daily timers, Journal of 

Financial and Quantitative Analysis 35, 257-290. 

 

Grinblatt, M., Titman, S., 1989.  Mutual fund performance:  an analysis of quarterly portfolio 

holdings.  Journal of Business 62, 393-416.  



 
 

 40 

 

Gruber, Martin, 1996, Another puzzle: The growth in actively managed mutual funds, Journal of 

Finance 51, 783-810. 

 

Hansen, Lars P., 1982, Large sample properties of the generalized method of moments estimators, 

Econometrica 50, 1029-1054.     

 

Hotchkiss, E., M. Goldstein and E. Sirri, 2006, Transparency and liquidity: A controlled 

experiment on corporate bonds, Review of Financial Studies (forthcoming). 

 

Jagannathan, R., Korajczyk, R., 1986. Assessing the market timing performance of managed 

portfolios. Journal of Business 59, 217-236.  

 

Jensen, M. C., 1968, "The Performance of Mutual Funds in the period 1945-1964," Journal of 

Finance, 23, 389-416.   

 

Jiang, George T., Tong Yao and Tong Yu, 2005, Do mutual funds time the market? Evidence from 

portfolio holdings, Journal of Financial Economics (forthcoming). 

 

Jiang, Wei, 2003, A nonparametric test of market timing, Journal of Empirical Finance 10, 399-

425. 

 

Krau, Alan and Robert Litzenberger, 1976, Skewness preference and the valuation of risky assets, 

Journal of Finance 31, 1085-1100. 

 

Lehman Brothers, 2006, A Guide to the Lehman Brothers Global Family of Indices, Lehman 

Brothers Fixed Income Research. 

 

Litterman, R. and J. Sheinkman, 1991, Common factors affecting bond returns, Journal of Fixed 

Income 1,  

 

Merton, Robert C. and Roy D. Henriksson. 1981. "On market timing and investment performance 

II: Statistical procedures for evaluating forecasting skills." Journal of Business, 54: 513-534. 

 

Moneta, Fabio, 2008, Measuring bond mutual fund performance with portfolio characteristics, 

working paper, Boston College. 

 

Morey, R. M. and E.S. O'Neal, 2005, Window dressing in bond mutual funds, Journal of 

Financial Research (forthcoming). 

 

Qian, Meijun, 2006, Stale prices and the performance evaluation of mutual funds, working paper, 

Boston College. 

 



 
 

 41 

Rubinstein, Mark, 1973, A comparative static analysis of risk premium, Journal of Business 19, 

425-442. 

 

Scholes, Myron and Joseph Williams, 1977, Estimating betas from nonsynchronous data, Journal 

of Finance 5, 309-327. 

 

Sharpe, William. F., 1992, Asset Allocation: Management style and performance measurement, 

Journal of Portfolio Management 18, 7-19. 

 

Treynor, Jack, and Kay Mazuy, 1966, "Can Mutual funds Outguess the Market?" Harvard Business 

Review, 44, 131-136.  

 

Zitzewitz, Eric, 2003, Who cares about shareholders?  Arbitrage-proofing mutual funds, Journal 

of Law, Economics and Organizations 19, 225-266. 



 
 

 42 

 Table 1 

 

Mutual Fund Monthly Returns: Summary Statistics.  The sample periods for the fund returns are January of the year 

indicated under Begin through March of 2007.  Nobs is the number of nonmissing time series observations, Begno is the 

number of funds at the start of the sample period and Endno is the number in March of 2007.  The returns are percent per 

month.  Mean is the sample mean, Std is the sample standard deviation, ρ1 is the first order sample autocorrelation and ρ2 

is the second order autocorrelation.  Panel B presents the portfolio weights of Sharpe style benchmarks associated with each 

group of funds.  The benchmarks are formed from the returns to US Treasury bonds with less that or equal to 12 (le12) 48 

(le48) months to maturity, greater than 120 months to maturity (gt120), a high-grade corporate bond index (cb), a low-grade 

corporate bond index (junk), a global bond index (global) and a mortgage-backed securities index (mort).  The weights are 

estimated using all available months from 1976 through 2007.    

                                                                                                                                                                                

Panel A: Equally-weighted Portfolios of Mutual Funds 

 

Style Begin nobs Begno Endno Mean Min Max Std ρ1 ρ2 

                                                                                                                                                                                

 

All 1962 543 4 1054 0.617 -5.397 9.770 1.511 0.253 -0.007 

 

Index 1991 195 1 18 0.546 -3.609 3.907 1.122 0.138 -0.071 

 

Global 1994 159 47 54 0.436 -3.483 4.557 1.455 0.162 -0.081 

Short Term 1993 171 126 217 0.369 -0.856 2.267 0.455 0.300   0.149 

Government 1986 255 1 127 0.547 -3.817 4.318 1.248 0.142 -0.120 

Mortgage 1991 195 10 61 0.491 -2.411 3.188 0.854 0.204   0.011 

Corporate 1962 543 4 308 0.627 -7.339 10.97 1.691 0.177 -0.026 

High Yield 1991 195 34 135 0.737 -6.900 7.535 1.835 0.252   0.075 

Other 1964 543 1 134 0.661 -5.103 9.609 1.640 0.221   0.001 

                                                                                                                                                                                

Panel B: Sharpe Style Weights  

 

Funds Weights assigned to benchmarks:   

 

 le12 le48 gt120 cb junk global mort 

                                                                                                                                                                                

 

All 0.00 0.12 0.03 0.35 0.25 0.05 0.19 

 

Index 0.07 0.20 0.21 0.26 0.03 0.02 0.20 

 

Global 0.00 0.00 0.00 0.22 0.17 0.61 0.00 

Short Term 0.54 0.19 0.00 0.14 0.02 0.03 0.08 

Government 0.06 0.13 0.21 0.36 0.00 0.03 0.21 

Mortgage 0.09 0.00 0.02 0.21 0.00 0.00 0.67 

Corporat 0.00 0.15 0.07 0.55 0.17 0.02 0.04 

High Yield 0.00 0.10 0.00 0.00 0.77 0.00 0.13 

Other 0.00 0.00 0.00 0.29 0.39 0.06 0.27 



 
 

 43 

Table 2 

 

Summary Statistics for the bond market factor data.  The sample periods begin as indicated under Starts (yyyymm), and all 

series end in December of 2007.  Nobs is the number of time series observations, excluding missing values.  The units are 

percent per year, except the US dollar (an index number) and Equity values (a price to dividend ratio).  Mean is the sample 

mean, std is the sample standard deviation and ρ1 is the first order sample autocorrelation of the series.   

                                                                                                                                                                              

Panel A: Levels of the Factors  

 

Factor Starts Nobs mean min max std ρ1 

                                                                                                                                                                              

 

short rate 196201 540 5.847   0.904 16.38 2.842 0.981 

term slope 196201 539 0.836 -3.160 3.310 1.115 0.955 

curvature 196907 450 0.168 -1.097 0.773 0.286 0.834 

credit spread 196201 551 0.989   0.320 2.820 0.418 0.961 

mortgage spread 197104 393 2.184 -0.410 5.580 0.821 0.839 

liquidity spread 198211 290 0.402 -0.151 2.179 0.345 0.658 

US dollar 197101 443 110.3   84.48 167.7 14.77 0.986 

Equity Values 196201 540 36.54   16.27 71.18 13.24 0.992 

Equity Volatility 198601 252 19.77   10.63 61.41 6.940 0.798 

 

                                                                                                                                                                                

Panel B: First differences of the Factors  

                                                                                                                                                                                

 

short rate 196202 539    0.0041 -4.158 2.611 0.539   0.132 

term slope 196202 537 -0.0016 -1.460 2.800 0.334   0.130 

curvature  196908 449  -0.0004 -0.807 0.770 0.164 -0.292 

credit spread 196202 550    0.0007 -0.550 0.680 0.116   0.063 

mortgage spread 197105 392   0.0049 -2.110 3.240 0.461 -0.097 

liquidity spread 198212 289   0.0004 -1.845 1.718 0.286 -0.399 

US dollar 197102 442  -0.0652 -8.132 8.694 2.318   0.159 

Equity Values 196202 539   0.0233 -6.630 6.508 1.615 -0.035 

Equity Volatility 198602 251 -0.0319 -15.28 39.03 4.388 -0.193 
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 Table 3 

 

Regressions of bond funds and benchmark index returns on changes in factors and their squares.  The sample starts in February 

of 1962 or later, depending on the factor and fund style, and ends in March of 2007.  The t-ratios for the regression coefficients 

on the squared factor changes are shown when they exceed 1.6 in absolute value; othewise a zero is shown.  These are based on 

regressions with a single factor and its square.  R2 is the adjusted coefficient of determination in a regression featuring the 

changes in all nine factors and their squared changes. 

                                                                                                                                                                                   

 

Style short slope curve credit mort. liquid US dollar equity equity R2(%) 

group values volatility 

                                                                                                                                                                                    

Panel A:  Style Benchmarks 

 

Index 0.000 1.93 0.000 1.88 0.000 0.000 0.000 0.000 2.20 65.1 

 

Global 0.000 1.64 0.000 0.000 0.000 1.99 0.000 0.000 3.29 57.1 

 

Short Term 1.69 2.69 0.000 2.51 0.000 1.66 0.000 0.000 2.94 60.0 

 

Government 0.000 1.96 0.000 1.88 0.000 0.000 0.000 0.000 2.22 65.4 

 

Mortgage 0.000 2.08 0.000 1.88 0.000 1.74 0.000 0.00 2.63 51.5 

 

Corporate 0.000 1.78 0.000 1.86 0.000 1.83 0.000 0.000 0.000 58.4 

 

High Yield 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.92   0.000 30.7 

 

Other 0.000 1.68 0.000 1.71 0.000 2.51 0.000 0.000 0.000 41.9 

 

 

Panel B:  Funds by Style  

 

Index -1.81 0.000 0.000 -1.90 0.000 0.000 2.40 0.000 0.000 65.8 

 

Global -2.08 0.000 0.000 0.000 0.000 -1.75 2.48 0.000 0.000 47.4 

 

Short Term 0.000 0.000 0.000 -1.97 0.000 0.000 0.000 0.000 0.000 43.5 

 

Government 0.000 0.000 0.000 -2.23  0.000 0.000 2.45 0.000 2.38 63.1 

 

Mortgage 0.000 0.000 0.000 -2.03 0.000 0.000 1.63 0.000 0.000 54.5 

 

Corporate 0.000 0.000 0.000 0.000 0.000 1.85  0.000 0.000 0.000 55.3 

 

High Yield 0.000 0.000 0.000 3.31 0.000 0.000 2.44 -2.78 -3.58 42.2 

 

Other 0.000 0.000 0.000 1.62 0.000 2.49 0.000 0.000 0.000  40.9 
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 Table 4 

 

The effects of controls for non-timing-related nonlinearity on fund groups' timing coefficient estimates.  The table records 

the percentage of cases in which the t-ratio for the timing coefficients is above 2.0 (first line) or below -2.0 (second line).  

In panel A there are 180 possible cases for each fund style and in Panel B there are 160 possible cases for each factor.  The 

cases are based on 20 equally-weighted portfolios of funds grouped within each style according to fund characterstics.  The 

models are estimated on monthly data for 1962-2007, with 543 or fewer observations depending on the fund group and 

factor combination. 

                                                                                                                                                                                         

 No quadratic piecewise stale interim public all 

 controls benchmark benchmark prices trading information controls 

                                                                                                                                                                                         

 

Panel A:  By fund style groups  

 

Index 3.75 6.25 2.50 1.25 5.00 11.3 2.50 

 7.50 0.000 0.625 0.000 13.8 20.6 0.000 

 

Global 7.50 0.625 0.000 21.9 6.88 11.9 0.000 

 11.9 2.50 1.25 16.3 14.4 20.6 0.000 

 

Short Term 0.000 0.000 0.000 0.000 0.625 1.25 0.000 

 10.0 3.13 2.50 6.88 13.8 16.3 0.000 

 

Government 0.625 0.000 0.000 0.000 0.625 1.25 1.25 

 13.8 0.000 0.000 0.000 18.1 21.9 0.000 

 

Mortgage 0.000 0.000 0.625 0.000 0.000 0.000 1.25 

 0.625 0.000 0.000 0.000 10.0 22.5 0.000 

 

Corporate 0.000 0.000 1.88 6.25 8.13 0.625 11.9 

 2.50 6.25 0.625 0.000 1.88 2.50 0.000 

 

High Yield 21.9 1.25 2.50 22.5 12.5 23.1 0.000 

 25.0 0.625 0.000 10.6 15.6 25.0 0.000 

 

Other 0.625 0.000 6.88 8.75 13.8 8.13 8.13 

 2.50 0.625 0.000 0.000 1.25 3.13 0.000 
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 Table 4 (continued) 

 

                                                                                                                                                                                         

 No quadratic piecewise stale interim public all 

 controls benchmark benchmark prices trading information controls 

                                                                                                                                                                                         

 

Panel B:  By Factor  

 

Short Rate 0.000 4.38 0.000 0.000 0.625 0.000 0.000 

 27.5 0.625 0.625 17.5 26.3 3.13 0.000 

 

Term Slope 0.000 0.000 0.000 0.625 15.6 0.000 1.88 

 0.000 0.625 0.000 5.63 0.000 0.000 0.000 

 

Curvature 0.000 0.000 0.000 3.13 0.000 8.75 2.50 

 0.000 0.000 0.000 0.000 0.000 64.4 0.000 

 

Credit Spread 12.5 0.625 0.625 12.5 12.5 12.5 0.000 

 11.9 0.000 0.625 0.000 38.8 33.1 0.000 

 

Mortgage Spread 0.000 0.000 0.000 10.0 0.000 0.000 0.000 

 0.000 0.000 0.000 0.000 0.625 0.000 0.000 

 

US Dollar 21.3 1.25 1.88 29.4 13.1 35.6 0.000 

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Equity Values 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 13.8 0.000 0.000 10.6 3.13 13.8 0.000 

 

Eq. Volatility 0.625  1.88 11.9 5.00 5.63 0.625  20.6 

 20.6 11.9 3.75 0.000 20.0 18.1 0.000 
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 Table 5 

 

Timing coefficients of individual bond funds.  Panel A summarizes the fractions of funds with timing coefficients larger than 

(for the right tail and median) or smaller than (for the left tail) the critical values for the indicated fractiles from the null 

distribution in which the true timing coefficients are zero.  Panel B presents the correlations of the timing coefficients with 

various fund characteristics.  The monthly samples start in February of 1962 or later, depending on the factor and fund, and end 

by March of 2007. 

 

                                                                                                                                                                                       

 

null short slope curve credit mortgage liquidity dollar equity equity 

fractile value volatility 

                                                                                                                                                                                        

 

Panel A:  The distributions of the timing coefficients 

 

0.975 0.0182 0.0086 0.0390 0.0286 0.0597 0.0510 0.0273 0.0296 0.0235 

0.950 0.0316 0.0133 0.0640 0.0715 0.0989 0.0926 0.0640 0.0428 0.0839 

0.900 0.0893 0.0250 0.126 0.153 0.151 0.168 0.235 0.0763 0.252 

0.500 0.547 0.395 0.278 0.742 0.684 0.732 0.824 0.765 0.706 

 

0.100 0.211 0.178  0.174 0.0469 0.0526 0.0322 0.0406 0.0530 0.0729 

0.0500 0.153 0.100  0.0476 0.0167 0.0303 0.0157 0.0257 0.0241 0.0455 

0.0250 0.0996 0.0469 0.0187 0.0127 0.0214 0.0126 0.0179 0.0078 0.0298 

 

# cases 1265 1278 1282 1259 1122 1274 1282 1284 1275 

 

 

 

Panel B:  Correlations of timing coefficients with fund characteristics  

 

expenses -0.1520 -0.2100 -0.0102  0.0407 -0.1230 -0.0130 -0.0491  0.0570  0.0202 

turnover  0.0388  0.0587 -0.0105 -0.0087 -0.0298 -0.0242 -0.0213 -0.0124 -0.0010 

flow  0.0052  0.0138  0.0005 -0.0220  0.0916 -0.0978 -0.0478  0.0158 -0.0176 

cash -0.0587 -0.0135  0.0339  -0.0372 -0.0365 -0.0301 -0.1460  0.0542 -0.0332 

net assets -0.0268  0.0462 -0.0142  -0.0036 -0.0017   0.0164  0.0041 -0.0068  0.0179 

options -0.0497 -0.0121 -0.0096  -0.0042 -0.0157   0.0274  0.0484 -0.0044  0.0358 

yield -0.1430 -0.0547 -0.0590  0.0438 -0.1660   0.0918  0.1540 -0.0240 -0.0276 

age   0.0329 -0.1860 -0.0613  0.0669 -0.0724 -0.0146  0.0053 -0.0056 -0.1050 

lag return -0.1570 -0.3020 -0.1270  0.1030  0.1340 -0.0536 -0.0925  0.8830  0.2430 

maturity  0.0301 -0.0146 -0.0794  0.0579  0.0440 -0.0425  0.0758  0.0018  0.0597 

load -0.1670 -0.0982 -0.0200  0.0359 -0.0577   0.0529  0.0115  0.0249  0.0296 

 

Index -0.0021   0.0688 -0.0091 -0.0126  0.0147 -0.0443 0.0247 -0.0108  0.0053 

Global -0.0957 -0.1510 -0.0409 -0.0316  0.1650 -0.0358 -0.158  0.0077  0.0602 

Short Term   .0647   0.0829 -0.0093 -0.0150 -0.0344  0.0470 -0.0938 -0.0184 -0.0956 

Government  0.0286   0.1120 -0.0274 -0.0163  0.0558 -0.0343 -0.0280 -0.0118  0.0040 

Mortgage  0.0493   0.0877 -0.0020 -0.0131 -0.0133  0.0182 -0.0054 -0.0063 -0.0451 

Corporate -0.0221   0.1690 -0.0008 -0.0045  0.0216 -0.0919 -0.0171 -0.0285  0.0070 

High Yield -0.2010   0.0004  0.0298  0.0003 -0.0285  0.0586  0.1800  0.0230  0.0801 

Other  -0.0852   0.0007 -0.0366 -0.0076 -0.0213  0.1960  0.1320 -0.0032  0.2220 
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 Table 6 

 

Timing adjusted performance of individual bond funds.  The first three columns of Panel A summarize the mean excess return 

over a short term treasury, the mean return over a style benchmark, and the values of the estimated alphas under the null 

hypothesis that the true alphas are zero, taken at various fractiles of the distribution across funds.  The average excess returns are 

percent per month.  The remaining columns report the fractions of funds with alphas larger than (for the right tail and median) 

or smaller than (for the left tail) the critical values for the indicated fractiles from the null distribution in which the true alphas 

are zero.  Panel B summarizes the average risk premiums for the squared factors (denoted convexity premium), which are the 

average excess returns of mimicking portfolios for the squared factors.  It also summarizes the distributions of loadings on the 

style benchmarks and on the hedge portfolios for the squared factors.  The monthly samples start in February of 1962 or later, 

depending on the factor and fund, and end by March of 2007.   

 

                                                                                                                                                                                       

 mean 

 mean net of critical short slope curve credit mort. liq. dollar equity equity 

fractile return bench alpha value vol. 

                                                                                                                                                                                         

 

Panel A:  The distribution of Timing Adjusted Alphas 

 

0.975 0.818 0.171 0.150 0.023 0.031 0.024 0.018 0.020 0.010 0.021 0.023 0.017 

0.950 0.715 0.104 0.099 0.053 0.051 0.044 0.029 0.036 0.014 0.048 0.046 0.046 

0.900 0.632 0.036  0.061 0.079 0.071 0.074 0.051 0.066 0.030 0.069 0.071 0.068 

 

0.500 0.463 -0.067 -0.000 0.217 0.216 0.205 0.192 0.198 0.143 0.214 0.217 0.220 

 

0.100 0.285 -0.199 -0.064  0.419 0.428 0.384 0.448 0.447 0.532 0.396 0.408

 0.403 

0.050 0.193 -0.282 -0.108 0.268 0.242 0.205 0.248 0.260 0.341 0.232 0.186 0.222 

0.025 0.100 -0.386 -0.156 0.138 0.130 0.108 0.181 0.153 0.188 0.139 0.109 0.134 

 

# cases 1329 1368 1375 1251 1179 697 1357 1376  1376 

 

Panel B:  Convexity premiums and loadings 

 

Fund Loadings on Benchmarks: 

 

Upper 10% 1.38 1.40 1.35 1.42 1.38 1.40 1.38 1.38 1.33 

Median 0.91 0.91 0.91 0.89 0.89 0.91 0.91 0.92 0.90 

Lower 10% 0.42 0.43 0.45 0.48 0.43 0.46 0.45 0.42 0.43 

 

Average Convexity premiums 0.415 0.231 -0.332 0.107 0.144 -0.029 -0.244 3.59 -2.93 

 

Fund Convexity Loadings: 

 

Upper 10%  0.134  0.145  0.054  0.130  0.226  0.103    0.064  0.091  0.093 

Median  0.005  0.012  0.001  0.003  0.006 -0.001 -0.0001 -0.006 0.0001 

Lower 10% -0.224 -0.128 -0.065   -0.163 -0.209 -0.129 -0.0775 -0.118   0.072 

 

Correlations of Hedge Portfolios: 

with Squared factor changes -0.278 -0.383 -0.308 -0.215 -0.456 0.160 0.510 -0.273 0.532 
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 Table 7 

 

Timing adjusted performance of individual bond funds gross of transactions costs.  Transactions costs are estimated as the average 

expense ratio of each fund plus an assumed round trip trading cost associated with the fund style, multiplied by the average 

reported turnover.  These costs are added back to the fund return.  The first three columns of Panel A summarize the mean excess 

return over a short term treasury, the mean return over a style benchmark, and the values of the estimated alphas under the null 

hypothesis that the true alphas are zero, taken at various fractiles of the distribution across funds.  The average excess returns are 

percent per month.  The remaining columns report the fractions of funds with alphas larger than (for the right tail and median) 

or smaller than (for the left tail) the critical values for the indicated fractiles from the null distribution in which the true alphas 

are zero.  The monthly samples start in February of 1962 or later, depending on the factor and fund, and end by March of 2007.   

 

                                                                                                                                                                                       

 mean 

 mean net of critical short slope curve credit mort. liq. dollar equity equity 

fractile return bench alpha value vol. 

                                                                                                                                                                                         

 

The distribution of before cost Timing Adjusted Alphas 

 

 

0.975 0.952 0.318 0.149 0.158 0.113 0.144 0.101 0.110 0.141 0.161 0.132 0.155 

0.950 0.855 0.239 0.104 0.257 0.198 0.239 0.184 0.197 0.228 0.258 0.251 0.256 

0.900 0.768 0.176 0.063 0.430  0.390 0.377 0.360 0.335 0.412 0.409 0.407 0.425 

 

0.500 0.572 0.032  -0.000 0.767 0.754 0.763 0.746 0.730 0.761  0.742 0.753 0.768 

 

0.100 0.389 -0.081 -0.067 0.091 0.091 0.088 0.093 0.097 0.090 0.100 0.094 0.093 

0.050 0.303 -0.145 -0.114 0.046 0.059 0.056 0.066 0.060 0.052 0.061 0.055 0.058 

0.025 0.241 -0.225 -0.169 0.031 0.042 0.028 0.043 0.044 0.033 0.040 0.034 0.037 

 

# cases 1329 1367 1374 1251 1178 1375 1357 1375 1375 


