
Expert Systems With Applications, Vol. 6, pp. 57-66, 1993 0957--4174/93 $5.00 + .00
Printed in the USA. © 1993 Pergamon Press Ltd.

Verification and Validation of Case-Based Systems

D A N I E L E. O ' L E A R Y

School of Business, University of Southern California, Los Angeles, CA

Abstract--Verification and validation of artificially intelligent systems has been the focus of substantial
recent research. However, little attention has been given in the literature to verification and validation
for case-based systems. The unique structure of case-based systems is used to raise new validation
issues, develop new approaches to generating comparative solutions for validation purposes, and
investigate new approaches for examining the quality of the case base. In addition, this article presents
new statistical and structural approaches designed to exploit unique aspects of case-based reasoning
for verification purposes.

1. I N T R O D U C T I O N

VIRTUALLY ALL THE RESEARCH in verification and
validation has been focused on rule-based systems
rather than other knowledge representations, such as
case-based systems (Gupta, 1991). Rule-based systems
make their judgments from rules, while case-based sys-
tems make their judgments from previous cases or ex-
perience.

Thus, the purpose of this article is to summarize
existing approaches, develop new approaches, and raise
new concerns for the verification and validation of case-
based systems. To accomplish those activities, some of
the unique factors of case-based systems are elicited.
Those factors are then used as a basis for developing
new approaches for verification and validation.

1.1. Role of Verification and Validation

Verification tests are aimed at "'building the system
right," and validation tests are aimed at "building the
right system." Thus, verification examines issues such
as ensuring that the knowledge in the system is rep-
resented correctly, while validation examines proce-
dures to ensure the system makes correct decisions.

Verifying and validating play critical roles in the
development and implementat ion of case-based sys-
tems. A priori, if the system is not verified then there
may be errors in the case representations. I f the system

Portions of this article were developed while visiting Bond University,
the School of Computing Science, Gold Coast, Queensland 4229,
Australia.

Requests for reprints should be sent to Daniel E. O'Leary, School
of Business, University of Southern California, Los Angeles, CA
90089-1421, USA.

is not validated, then it may not make the desired qual-
ity of decisions.

57

1.2. Basis of Verification and Validation

Verifying and validating are accomplished by com-
paring what is expected to what is present. In verifi-
cation, the basis for these comparisons is the knowledge
representation and the knowledge stored in those rep-
resentations. Typically, the case knowledge is repre-
sented using, for example, frames. Thus, these com-
parisons may include, for example, the structure of the
cases (e.g., number of slots and number of slots filled
with meaningful information), the structure of the in-
teraction of the cases (e.g., frames typically use tree
structures), and statistically based expectations (e.g.,
distribution of various case parameters). These are each
discussed in more detail later in the article.

Learning mechanisms can impact the case-based
system's performance and, thus, validation results. As
a result of those learning processes, typically, case-based
systems add cases to the case base as the system learns.
Thus, an important issue in validating case-based sys-
tems is the impact on future system performance of
adding cases from current experience to the case base
for future use. Critical questions include, does com-
parative performance change based upon the order in
which cases are added to the case base?

In validation, often human experts are the compar-
ative basis. However, experts can be expensive or un-
available. Thus, one of the focuses of this article is the
generation of alternative sources for comparison.
Mathematical programming and statistics are devel-
oped as sources of comparative solutions.

Examination of the cases in the case base is a critical

58 D. E. O'Leary

concern to the quality of the decisions and, thus, to
validation. This article uses statistical and similarity
measures to examine the quality and diversity of the
case base.

1.3. This Article

This article proceeds as follows. Section 2 provides
more detailed definitions and discussions of verification
and validation. Section 3 reviews the previous literature
on verification and validation of case-based systems.
Section 4 argues that case-based systems are different
than other types of systems and thus should require a
unique approach to verification and validation. These
factors provide the basis of the remainder of the article.
Sections 5 and 6 discuss verification issues. Section 5
analyzes some domain-independent statistical ap-
proaches for the verification of case-based systems.
Section 6 investigates some structural-based approaches
that can be used to verify case-based systems. Sections
7-11 present validation approaches developed for case-
based systems. Section 7 finds that the sequential ad-
dition of cases can cause the development of different
solutions to the same problems, with different sequen-
tial processing of the cases. This is critical to both de-
velopment and verification and validation of case-based
systems. Alternative methods of generating solutions
can be useful when expert time is limited, costly, or
ineffective. As a result, Section 8 presents a mathe-
matical programming approach that can be used to
generate solutions to compare to those of case-based
systems. Section 9 discusses the use of statistical models,
also to generate comparable solutions. Test cases can
be used to assist in the validation of the system. Thus,
Section l0 presents an approach using genetic algo-
rithms to generate test cases. The diversity of the cases
in a case base can impact the quality of solutions gen-
erated. Thus, Section l I develops approaches to test
the similarity of cases so that the diversity of the cases
in the case base can be assessed. Finally, Section 12
provides a brief summary of the article.

2. VERIFICATION AND VALIDATION

This section presents some definitions of verification
and validation. Those definitions are then briefly an-
alyzed in terms of what they mean for case-based sys-
tems.

2.1. Verification

Verification was defined by Adrion, Branstad, and
Cherniavsky (1982) as "the demonstration of the con-
sistency, completeness and correctness of the software."
This definition often is supplemented to include re-
dundancy to provide greater specificity to the notion
of completeness.

Verification's dependence upon software indicates
that the specific nature of case-based systems needs to
be elicited to perform verification. Because verification
is software based, that is, for case-based systems, ver-
ification is concerned with exploiting the software rep-
resentations of, for example, cases and relationships
between cases to establish tests for consistency, com-
pleteness, correctness, and redundancy.

Consistency, in case-based systems refers to parallel
implementation of parallel structures, whether those
structures are words or relations between cases, such
as trees. Completeness is concerned with the possibility
that knowledge or cases are omitted. Correctness refers
to determination of whether or not there are any as-
certainable errors in the knowledge, for example, cir-
cularity in a structure that is supposedly acyclic. Re-
dundancy addresses the issue of duplication of knowl-
edge, for example, duplicate versions of the same case.

Verification also can be dependent upon the do-
main. By exploiting knowledge of the domain, we can
verify the knowledge in a case-based system. Consider
the example of a system that has a number of cases
that are different living rooms. Metaknowledge could
be used to examine the cases to determine that there
was something incorrect with a case that had a bathtub
in the living room. There probably would be redundant
knowledge in the case if the living room case contained
two couches. Similarly, the case of a living room with-
out a couch probably could be incomplete. Finally, it
would be inconsistent if in the case two physically
identical items were labeled with the same name, for
example, couch. Such domain-dependent approaches
are outside the scope of this article because they require
specification of metaknowledge from the specific do-
main.

2.2. Validation

Adrion et al. (1982) indicate that validation is the de-
termination of the correctness of the final program or
software produced from a development project with
respect to the user needs and requirements. In many
software development projects, the needs and require-
ments can be established a priori. However, case-based
systems are used in situations where the problem is not
well structured enough to develop a rule-based system.
Thus, for case-based systems there are likely to be few
situations where specifications can be elicited a priori.

As a result, validation may have to employ different
bases of comparison rather than requirements. The
process of validation for case-based systems may be
similar to the generation of the needs and requirements
for other artificial intelligence (AI) systems. For ex-
ample, validation may take the form of comparing an
expert to the system for different test cases. Alterna-
tively, there may be other approaches that could exploit
the unique characteristics of case-based systems to

Verification and Validation of Case.Based Systems 59

generate comparison bases. These approaches could
be cost beneficial by limiting the use of experts in val-
idation processes. The development of alternative
models of comparison is a primary focus of this article.

3. VERIFICATION AND VALIDATION OF
CASE-BASED SYSTEM: PREVIOUS STUDIES

One purpose of this article is descriptive. This section
summarizes some of the previous descriptions of ver-
ification and validation efforts of case-based systems.
Unfortunately, there have been a limited number of
studies summarized in the literature (the literature on
case-based systems is also limited, in general). In ad-
dition, in many situations the discussion of those efforts
is limited to a few sentences or paragraphs. Further,
typically the focus of those discussions has been on
validation. There are virtually no descriptions of ver-
ification efforts for case-based systems.

However, it is not surprising that few have discussed
verification and validation efforts. The purpose of much
of the research on case-based systems, to date, has been
to explore various developmental aspects of case-based
systems, such as retrieval or indexing. Thus, the lack
of research on verification and validation is not a crit-
icism. Instead, this indicates the importance of devel-
oping approaches to assist in both the verification and
validation of case-based systems.

3.1. Protos

Possibly the most extensive validation of a case-based
system in the literature is for the system Protos. Protos
(Bareiss, 1989; Bareiss, Porter, & Weir, 1988) is a case-
based learning apprentice that learns to perform heu-
ristic classification under the guidance of a human ex-
pert. The evaluation of Protos was in the area of clinical
audiology, where it learned to classify hearing disorders
from featural descriptions in terms of patient symp-
toms, history, and test results.

Because Protos is a classification system, the vali-
dation considered the accuracy of its classifications.
Accuracy comparisons included comparison to other
machine learning approaches and to human experts
and students.

When compared to other forms of machine learning,
Protos was apparently very successful, given the set of
test problems. The accuracy of Protos was found to be
far superior to the well-known ID3 (Quinlan, 1986)
and Cobweb (Fisher, 1987). On a set of 26 test cases,
Protos was correct 100% of the time, ID# 29% of the
time, and Cobweb 58% of the time.

When compared to human experts and students,
the system also did well. While Protos was 100% correct
on the test problems, two clinicians had 92 and 81%
correct, while students had a mean of 73%.

Apparently, Protos faced a reasonably large base of

cases. In the training of Protos, a human expert char-
acterized 7 of the final 50 training cases as unusual.

3.2. HYPO

One of the best-known case-based systems is HYPO.
HYPO was a system developed by Ashley and Rissland
(1988) to analyze trade secret law. The reported vali-
dation of HYPO's (Ashley & Rissland, 1988) perfor-
mance was the comparative analysis of a single "real-
world" case by the system. They compared HYPO with
what the court did on that case and found that the
system agreed with the court.

3.3. Clavier (Mark, 1989)

The description of evaluation efforts for Clavier is ac-
tually a plan for validation. However, that plan had at
least two components. First, the adaptation oftbe cases
by the system would be compared to experts. Thus,
one of the components of the system would be tested,
probably using a classic Turing test. Second, once the
system was "working" the overall behavior of the sys-
tem would be compared to experts for quality of rec-
ommendations.

3.4. The Battle Planner (Goodman, 1989)

To validate The Battle Planner, a randomly selected
set of 10% of the cases were put aside before indexing.
Then, those cases were treated as hypothetical battle
situations. Predictions were made regarding the out-
come of those situations. Using this approach, the sys-
tem was found to be 81.3% accurate in the prediction
of the victor of the case for land warfare.

The validation efforts pointed toward an interesting
finding. Goodman found that the more cases that were
retrieved for analysis of a hypothetical case the better
the performance of the system. Such a finding may
occur for a number of reasons. First, it may be that
the more cases offering feasible solutions the more
likely that the solution space is spanned. Second, it
may be that the more feasible solutions the more likely
that a directly similar case could be found. In either
case, this provides additional evidence about the im-
portance of the quality of the cases in the case base on
the performance of the system.

3.5. Summary

An analysis of the published reports of the validation
of case-based systems indicates that the approaches
used to date are similar to those used for other intel-
ligent or expert systems. Typically, the validation of
each system has used the comparison of the system to
human experts or machine learning. This comparison
ranged from a single case to multiple test cases. In gen-

60 D. E. O'Leary

eral, the system has been compared to, for example,
human experts.

4. S OME UNIQUE FACTORS OF
CASE-BASED SYSTEMS

The focus of this section is to elicit some of the unique
aspects of case-based systems and use them as a basis
for eliciting different approaches and concerns to ver-
ification and validation. The existence of unique factors
both indicates a need to establish new approaches and
provides new opportunities.

As noted by Ashley and Rissland (1988, p. 70), case-
based reasoning is used " . . . to capture expertise in
domains where rules are ill-defined, incomplete or in-
consistent." It can be difficult to investigate the per-
formance of a system in the presence of such difficulties.
This suggests that it may be difficult to establish ex-
pectations or standards of behavior in case-based sys-
tems. In particular, the well-established process, in tra-
ditional software engineering, of using a priori speci-
fications may not be feasible.

Because cases typically are represented using frames
rather than rules, this indicates that verification ap-
proaches for case-based structures could exploit the
frame structure. In particular, for example, verification
processes could exploit the nature of cases within the
context of the frames. This is important because vir-
tually all of the work on verification is for rule-based
systems.

In addition, case-based systems are unique com-
pared to other types of AI systems in that they often
add solved cases to their case base. Previous solutions
become part of their experience. Those cases are then
used in the development of future solutions. This is a
critical difference from, for example, rule-based sys-
tems, where the knowledge base in general is static.

Although case-based systems often are designed to
create new solutions, typically the quality of the solu-
tions is dependent, in large measure, upon the case
base. The quality of the recommendations of a case-
based system is dependent upon the quality and quan-
tity of the cases in the case base.

In general, a case-based system will be able to gen-
erate a better recommendation if it has a larger rather
than smaller case base (e.g., Ruby & Kibler, 1988;
Goodman, 1989; Gaines, 1991). It is likely that with
a larger base of experience the situations faced by the
system will have been seen before and thus a case will
be available to assist in solution of the problem. Even
if no identical situation has been seen before, the system
is likely to have solutions that are so-called "near miss"
situations.

If the cases are highly correlated, then the system
will be limited in the diversity of solutions it can gen-
erate. Thus, it is not unusual that Bradtke and Lehnert
(1988, p. 91) find " . . . that the most dramatic factor

influencing the effectiveness of a case base is the num-
ber of unique problem states underlying the case base
encoding."

Some of these issues can be addressed using ap-
proaches such as the direct analysis of the cases by
experts, comparison of expert solutions to the system,
and investigation of the system reasoning (choice of
cases) by experts. However, the focus of this article is
on the development of alternative approaches to ac-
count for these unique factors.

5. DOMAIN-INDEPENDENT VERIFICATION
OF CASES: STRUCTURAL APPROACHES

In this section, no assumptions are made of the domain.
Instead, the individual structure of the cases and the
structural relationship between the cases are used to
provide some bases with which to verify the cases. Un-
like the next section, which uses statistics to identify
anomalous cases that appeared to be in error, this sec-
tion uses that structure to identify cases that are in
error. Particular emphasis is placed upon using those
structures to design verifiable systems or systems that
mitigate the opportunity for the existence of the types
of errors isolated.

5.1. Consistency

Errors in consistency can occur for many reasons. For
example, people can make errors by misspelling or us-
ing different names for the same object, actor, or ac-
tivity.

To design a system to mitigate those types of errors,
at the initiation of a new case-based system the user
could be required to list each of the cases and corre-
sponding case attributes before any data is entered.
Then, those lists of feasible entries for each of the cases
and attributes would be used to fill attribute slots. De-
velopers of different cases could choose from the lists
of attributes for the content for a specific attribute. As
seen below, these lists also can be used for other pur-
poses.

5.2. Redundancy

Redundancy errors occur if the user is able to develop
the same case more than once. The situation of re-
dundant cases can cause difficulties, primarily in
maintenance situations. One version of the ease could
be revised while another is r.ot. This could cause con-
fusion and possibly errors if the unrevised case was
used by the system. The possibilities of redundant cases
can be mitigated if the user is required to establish a
list of the specific cases prior to actually establishing
the data within each case. As new cases are added, they

Verification and Validation of Case-Based Systems 61

would be added to the list of feasible cases. Each case
would then be referenced by its specific name. Thus,
a single version of any given case would be permitted.

Redundancy errors also occur if the user is able to
enter the same attribute information into two or more
attribute spaces for a given case. There are two basic
situations: two attribute instances in the same attribute
slot and the same two attribute instances in different
slots in the same case. In the first situation, mainte-
nance of one entry but not the other may cause am-
biguity as to the proper contents. In the second situa-
tion, the attribute instance may be an inappropriate
occurrence for that attribute instance.

The first situation could be eliminated if each attri-
bute slot has space for only one entry. The second sit-
uation could be eliminated if the attribute instances
could only come from eligible lists, as discussed earlier.

5.3. Completeness

There are at least two types of completeness errors in
verification: missing cases and missing attributes for
cases. There are some steps that can be taken to mitigate
these errors.

Completeness of the cases may be difficult to assess.
However, having the users establish a list of cases they
intend to enter into the system prior to entering data
about the cases could facilitate knowing about com-
pleteness. Thus, if a case was on the list but not in the
case base this could indicate an incompleteness error.

Completeness of the attributes may also be a difficult
issue. There are at least two approaches to analysis of
completeness. First, each case could be required to have
slots for the same number of attributes. As an example
of this, the two cases in Table 1 have different numbers
of attributes. " T I M E " is in the first but not the second.

Second, users could be required to indicate the
number of attributes, of the total set, that would have
information in them for a specific case. For example,
in Table 1 for the first case seven attributes would be
specified. I r a specific attribute slot had no information
for a given case, then a variable representing that al-
ternative would be entered into the slot (e.g., "ni l" as
in Table l).

Completeness tests could also make use of the lists
developed for consistency. In addition, after the user
put the attributes onto a list it would be possible to
reconcile the lists and the completed cases to determine
if each of the attributes put onto lists were used. If
there was an attribute that was listed but not used, that
could indicate that one of the cases omitted appropriate
information.

Completeness in the verification of cases requires
that the cases that are planned to be included in the
system are included and that for each of the cases a
complete case specification is given.

TABLE 1
Sample Cues

Name: M-MEAL774 °
Isa: ((M-MEAL~)
Category: INDIVIDUAL
Slots

ACTUAL-RESULTS: NIL
CHARACTERS: (?HOST ?GUESTS ?PARTICIPANTS)
CONSTRAINTS: ((C-LIMITED-SPACE778~)
DEFINED SLOTS: NIL
DESCRIPTOR: NIL
EXPECTED-RESULT: NIL
FOLLOW-UP: NIL
GOALS: ((E-EAT776~ (S-HUNGER777~)
GUESTS: (,JLK,S-GROUP~
HOST: (,JLK,~
ORDER: NIL
PARTICIPANTS: (?HOST ?GUESTS)
SETTING: (,JLK,S-HOUSE~
STEPS: NIL
TIME: NIL

Name: M-MEAL80 b
Isa: ((M-MEAL~)
Category: INDIVIDUAL
Slots

ACTUAL-RESULTS: (ACTUAL-RESULT80~
CHARACTERS: (?HOST ?GUESTS ?PARTICIPANTS)
CONSTRAINTS: ((C-COST11~)
DEFINED SLOTS: NIL
DESCRIPTOR: (MEAL-DESCRIPTOR80~
EXPECTED-RESULT: (EXPECTED-RESULT80~
FOLLOW-UP: NIL
GOALS: ((S-HUNGAR80~> (E-EAT80~)
GUESTS: (*JLK* S-PARENTS~
HOST: (,JLK,~
ORDER: ((SC-SALAD80~ (SC-MAIN-COURSE80~)
PARTICIPANTS: (?HOST ?GUESTS)
SETTING: (,JLK,S-HOUSE~
STEPS: ((SC-SALAD80~ (SC-MAIN-COURSE80~)

"From Proceedings: Case-Based Reasoning Workshop (p. 28)
by J. Kolodner, 1988, San Mateo, CA: Morgan Kaufmann. Copy-
right 1988 Morgan Kaufrnann. Reprinted with permission.

b From Proceedings: Case-Based Reasoning Workshop (pp. 29-
30) by J. Kolodner, 1988, San Mateo, CA: Morgan Kaufmann.
Copyright 1988 Morgan Kaufmann. Reprinted with permission.

5.4. Correctness

The role of graph theoretic structure permeates case-
based reasoning systems. Ashley and Rissland (1988a)
demonstrate two different "claim lattices" (in solution
generation). The structure of those lattices is that of a
tree. Navinchandra (1988) illustrates that the object
hierarchy used for matching is a tree. The causal struc-
tures generated by the system discussed in Navinchan-
dra (1988) are acyclic graphs. I f it is known a priori
that the solution or case relationships will be tree or
an acyclic graph, then that structure can be exploited
to ensure that the structure is correct.

There are a number of characteristics of trees that
allow for rapidly determining if a structure is a tree.
For example, each child has at most one parent. An-
other check is to ensure that a node in the solution

62 D. E. O'Leary

does not have an arc going from itself to itself, which
would imply inheritance from itself. Alternatively, the
structure may be that of an acyclic network. In that
situation, the resulting structure must be free of cycles
for the system to be correct.

6. DOMAIN-INDEPENDENT VERIFICATION
OF CASES: STATISTICAL APPROACHES

Statistical approaches to domain-independent verifi-
cation exploit statistical methods as the basis of estab-
lishing expectations. The general approach is to deter-
mine if there is any anomalous behavior exhibited
in statistical summaries of characteristics of cases.
Anomalies indicate that something may be wrong and,
thus, should be further analyzed. The existence of
anomalies is established by developing and using sta-
tistical distributions.

There are two different statistical approaches to
finding anomalies. Their implementation in a specific
system would require accounting for the specific set of
cases. As a result, the analysis presented here is designed
for the example cases presented here but can be gen-
eralized. To illustrate these approaches, consider the
example case in Table I.

6.1. Distribution of Slot Contents Per Case

Analysis of slot contents can provide insight into the
existence of anomalous behavior. One approach is to
develop a distribution of the number of slots in each
case with, for example, nil contents. Then, the distri-
bution could be analyzed to determine if any of the
cases were exhibiting unusual behavior.

The first example case has 15 generic slots for cases,
of which 8 have the value nil and 7 have values different
than nil. At the extreme, if all cases but this case had,
say, either 0, 1, or 2 values of nil then that would suggest
that this specific case was unusual. Such an approach
could help locate incomplete and underspecified cases.

6.2. Distribution of Contents Per Slot Across Cases

In addition, distributions of slot content could be de-
veloped, for example, a distribution of nil values for
each slot could be developed. If there was a slot where
the number of values nil was very large, then that could
suggest anomalous behavior because it would indicate
that slot is only rarely considered important. Because
this approach would identify slots where nil was the
value, it would suggest that those slots may be incom-
plete across many different cases. For example, both
"FOLLOW-UP" and "DEFINED SLOTS" contain the
value nil for both cases.

Another approach would be to determine distri-
butions for slot contents for each individual slot. In
the example, assume that there were 40 cases that had

a nonnil value for host. If 39 were ~ J L K) and 1 was
~JKL), then the case with the single occurrence would
warrant further investigation. This could assist in the
location of incorrectness problems.

6.3. Analysis

In each situation, these distributions could be analyzed
as in the extreme cases listed here and using established
forms of analysis. For example, outlier analysis could
be used to find those points in those distributions that
appear to come from different distributions and thus
may deserve further investigation. In addition, statis-
tical tests of significance (e.g., t test, etc.) could be used
to determine anomalies.

7. SEQUENCE EFFECTS OF ADDING CASES
TO T H E CASE BASE

One of the critical conditions of validation is the ability
to duplicate the response of a system under similar
conditions. Unfortunately, the behavior of case-based
systems can vary depending upon the order in which
cases are processed.

Case-based systems use a number of approaches for
choosing the best match from the case base for the
solution of the case under consideration. After the sys-
tem proposes a solution, it then adds the new case to
its case base for further use. Validating these systems
is difficult because, as shown in this section, the order
in which validation test cases are added to the system
can influence the system's proposed solutions.

7.1. Solutions Are a Function of Order of Cases
Encountered

Consider a case-based system that adds cases to its case
base as it solves them. Assume that one of the primary
bases of solution is the number of attributes that the
situation under consideration has in common with
some other case in the case base. Suppose that two
outcomes, x and y (captured in the first slot), are pos-
sible. Next, suppose that there are six additional slots
that capture attributes of the individual cases. It is as-
sumed that attribute l is in the first slot, and so forth.

Suppose that the initial case base consists of the two
cases, 1. (x; a, b, c, d , f , m) and 2. (y; a, b, c, h, g,
m). If the next case seen is 3. (-; a, b, c, d, e, n), then
it is resolved as 3. (x; a, b, c, d, e, n). As result, if the
next case is 4. (-; a, b, c, h, e, n) then it will be resolved
as4. (x; a, b, c, h, e, n).

However, if case 4 is seen before case 3 then the
following scenario will occur. Case 4. (-; a, b, c, h, e,
n) will be resolved as 4. (y; a, b, c, h, e, n), while case
3. (-; a, b, c, d, e, n) becomes 3. (y; a, b, c, d, e, n).

Clearly, the sequence can have a major impact on
the system. Solutions developed by the system can be

Verification and Validation of Case-Based Systems 63

an artifact of the order in which they are processed.
This presents a major concern in validation. Although
the use of test cases may find that the system agrees
with experts or other models, this may be simply a
fortuitous function of order.

7.2. Impact of Order Effects

Case-based systems add cases as they encounter them.
Because the solutions they provide are, in part, a func-
tion of their case base, the addition of cases to the case
base can change the solutions they provide. Thus, the
order effect is not unexpected. However, the order effect
discussed here is important to more than just the de-
velopment and validation of case-based systems. Such
order effects can impact the security of these systems.
Someone interested in manipulating a case-based sys-
tem could manipulate the order of a set of cases the
system processes. After the cases have been added to
the case base, a more desirable solution may be ob-
tained by the manipulator. In the above example, as-
sume y is "not grant loan" and x is "grant loan." Thus,
someone interested in obtaining a loan would have an
interest in the order in which cases were presented to
the system.

8. M A T H E M A T I C A L P R O G R A M M I N G FOR
COMPARATIVE S O L U T I O N S

Mathematical programming, in particular, goal pro-
gramming (e.g., Charnes & Cooper, 1977), can be used
to solve some case-based decision problems. Solutions
generated using this mathematical programming ap-
proach can be compared to solutions generated by the
specific case-based systems to determine the quality of
those systems as a means of validation. Such an ap-
proach can mitigate the need for the comparative use
of expertise in the evaluation process. However, unlike
a comparison to a human expert the quality of the
mathematical programming approach largely is limited
to the quality of the cases represented in the case base.

8.1. Mathematical Programming Approach

It is assumed that each case can be represented by a
vector, C, of m components, for i = 1, • • . , n. Let c,j
represent the j t h attribute of case i. For purposes of
exposition, it is assumed that those attributes are nu-
meric constants. This is not limiting because many
logical relationships can be modeled using vectors of
this type (e.g., Garfinkel & Nemhauser, 1972).

A decision variable is required to determine i fa case
should be retrieved to develop a solution. If case i is
not chosen, then x~ = 0, while if case i is chosen then
x ~ = l .

Let A be a vector of m components, where aj is the
j t h component in that vector. The vector A can be

used to represent the case situation the decision maker
currently faces, for which a match in the case base is
being sought.

Goal programming attempts to minimize the de-
viation from some case or combination of cases. It is
done by minimizing the extent to which the solution
found "deviates" from a desired solution. Let ef > 0
and ef ~ 0 be "deviation" variables, where ef is the
amount by which a solution component exceeds aj and
ef is the amount by which a solution component is
under aj. Let those vectors be represented by the vectors
E + and E - .

The basic goal program can be represented as fol-
lows.

M i n ~ e f + ~ e f
J J

ctx~ + c 2 x 2 + ' ' ' + c n x n = A + E + - E -

l > x i > 0 (f o r a l l i) , e ~ > 0

and e7 > 0 (for all j) .

This formulation establishes the deviation changes
required to be made to the vector A to adopt it to the
case base. This is the mirror image of the change that
would be made to adopt a case to meet the needs of
the situation, A.

This formulation can be added to and generalized
to meet both the different approaches to matching and
the weighting of attributes that sometimes takes place
in case-based systems.

8.2. Alternative Case Matching Approaches

The solution of the mathematical program provides a
matching between combination of cases in the case
base and the case at hand (A). There are at least two
different implementations of this formulation, resulting
in different sets of constraints that would be added to
the formulation depending upon the type of analysis
used. First, the concern might be with choosing the
one case that is most similar to the situation of concern.
In that situation, the following constraints also would
be added:

x~ = 0 or 1 (for all i) and ~ xi = 1.
i

Second, the interest could be in the best combination
of cases, where the combination is a convex combi-
nation. In that situation, the following constraints
would be added:

l > x i > O (f o r a l l i) and ~ x i = l .
i

64 D. E. O'Lear)'

8.3. More General Cases

The formulation in Sections 8.1 and 8.2 required cases
with fixed parameters. However, that approach can be
generalized to allow more "flexible" case representa-
tions. In particular, the vectors of constants Ci can be
generalized to a vector of variables subject to a con-
straint. Mathematical programming use of this kind of
structure is referred to as generalized linear program-
ming (GLP) by Dantzig (1963).

For example, in GLP rather than numeric constants
to represent a case variables and a constraint on those
variables would be used. Thus, if case Ci had three
attributes then it might be represented as ci,~, ci,2, ci,3,
where, for example, c~,~ + 2.Ci,2 + 3.Ci,3 < Ri, where
R~ is a constant. Values could be attributed to each of
c,-j (j = l, 2, 3) subject to that constraint.

8.4. Extensions

In some situations, it may be that one deviation should
be weighted more than another. In addition, it may be
that deviations (+ or -) should be weighted differently.
In these situations, a weight could be associated with
each ef and ef for each j .

The mathematical program discussed in this section
can be generalized to deviations of the form e~,j and

+
ei j . In addition, it can also be formulated to minimize
the number of attribute deviations. These extensions
could result in more complex formulations with more
variables.

9.1. Regression as a Comparable Model

A statistical model of the entire set of cases, such as
regression (or a neural net model-- their performances
have been reported as similar), can be used to test the
quality of the output of the system. For example, given
the case base as a data set, regression analysis (in its
many different forms, e.g., logistic regression) would
be used to develop a set of coefficients. Then, for each
new case situation encountered that set of coefficients
could be used to estimate the outcome. That outcome
would then be compared to the outcome of the system.
If the outcomes were not the same, then that would be
cause for further analysis to determine which is appro-
pilate. For example, human experts may investigate
the resulting differences.

9.2. Regression as a Test of Case Quality

If there are errors in the cases, then those errors will
be used in the system, possibly generating additional
erroneous system behavior. Regression also could be
used to test the quality of the remaining cases. In this
situation, a portion of the case base would be used to
develop a statistical model to estimate the dependent
outcome variable. Then, that model would be used on
the remainder of these cases to predict the outcome of
the cases based upon the independent variables in the
specific cases. That prediction would be compared to
the actual outcome to validate the specific case. Dis-
agreement may signal the need for detailed examina-
tion of the case.

9. STATISTICAL ANALYSIS OF
CASE OUTCOMES: CASE SOLUTION

AND QUALITY

Statistical analysis can be used to provide a comparative
model of the quality of the solutions presented and
examine the reasonableness of the solutions attributed
to cases in the case base. Statistical approaches can be
used in the validation of cases by exploiting the infor-
mation contained in the cases that relate to the attribute
slots (independent variables) and the outcome of the
specific case (dependent variable). Such an approach
most likely would be useful in those situations where
both dependent and independent variables have few
occurrences or are continuous variables, for example,
a case base for binary decisions, such as "guilty or not
guilty" and "invest or not invest."

Statistical models are similar to case-based models:
The addition of new data can change the relationship
between the independent and dependent variables. As
a result, to model the case-based system regression coef-
ficients (and other statistics) may have to be recalcu-
lated whenever a new case is added to the case base.

10. GENETIC LEARNING FOR GENERATING
TEST CASES

Test cases are probably one of the most frequently used
approaches in the validation of intelligent systems.
They are a necessary part of the comparison of human
experts to the system. Thus, their use in case-based
systems is not unexpected. One approach to generate
test cases is through the use of genetic learning algo-
rithms.

Genetic algorithms employ a concept of adaptive
efficiency in the context of a probabilistic search
method (Goldberg, 1989). They are called genetic al-
gorithms because they employ methods analogous to
genetic transfer from one organism to its offspring.
They assume that, as in nature, the organisms that are
best suited to the environment flourish and produce
offspring with similar genetic traits.

Genetic algorithms employ current-"generation"
information (existing cases) to develop the next- and
future-generation information (new cases). Typically,
it is assumed that information is stored in a vector of
components, where each element is either a 0 or a 1
(have the at tr ibute/do not have the attribute). The

Veri f icat ion a n d Val ida t ion o f C a s e - B a s e d S y s t e m s 65

next-generation vector is reproduced by operations on
the current set of vectors.

Genetic learning algorithms can be exploited to de-
velop other generations of cases for test purposes. As
above, it is assumed that a case i can be written as a
vector C~, where there are m attributes in each case,
d~j, where j = 1, • • . , m. For illustrative purposes, it
will be assumed c i j equals either 0 or 1, although this
can be generalized.

There are a number of operators that convert cur-
rent-generation vectors into next-generation vectors.
These include mutation and crossover. Mutation refers
to the mutat ion of individual elements in a given case.
For example, c~j becomes "no t" c~j. Crossover refers
to merging elements from two different cases i and k.
For example, C~ and Ck can be merged to create a new
case with (c~.1, • • " , c~,h, C~,h+l, " " ", C~,,,,). The new
case contains elements from both vectors.

This approach assumes that an outcome can be as-
sociated with the new cases (e.g., guilty or not guilty).
In some situations (e.g., Deugo & Oppacher, 1989),
algorithms can be used to establish a corresponding
benefit or outcome. Alternatively, the associated out-
come possibly could be constructed based upon the
original parent vector outcomes or established by expert
analysis.

11. Q U A L I T Y OF CASE BASE: S I M I L A R I T Y
B E T W E E N CASES

As noted earlier, one of the most critical aspects to
system success can be diversity of cases in the case
base. Thus, part of the validation of the case base can
be aimed at an analysis of the relationship of similarity
between different cases. This section presents four dif-
ferent approaches to measure the extent of similarity
between cases.

11.1. Correlation Coefficient

Probably the best-known statistical measure of the re-
lationship between two entities is the correlation coef-
ficient. Assume that each of the attribute slots and so-
lutions are numeric. In that situation, the correlation
coefficient will provide a summary statistic for the sim-
ilarity between two different cases. However, in many
situations the attributes are not numeric. For those sit-
uations, we can develop other measures of similarity.

11.2. Counts

Next, assume that not every slot is numeric. Then, one
measure of the similarity of one case to another is a
numeric count of the number of attributes they have
in common, normalized by the number of slots. De-
pending upon the situation, the simultaneous slot con-
tents of nil may or may not be counted as an item of

similarity. In the example cases, there are six attributes
in c o m m o n between the two cases, including nil re-
sponses. Assuming a 15-attribute case structure, the
two cases are related at the 40% level.

11.3. Weighted Counts Between Cases

The last approach can be extended to weigh the slots
differentially in terms of importance of the slot or in
terms of difference of content. For example,
"GUESTS" may be twice as important as "HOST."
Further, it may be that the difference between nil and
any other value is more than any two nonnil values.
Possibly, expert understanding of individual case sit-
uations could be used to establish weights on the at-
tributes and content differences. The development of
such weights would vary between individual applica-
tions.

11.4. Cross-Attribute Counts

Similarly, the counts could be made across attribute.
We could measure the extent of similarity as (number
of occurrences of value " x ") / (total number of cases).
Thus, if each case had the same value x for an attribute
then we would have that ratio equal to 1.

In the example, the " H O S T " is common to each of
the two cases. Thus, on that dimension the cases are
the same: There is no diversity of HOST. Thus, a vector
containing the percentage of each attribute would iso-
late those attributes that are similar across the case set.

11.5. Use of Similarity Measures

This section has suggested four similarity measures.
Additional measures could be developed, for example,
based upon semantic distances between slot contents.
Ultimately, the use and meaning of those measures
would vary from application to application based upon
our expectations.

I f the cases are " too" similar, then that can indicate
any of a number of steps to be taken. First, it may
indicate a need for a larger case base. This could require
that some new cases that are not as similar as the ex-
isting cases be added to the case base. Second, in this
situation it could indicate that the cases are underspe-
cified. Additional attributes could be solicited for each
of the cases that differentiate the cases from each other.
Third, a high degree of similarity among the cases could
indicate an error. In particular, a correlation of I would
indicate identical contents, that is, redundancy of cases.

12. S U M M A R Y

This article has investigated verification and validation
of case-based systems. Throughout, those methods were
designed to exploit the unique factors of case-based

66 D. E. O'Leary

systems. The limited case-based verification and vali-
clarion research was summarized and new methods
were developed.

Two approaches to verification were discussed. Sta-
tistical approaches were elicited for the determination
of cases that appeared to exhibit anomalous behavior.
Approaches based upon the structure of a case and
structural relationships between cases were developed
to isolate those situations where there were errors in
those representations.

The remainder of the article dealt with validation
issues. An important criticism of case-based systems,
in general, with implications for validation was cap-
tured in an analysis of the impact of sequence of cases
processed and added to the knowledge base. It was
found that sequence of processing cases can impact
assignment of solution.

Then, two different approaches for generating com-
parative solutions were developed. First, a goal program
was presented that used the representations of the ex-
isting case base to develop solutions. The models al-
lowed for either a combination of cases or choice of
the single most similar case. Second, regression analysis
was presented as another model for generating com-
parable solutions to the case-based system.

One of the unique aspects of case-based systems are
the cases. The quality of the system solutions is in gen-
eral a function of the quantity and quality of the cases.
Genetic algorithms were explored as a means of gen-
erating test cases. A statistical approach was proposed
as a vehicle for examining the quality of the case base.
Finally, measures for analysis of the similarity of cases
within the case base also were investigated.

Acknowledgments--The author would like to thank the three referees
for their comments on two earlier versions of this paper.

REFERENCES

Adrion, W., Branstad, M., & Cherniavsky, J. (1982). Validation,
verification, and testing of computer software. ACM Computing
Surveys, 14(2), 159-192.

Ashley, K., & Rissland, E. (1986). Comparison and contrast: A test
of expertise. [Reprinted in J. Kolodner (Ed.) (1988a). Proceedings:
Cased-Based Reasoning Workshop (pp. 31-36). San Marco, CA:
Morgan Kaufmann].

Ashley, K., & Rissland, E. (1988b). A case-based approach to mod-
eling legal expertise. IEEE Expert, 3, 70-77.

Bareiss, R. (1989). The experimental evaluation of a case-based

learning apprentice. In DARPA Eds. (pp. 162-167). Los Altos,
CA: Morgan Kaufmann.

Bareiss, E., Porter, B., & Wier, C. (1988). Protos: An exemplar-based
learning apprentice. In Proceedings of the Fourth International
Workshop on Machine Learning (pp. 12-23). University of Cal-
ifornia at Irvine, June 1987.

Bradtke, S., & Lchnert, W. (1988). Some experiments with case-
based search. In J. Kolodner (Ed.), Proceedings: Cased-Based
Reasoning Workshop. (pp. 80-83). San Marco, CA: Morgan
Kaufmann.

Charnes, A., & Cooper, W. (1977). Goal programming and multiple
objective optimizations. European Journal of Operational Re-
search, ! (I), 347-362.

Dantzig, G. (1963). Linear programming. Princeton, N J: Princeton
University Press.

Davis, R. (1976). Use of meta knowledge in the construction and
maintenance of large knowledge bases. Unpublished PhD disser-
tation, Stanford University, Stanford, CA.

Deugo, D., & Oppacher, F. (1989). Applications of case-based rea-
soning using knowledge base and genetic techniques. In DARPA
(pp. 239-244). Los Altos, CA: Morgan Kaufmann.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual
clustering. Machine Learning, 2, 139-172.

Gaines, B. (1991). The trade-off between knowledge and data in
knowledge acquisition. In G. Patctsky-Shapiro & W. Frawley
(Eds.), Knowledge discovery in databases (pp. 491-505). Cam-
bridge, MA: AAAI/MIT Press.

Garfinkcl, R., & Nemhauser, G. (1972). Integerprogramming. New
York: Wiley Interscicncc.

Goel, A., & Chandrasekaran, B. (1988). Integrating model-based
reasoning with case-based reasoning for design problem solving.
In Proceedings of the AAAI-88 Workshop on AI and Design. St.
Paul, MN.

Goldberg, D. (1989). Genetic algorithms. Reading, MA: Addison-
Wesley.

Goodman, M. (1989). CBR in battle planning. In DARPA (pp. 264-
269). Los Altos, CA: Morgan Kaufmann.

Gupta, U. (1991). Veri~cation and validation of knowledge-based
systems. New York: IEEE Computer Press.

Kolodner, J. (Ed.) (1988). Proceedings: Case-Based Reasoning
Workshop. San Marco, CA: Morgan Kaufmann.

Koton, P. (1989). Evaluating case-based problem solving. In DARPA
(pp. 173-175). Los Altos, CA: Morgan Kaufmann.

Mark, W. (1989). Case-based reasoning for autoclave management.
In DARPA (pp. 176-180). Los Altos, CA: Morgan Kaufmann.

Navinchandra, D. (1988). Case-based reasoning in Cyclops: A design
problem solver. In J. Kolodner (Ed.), Proceedings: Case-Based
Reasoning Workshop. (pp. 286-301). San Marco, CA: Morgan
Kaufmann.

Quinlan, J. (1986). Induction of decision trees. Machine Learning,
1(1), 81-106.

Ruby, D., & Kibler, D. (1988). Exploration of case-based problem
solving. In J. Kolodner (Ed,), Proceedings: Cased-Based Rea-
soning Workshop (pp. 345-356). San Mateo, CA: Morgan Kauf-
mann.

Thompson, K., & Langley, P. (1988). Organization and retrieval of
composite concepts. In DARPA (pp. 329-333). Los Altos, CA:
Morgan Kaufmann.

