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Verification and Validation of Case-Based Systems 

D A N I E L  E. O ' L E A R Y  

School of Business, University of Southern California, Los Angeles, CA 

Abstract--Verification and validation of artificially intelligent systems has been the focus of substantial 
recent research. However, little attention has been given in the literature to verification and validation 
for case-based systems. The unique structure of case-based systems is used to raise new validation 
issues, develop new approaches to generating comparative solutions for validation purposes, and 
investigate new approaches for examining the quality of the case base. In addition, this article presents 
new statistical and structural approaches designed to exploit unique aspects of case-based reasoning 
for verification purposes. 

1. I N T R O D U C T I O N  

VIRTUALLY ALL THE RESEARCH in verification and 
validation has been focused on rule-based systems 
rather than other knowledge representations, such as 
case-based systems (Gupta, 1991). Rule-based systems 
make their judgments from rules, while case-based sys- 
tems make their judgments from previous cases or ex- 
perience. 

Thus, the purpose of  this article is to summarize 
existing approaches, develop new approaches, and raise 
new concerns for the verification and validation of case- 
based systems. To accomplish those activities, some of 
the unique factors of  case-based systems are elicited. 
Those factors are then used as a basis for developing 
new approaches for verification and validation. 

1.1. Role of Verification and Validation 

Verification tests are aimed at "'building the system 
right," and validation tests are aimed at "building the 
right system." Thus, verification examines issues such 
as ensuring that the knowledge in the system is rep- 
resented correctly, while validation examines proce- 
dures to ensure the system makes correct decisions. 

Verifying and validating play critical roles in the 
development and implementat ion of case-based sys- 
tems. A priori, if  the system is not verified then there 
may be errors in the case representations. I f  the system 
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is not validated, then it may not make the desired qual- 
ity of  decisions. 
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1.2. Basis of Verification and Validation 

Verifying and validating are accomplished by com- 
paring what is expected to what is present. In verifi- 
cation, the basis for these comparisons is the knowledge 
representation and the knowledge stored in those rep- 
resentations. Typically, the case knowledge is repre- 
sented using, for example, frames. Thus, these com- 
parisons may include, for example, the structure of  the 
cases (e.g., number  of  slots and number  of  slots filled 
with meaningful information),  the structure of  the in- 
teraction of  the cases (e.g., frames typically use tree 
structures), and statistically based expectations (e.g., 
distribution of various case parameters).  These are each 
discussed in more detail later in the article. 

Learning mechanisms can impact  the case-based 
system's performance and, thus, validation results. As 
a result of  those learning processes, typically, case-based 
systems add cases to the case base as the system learns. 
Thus, an important  issue in validating case-based sys- 
tems is the impact  on future system performance of  
adding cases from current experience to the case base 
for future use. Critical questions include, does com- 
parative performance change based upon the order in 
which cases are added to the case base? 

In validation, often human  experts are the compar-  
ative basis. However, experts can be expensive or un- 
available. Thus, one of  the focuses of  this article is the 
generation of  alternative sources for comparison. 
Mathematical programming and statistics are devel- 
oped as sources of  comparative solutions. 

Examination of  the cases in the case base is a critical 
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concern to the quality of  the decisions and, thus, to 
validation. This article uses statistical and similarity 
measures to examine the quality and diversity of the 
case base. 

1.3. This Article 

This article proceeds as follows. Section 2 provides 
more detailed definitions and discussions of verification 
and validation. Section 3 reviews the previous literature 
on verification and validation of  case-based systems. 
Section 4 argues that case-based systems are different 
than other types of systems and thus should require a 
unique approach to verification and validation. These 
factors provide the basis of the remainder of  the article. 
Sections 5 and 6 discuss verification issues. Section 5 
analyzes some domain-independent statistical ap- 
proaches for the verification of  case-based systems. 
Section 6 investigates some structural-based approaches 
that can be used to verify case-based systems. Sections 
7-11 present validation approaches developed for case- 
based systems. Section 7 finds that the sequential ad- 
dition of  cases can cause the development of different 
solutions to the same problems, with different sequen- 
tial processing of the cases. This is critical to both de- 
velopment and verification and validation of case-based 
systems. Alternative methods of  generating solutions 
can be useful when expert time is limited, costly, or 
ineffective. As a result, Section 8 presents a mathe- 
matical programming approach that can be used to 
generate solutions to compare to those of  case-based 
systems. Section 9 discusses the use of statistical models, 
also to generate comparable solutions. Test cases can 
be used to assist in the validation of  the system. Thus, 
Section l0 presents an approach using genetic algo- 
rithms to generate test cases. The diversity of the cases 
in a case base can impact the quality of solutions gen- 
erated. Thus, Section l I develops approaches to test 
the similarity of  cases so that the diversity of  the cases 
in the case base can be assessed. Finally, Section 12 
provides a brief summary of  the article. 

2. VERIFICATION AND VALIDATION 

This section presents some definitions of verification 
and validation. Those definitions are then briefly an- 
alyzed in terms of what they mean for case-based sys- 
tems. 

2.1. Verification 

Verification was defined by Adrion, Branstad, and 
Cherniavsky (1982) as "the demonstration of the con- 
sistency, completeness and correctness of  the software." 
This definition often is supplemented to include re- 
dundancy to provide greater specificity to the notion 
of  completeness. 

Verification's dependence upon software indicates 
that the specific nature of case-based systems needs to 
be elicited to perform verification. Because verification 
is software based, that is, for case-based systems, ver- 
ification is concerned with exploiting the software rep- 
resentations of, for example, cases and relationships 
between cases to establish tests for consistency, com- 
pleteness, correctness, and redundancy. 

Consistency, in case-based systems refers to parallel 
implementation of parallel structures, whether those 
structures are words or relations between cases, such 
as trees. Completeness is concerned with the possibility 
that knowledge or cases are omitted. Correctness refers 
to determination of whether or not there are any as- 
certainable errors in the knowledge, for example, cir- 
cularity in a structure that is supposedly acyclic. Re- 
dundancy addresses the issue of duplication of knowl- 
edge, for example, duplicate versions of the same case. 

Verification also can be dependent upon the do- 
main. By exploiting knowledge of the domain, we can 
verify the knowledge in a case-based system. Consider 
the example of  a system that has a number of cases 
that are different living rooms. Metaknowledge could 
be used to examine the cases to determine that there 
was something incorrect with a case that had a bathtub 
in the living room. There probably would be redundant 
knowledge in the case if the living room case contained 
two couches. Similarly, the case of  a living room with- 
out a couch probably could be incomplete. Finally, it 
would be inconsistent if in the case two physically 
identical items were labeled with the same name, for 
example, couch. Such domain-dependent approaches 
are outside the scope of this article because they require 
specification of  metaknowledge from the specific do- 
main. 

2.2. Validation 

Adrion et al. (1982) indicate that validation is the de- 
termination of the correctness of  the final program or 
software produced from a development project with 
respect to the user needs and requirements. In many 
software development projects, the needs and require- 
ments can be established a priori. However, case-based 
systems are used in situations where the problem is not 
well structured enough to develop a rule-based system. 
Thus, for case-based systems there are likely to be few 
situations where specifications can be elicited a priori. 

As a result, validation may have to employ different 
bases of  comparison rather than requirements. The 
process of  validation for case-based systems may be 
similar to the generation of the needs and requirements 
for other artificial intelligence (AI) systems. For ex- 
ample, validation may take the form of  comparing an 
expert to the system for different test cases. Alterna- 
tively, there may be other approaches that could exploit 
the unique characteristics of  case-based systems to 
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generate comparison bases. These approaches could 
be cost beneficial by limiting the use of experts in val- 
idation processes. The development of alternative 
models of comparison is a primary focus of this article. 

3. VERIFICATION AND VALIDATION OF 
CASE-BASED SYSTEM: PREVIOUS STUDIES 

One purpose of this article is descriptive. This section 
summarizes some of the previous descriptions of ver- 
ification and validation efforts of case-based systems. 
Unfortunately, there have been a limited number of 
studies summarized in the literature (the literature on 
case-based systems is also limited, in general). In ad- 
dition, in many situations the discussion of those efforts 
is limited to a few sentences or paragraphs. Further, 
typically the focus of those discussions has been on 
validation. There are virtually no descriptions of ver- 
ification efforts for case-based systems. 

However, it is not surprising that few have discussed 
verification and validation efforts. The purpose of much 
of the research on case-based systems, to date, has been 
to explore various developmental aspects of case-based 
systems, such as retrieval or indexing. Thus, the lack 
of research on verification and validation is not a crit- 
icism. Instead, this indicates the importance of devel- 
oping approaches to assist in both the verification and 
validation of case-based systems. 

3.1. Protos 

Possibly the most extensive validation of a case-based 
system in the literature is for the system Protos. Protos 
(Bareiss, 1989; Bareiss, Porter, & Weir, 1988) is a case- 
based learning apprentice that learns to perform heu- 
ristic classification under the guidance of a human ex- 
pert. The evaluation of Protos was in the area of clinical 
audiology, where it learned to classify hearing disorders 
from featural descriptions in terms of patient symp- 
toms, history, and test results. 

Because Protos is a classification system, the vali- 
dation considered the accuracy of its classifications. 
Accuracy comparisons included comparison to other 
machine learning approaches and to human experts 
and students. 

When compared to other forms of machine learning, 
Protos was apparently very successful, given the set of 
test problems. The accuracy of Protos was found to be 
far superior to the well-known ID3 (Quinlan, 1986) 
and Cobweb (Fisher, 1987). On a set of 26 test cases, 
Protos was correct 100% of the time, ID# 29% of the 
time, and Cobweb 58% of the time. 

When compared to human experts and students, 
the system also did well. While Protos was 100% correct 
on the test problems, two clinicians had 92 and 81% 
correct, while students had a mean of 73%. 

Apparently, Protos faced a reasonably large base of 

cases. In the training of Protos, a human expert char- 
acterized 7 of the final 50 training cases as unusual. 

3.2. HYPO 

One of the best-known case-based systems is HYPO. 
HYPO was a system developed by Ashley and Rissland 
(1988) to analyze trade secret law. The reported vali- 
dation of HYPO's (Ashley & Rissland, 1988) perfor- 
mance was the comparative analysis of a single "real- 
world" case by the system. They compared HYPO with 
what the court did on that case and found that the 
system agreed with the court. 

3.3. Clavier (Mark, 1989) 

The description of evaluation efforts for Clavier is ac- 
tually a plan for validation. However, that plan had at 
least two components. First, the adaptation oftbe cases 
by the system would be compared to experts. Thus, 
one of the components of the system would be tested, 
probably using a classic Turing test. Second, once the 
system was "working" the overall behavior of the sys- 
tem would be compared to experts for quality of rec- 
ommendations. 

3.4. The Battle Planner (Goodman, 1989) 

To validate The Battle Planner, a randomly selected 
set of 10% of the cases were put aside before indexing. 
Then, those cases were treated as hypothetical battle 
situations. Predictions were made regarding the out- 
come of those situations. Using this approach, the sys- 
tem was found to be 81.3% accurate in the prediction 
of the victor of the case for land warfare. 

The validation efforts pointed toward an interesting 
finding. Goodman found that the more cases that were 
retrieved for analysis of a hypothetical case the better 
the performance of the system. Such a finding may 
occur for a number of reasons. First, it may be that 
the more cases offering feasible solutions the more 
likely that the solution space is spanned. Second, it 
may be that the more feasible solutions the more likely 
that a directly similar case could be found. In either 
case, this provides additional evidence about the im- 
portance of the quality of the cases in the case base on 
the performance of the system. 

3.5. Summary 

An analysis of the published reports of the validation 
of case-based systems indicates that the approaches 
used to date are similar to those used for other intel- 
ligent or expert systems. Typically, the validation of 
each system has used the comparison of the system to 
human experts or machine learning. This comparison 
ranged from a single case to multiple test cases. In gen- 
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eral, the system has been compared to, for example, 
human experts. 

4. S OME UNIQUE FACTORS OF 
CASE-BASED SYSTEMS 

The focus of  this section is to elicit some of the unique 
aspects of  case-based systems and use them as a basis 
for eliciting different approaches and concerns to ver- 
ification and validation. The existence of unique factors 
both indicates a need to establish new approaches and 
provides new opportunities. 

As noted by Ashley and Rissland ( 1988, p. 70), case- 
based reasoning is used " . . .  to capture expertise in 
domains where rules are ill-defined, incomplete or in- 
consistent." It can be difficult to investigate the per- 
formance of  a system in the presence of  such difficulties. 
This suggests that it may be difficult to establish ex- 
pectations or standards of  behavior in case-based sys- 
tems. In particular, the well-established process, in tra- 
ditional software engineering, of using a priori speci- 
fications may not be feasible. 

Because cases typically are represented using frames 
rather than rules, this indicates that verification ap- 
proaches for case-based structures could exploit the 
frame structure. In particular, for example, verification 
processes could exploit the nature of  cases within the 
context of  the frames. This is important because vir- 
tually all of  the work on verification is for rule-based 
systems. 

In addition, case-based systems are unique com- 
pared to other types of AI systems in that they often 
add solved cases to their case base. Previous solutions 
become part of  their experience. Those cases are then 
used in the development of future solutions. This is a 
critical difference from, for example, rule-based sys- 
tems, where the knowledge base in general is static. 

Although case-based systems often are designed to 
create new solutions, typically the quality of the solu- 
tions is dependent, in large measure, upon the case 
base. The quality of the recommendations of a case- 
based system is dependent upon the quality and quan- 
tity of  the cases in the case base. 

In general, a case-based system will be able to gen- 
erate a better recommendation if it has a larger rather 
than smaller case base (e.g., Ruby & Kibler, 1988; 
Goodman, 1989; Gaines, 1991 ). It is likely that with 
a larger base of  experience the situations faced by the 
system will have been seen before and thus a case will 
be available to assist in solution of the problem. Even 
if no identical situation has been seen before, the system 
is likely to have solutions that are so-called "near miss" 
situations. 

If the cases are highly correlated, then the system 
will be limited in the diversity of  solutions it can gen- 
erate. Thus, it is not unusual that Bradtke and Lehnert 
( 1988, p. 91 ) find " . . .  that the most dramatic factor 

influencing the effectiveness of a case base is the num- 
ber of  unique problem states underlying the case base 
encoding." 

Some of  these issues can be addressed using ap- 
proaches such as the direct analysis of the cases by 
experts, comparison of  expert solutions to the system, 
and investigation of the system reasoning (choice of 
cases) by experts. However, the focus of  this article is 
on the development of  alternative approaches to ac- 
count for these unique factors. 

5. DOMAIN-INDEPENDENT VERIFICATION 
OF CASES: STRUCTURAL APPROACHES 

In this section, no assumptions are made of the domain. 
Instead, the individual structure of  the cases and the 
structural relationship between the cases are used to 
provide some bases with which to verify the cases. Un- 
like the next section, which uses statistics to identify 
anomalous cases that appeared to be in error, this sec- 
tion uses that structure to identify cases that are in 
error. Particular emphasis is placed upon using those 
structures to design verifiable systems or systems that 
mitigate the opportunity for the existence of  the types 
of  errors isolated. 

5.1. Consistency 

Errors in consistency can occur for many reasons. For 
example, people can make errors by misspelling or us- 
ing different names for the same object, actor, or ac- 
tivity. 

To design a system to mitigate those types of  errors, 
at the initiation of  a new case-based system the user 
could be required to list each of the cases and corre- 
sponding case attributes before any data is entered. 
Then, those lists of  feasible entries for each of  the cases 
and attributes would be used to fill attribute slots. De- 
velopers of  different cases could choose from the lists 
of  attributes for the content for a specific attribute. As 
seen below, these lists also can be used for other pur- 
poses. 

5.2. Redundancy 

Redundancy errors occur if the user is able to develop 
the same case more than once. The situation of  re- 
dundant cases can cause difficulties, primarily in 
maintenance situations. One version of the ease could 
be revised while another is r.ot. This could cause con- 
fusion and possibly errors if the unrevised case was 
used by the system. The possibilities of redundant cases 
can be mitigated if the user is required to establish a 
list of  the specific cases prior to actually establishing 
the data within each case. As new cases are added, they 
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would be added to the list of  feasible cases. Each case 
would then be referenced by its specific name. Thus, 
a single version of  any given case would be permitted. 

Redundancy errors also occur if the user is able to 
enter the same attribute information into two or more 
attribute spaces for a given case. There are two basic 
situations: two attribute instances in the same attribute 
slot and the same two attribute instances in different 
slots in the same case. In the first situation, mainte- 
nance of  one entry but not the other may cause am- 
biguity as to the proper contents. In the second situa- 
tion, the attribute instance may be an inappropriate 
occurrence for that attribute instance. 

The first situation could be eliminated if each attri- 
bute slot has space for only one entry. The second sit- 
uation could be eliminated if the attribute instances 
could only come from eligible lists, as discussed earlier. 

5.3. Completeness 

There are at least two types of  completeness errors in 
verification: missing cases and missing attributes for 
cases. There are some steps that can be taken to mitigate 
these errors. 

Completeness of  the cases may be difficult to assess. 
However, having the users establish a list of  cases they 
intend to enter into the system prior to entering data 
about the cases could facilitate knowing about com- 
pleteness. Thus, if a case was on the list but not in the 
case base this could indicate an incompleteness error. 

Completeness of  the attributes may also be a difficult 
issue. There are at least two approaches to analysis of  
completeness. First, each case could be required to have 
slots for the same number  of  attributes. As an example 
of  this, the two cases in Table 1 have different numbers 
of  attributes. " T I M E "  is in the first but not the second. 

Second, users could be required to indicate the 
number  of  attributes, of  the total set, that would have 
information in them for a specific case. For example, 
in Table 1 for the first case seven attributes would be 
specified. I r a  specific attribute slot had no information 
for a given case, then a variable representing that al- 
ternative would be entered into the slot (e.g., "ni l"  as 
in Table l ). 

Completeness tests could also make use of  the lists 
developed for consistency. In addition, after the user 
put the attributes onto a list it would be possible to 
reconcile the lists and the completed cases to determine 
if each of  the attributes put onto lists were used. If  
there was an attribute that was listed but not used, that 
could indicate that one of the cases omitted appropriate 
information. 

Completeness in the verification of  cases requires 
that the cases that are planned to be included in the 
system are included and that for each of  the cases a 
complete case specification is given. 

TABLE 1 
Sample Cues 

Name: M-MEAL774 ° 
Isa: ((M-MEAL~) 
Category: INDIVIDUAL 
Slots 

ACTUAL-RESULTS: NIL 
CHARACTERS: (?HOST ?GUESTS ?PARTICIPANTS) 
CONSTRAINTS: ((C-LIMITED-SPACE778~) 
DEFINED SLOTS: NIL 
DESCRIPTOR: NIL 
EXPECTED-RESULT: NIL 
FOLLOW-UP: NIL 
GOALS: ((E-EAT776~ (S-HUNGER777~) 
GUESTS: (,JLK,S-GROUP~ 
HOST: (,JLK,~ 
ORDER: NIL 
PARTICIPANTS: (?HOST ?GUESTS) 
SETTING: (,JLK,S-HOUSE~ 
STEPS: NIL 
TIME: NIL 

Name: M-MEAL80 b 
Isa: ((M-MEAL~) 
Category: INDIVIDUAL 
Slots 

ACTUAL-RESULTS: (ACTUAL-RESULT80~ 
CHARACTERS: (?HOST ?GUESTS ?PARTICIPANTS) 
CONSTRAINTS: ((C-COST11~) 
DEFINED SLOTS: NIL 
DESCRIPTOR: (MEAL-DESCRIPTOR80~ 
EXPECTED-RESULT: (EXPECTED-RESULT80~ 
FOLLOW-UP: NIL 
GOALS: ((S-HUNGAR80~> (E-EAT80~) 
GUESTS: (*JLK* S-PARENTS~ 
HOST: (,JLK,~ 
ORDER: ((SC-SALAD80~ (SC-MAIN-COURSE80~) 
PARTICIPANTS: (?HOST ?GUESTS) 
SETTING: (,JLK,S-HOUSE~ 
STEPS: ((SC-SALAD80~ (SC-MAIN-COURSE80~) 

"From Proceedings: Case-Based Reasoning Workshop (p. 28) 
by J. Kolodner, 1988, San Mateo, CA: Morgan Kaufmann. Copy- 
right 1988 Morgan Kaufrnann. Reprinted with permission. 

b From Proceedings: Case-Based Reasoning Workshop (pp. 29- 
30) by J. Kolodner, 1988, San Mateo, CA: Morgan Kaufmann. 
Copyright 1988 Morgan Kaufmann. Reprinted with permission. 

5.4. Correctness 

The role of  graph theoretic structure permeates case- 
based reasoning systems. Ashley and Rissland (1988a) 
demonstrate two different "claim lattices" (in solution 
generation). The structure of  those lattices is that of  a 
tree. Navinchandra (1988) illustrates that the object 
hierarchy used for matching is a tree. The causal struc- 
tures generated by the system discussed in Navinchan- 
dra (1988) are acyclic graphs. I f  it is known a priori 
that the solution or case relationships will be tree or 
an acyclic graph, then that structure can be exploited 
to ensure that the structure is correct. 

There are a number  of  characteristics of  trees that 
allow for rapidly determining if a structure is a tree. 
For example, each child has at most one parent. An- 
other check is to ensure that a node in the solution 
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does not have an arc going from itself to itself, which 
would imply inheritance from itself. Alternatively, the 
structure may be that of an acyclic network. In that 
situation, the resulting structure must be free of  cycles 
for the system to be correct. 

6. DOMAIN-INDEPENDENT VERIFICATION 
OF CASES: STATISTICAL APPROACHES 

Statistical approaches to domain-independent verifi- 
cation exploit statistical methods as the basis of estab- 
lishing expectations. The general approach is to deter- 
mine if there is any anomalous behavior exhibited 
in statistical summaries of  characteristics of  cases. 
Anomalies indicate that something may be wrong and, 
thus, should be further analyzed. The existence of  
anomalies is established by developing and using sta- 
tistical distributions. 

There are two different statistical approaches to 
finding anomalies. Their implementation in a specific 
system would require accounting for the specific set of  
cases. As a result, the analysis presented here is designed 
for the example cases presented here but can be gen- 
eralized. To illustrate these approaches, consider the 
example case in Table I. 

6.1. Distribution of Slot Contents Per Case 

Analysis of slot contents can provide insight into the 
existence of  anomalous behavior. One approach is to 
develop a distribution of  the number of  slots in each 
case with, for example, nil contents. Then, the distri- 
bution could be analyzed to determine if any of the 
cases were exhibiting unusual behavior. 

The first example case has 15 generic slots for cases, 
of which 8 have the value nil and 7 have values different 
than nil. At the extreme, if all cases but this case had, 
say, either 0, 1, or 2 values of nil then that would suggest 
that this specific case was unusual. Such an approach 
could help locate incomplete and underspecified cases. 

6.2. Distribution of Contents Per Slot Across Cases 

In addition, distributions of slot content could be de- 
veloped, for example, a distribution of  nil values for 
each slot could be developed. If  there was a slot where 
the number of  values nil was very large, then that could 
suggest anomalous behavior because it would indicate 
that slot is only rarely considered important. Because 
this approach would identify slots where nil was the 
value, it would suggest that those slots may be incom- 
plete across many different cases. For example, both 
"FOLLOW-UP" and "DEFINED SLOTS" contain the 
value nil for both cases. 

Another approach would be to determine distri- 
butions for slot contents for each individual slot. In 
the example, assume that there were 40 cases that had 

a nonnil value for host. If 39 were ~ J L K )  and 1 was 
~JKL), then the case with the single occurrence would 
warrant further investigation. This could assist in the 
location of  incorrectness problems. 

6.3. Analysis 

In each situation, these distributions could be analyzed 
as in the extreme cases listed here and using established 
forms of  analysis. For example, outlier analysis could 
be used to find those points in those distributions that 
appear to come from different distributions and thus 
may deserve further investigation. In addition, statis- 
tical tests of  significance (e.g., t test, etc.) could be used 
to determine anomalies. 

7. SEQUENCE EFFECTS OF ADDING CASES 
TO T H E  CASE BASE 

One of the critical conditions of  validation is the ability 
to duplicate the response of  a system under similar 
conditions. Unfortunately, the behavior of case-based 
systems can vary depending upon the order in which 
cases are processed. 

Case-based systems use a number of  approaches for 
choosing the best match from the case base for the 
solution of the case under consideration. After the sys- 
tem proposes a solution, it then adds the new case to 
its case base for further use. Validating these systems 
is difficult because, as shown in this section, the order 
in which validation test cases are added to the system 
can influence the system's proposed solutions. 

7.1. Solutions Are a Function of Order of Cases 
Encountered 

Consider a case-based system that adds cases to its case 
base as it solves them. Assume that one of  the primary 
bases of solution is the number of attributes that the 
situation under consideration has in common with 
some other case in the case base. Suppose that two 
outcomes, x and y (captured in the first slot), are pos- 
sible. Next, suppose that there are six additional slots 
that capture attributes of the individual cases. It is as- 
sumed that attribute l is in the first slot, and so forth. 

Suppose that the initial case base consists of  the two 
cases, 1. (x; a, b, c, d , f ,  m) and 2. (y; a, b, c, h, g, 
m).  If the next case seen is 3. (-; a, b, c, d, e, n), then 
it is resolved as 3. (x; a, b, c, d, e, n). As result, if the 
next case is 4. (-; a, b, c, h, e, n) then it will be resolved 
as4. (x; a, b, c, h, e, n). 

However, if case 4 is seen before case 3 then the 
following scenario will occur. Case 4. (-; a, b, c, h, e, 
n) will be resolved as 4. (y; a, b, c, h, e, n), while case 
3. (-; a,  b, c, d, e, n) becomes 3. (y; a, b, c, d, e, n). 

Clearly, the sequence can have a major impact on 
the system. Solutions developed by the system can be 
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an artifact of  the order in which they are processed. 
This presents a major concern in validation. Although 
the use of  test cases may find that the system agrees 
with experts or other models, this may be simply a 
fortuitous function of  order. 

7.2. Impact of  Order Effects 

Case-based systems add cases as they encounter them. 
Because the solutions they provide are, in part, a func- 
tion of  their case base, the addition of  cases to the case 
base can change the solutions they provide. Thus, the 
order effect is not unexpected. However, the order effect 
discussed here is important to more than just the de- 
velopment and validation of  case-based systems. Such 
order effects can impact the security of  these systems. 
Someone interested in manipulating a case-based sys- 
tem could manipulate the order of  a set of  cases the 
system processes. After the cases have been added to 
the case base, a more desirable solution may be ob- 
tained by the manipulator. In the above example, as- 
sume y is "not  grant loan" and x is "grant loan." Thus, 
someone interested in obtaining a loan would have an 
interest in the order in which cases were presented to 
the system. 

8. M A T H E M A T I C A L  P R O G R A M M I N G  FOR 
COMPARATIVE S O L U T I O N S  

Mathematical programming, in particular, goal pro- 
gramming (e.g., Charnes & Cooper, 1977), can be used 
to solve some case-based decision problems. Solutions 
generated using this mathematical programming ap- 
proach can be compared to solutions generated by the 
specific case-based systems to determine the quality of  
those systems as a means of  validation. Such an ap- 
proach can mitigate the need for the comparative use 
of  expertise in the evaluation process. However, unlike 
a comparison to a human expert the quality of  the 
mathematical programming approach largely is limited 
to the quality of  the cases represented in the case base. 

8.1. Mathematical Programming Approach 

It is assumed that each case can be represented by a 
vector, C, of  m components, for i = 1, • • . ,  n. Let c,j 
represent the j t h  attribute of  case i. For purposes of  
exposition, it is assumed that those attributes are nu- 
meric constants. This is not limiting because many 
logical relationships can be modeled using vectors of  
this type (e.g., Garfinkel & Nemhauser, 1972). 

A decision variable is required to determine i fa  case 
should be retrieved to develop a solution. If  case i is 
not chosen, then x~ = 0, while if case i is chosen then 
x ~ = l .  

Let A be a vector of  m components, where aj is the 
j t h  component  in that vector. The vector A can be 

used to represent the case situation the decision maker 
currently faces, for which a match in the case base is 
being sought. 

Goal programming attempts to minimize the de- 
viation from some case or combination of  cases. It is 
done by minimizing the extent to which the solution 
found "deviates" from a desired solution. Let ef  > 0 
and ef  ~ 0 be "deviation" variables, where ef  is the 
amount  by which a solution component  exceeds aj and 
ef  is the amount  by which a solution component  is 
under aj. Let those vectors be represented by the vectors 
E + and E - .  

The basic goal program can be represented as fol- 
lows. 

M i n ~ e f + ~ e f  
J J 

ctx~ + c 2 x 2 +  ' ' '  + c n x n = A + E  + - E -  

l > x i > 0  ( f o r a l l i ) ,  e ~ > 0  

and e7 > 0 (for all j ) .  

This formulation establishes the deviation changes 
required to be made to the vector A to adopt it to the 
case base. This is the mirror image of  the change that 
would be made to adopt a case to meet the needs of  
the situation, A. 

This formulation can be added to and generalized 
to meet both the different approaches to matching and 
the weighting of  attributes that sometimes takes place 
in case-based systems. 

8.2. Alternative Case Matching Approaches 

The solution of  the mathematical program provides a 
matching between combination of  cases in the case 
base and the case at hand (A).  There are at least two 
different implementations of  this formulation, resulting 
in different sets of  constraints that would be added to 
the formulation depending upon the type of  analysis 
used. First, the concern might be with choosing the 
one case that is most similar to the situation of concern. 
In that situation, the following constraints also would 
be added: 

x~ = 0 or 1 (for all i) and ~ xi = 1. 
i 

Second, the interest could be in the best combination 
of  cases, where the combination is a convex combi- 
nation. In that situation, the following constraints 
would be added: 

l > x i > O  ( f o r a l l i )  and ~ x i = l .  
i 
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8.3. More General Cases 

The formulation in Sections 8.1 and 8.2 required cases 
with fixed parameters. However, that approach can be 
generalized to allow more "flexible" case representa- 
tions. In particular, the vectors of  constants Ci can be 
generalized to a vector of variables subject to a con- 
straint. Mathematical programming use of this kind of  
structure is referred to as generalized linear program- 
ming (GLP)  by Dantzig (1963). 

For example, in GLP rather than numeric constants 
to represent a case variables and a constraint on those 
variables would be used. Thus, if case Ci had three 
attributes then it might be represented as ci,~, ci,2, ci,3, 
where, for example, c~,~ + 2.Ci,2 + 3.Ci,3 < Ri,  where 
R~ is a constant. Values could be attributed to each of  
c,-j ( j  = l, 2, 3) subject to that constraint. 

8.4. Extensions 

In some situations, it may be that one deviation should 
be weighted more than another. In addition, it may be 
that deviations (+  or - )  should be weighted differently. 
In these situations, a weight could be associated with 
each ef  and ef  for each j .  

The mathematical program discussed in this section 
can be generalized to deviations of the form e~,j and 

+ 
ei j .  In addition, it can also be formulated to minimize 
the number of attribute deviations. These extensions 
could result in more complex formulations with more 
variables. 

9.1. Regression as a Comparable Model  

A statistical model of the entire set of cases, such as 
regression (or a neural net model-- their  performances 
have been reported as similar), can be used to test the 
quality of the output of  the system. For example, given 
the case base as a data set, regression analysis (in its 
many different forms, e.g., logistic regression) would 
be used to develop a set of  coefficients. Then, for each 
new case situation encountered that set of  coefficients 
could be used to estimate the outcome. That outcome 
would then be compared to the outcome of  the system. 
If the outcomes were not the same, then that would be 
cause for further analysis to determine which is appro- 
pilate. For example, human experts may investigate 
the resulting differences. 

9.2. Regression as a Test of  Case Quality 

If there are errors in the cases, then those errors will 
be used in the system, possibly generating additional 
erroneous system behavior. Regression also could be 
used to test the quality of the remaining cases. In this 
situation, a portion of  the case base would be used to 
develop a statistical model to estimate the dependent 
outcome variable. Then, that model would be used on 
the remainder of  these cases to predict the outcome of 
the cases based upon the independent variables in the 
specific cases. That  prediction would be compared to 
the actual outcome to validate the specific case. Dis- 
agreement may signal the need for detailed examina- 
tion of  the case. 

9. STATISTICAL ANALYSIS OF 
CASE OUTCOMES:  CASE SOLUTION 

AND QUALITY 

Statistical analysis can be used to provide a comparative 
model of the quality of  the solutions presented and 
examine the reasonableness of  the solutions attributed 
to cases in the case base. Statistical approaches can be 
used in the validation of  cases by exploiting the infor- 
mation contained in the cases that relate to the attribute 
slots (independent variables) and the outcome of the 
specific case (dependent variable). Such an approach 
most likely would be useful in those situations where 
both dependent and independent variables have few 
occurrences or are continuous variables, for example, 
a case base for binary decisions, such as "guilty or not 
guilty" and "invest or not invest." 

Statistical models are similar to case-based models: 
The addition of  new data can change the relationship 
between the independent and dependent variables. As 
a result, to model the case-based system regression coef- 
ficients (and other statistics) may have to be recalcu- 
lated whenever a new case is added to the case base. 

10. GENETIC LEARNING FOR GENERATING 
TEST CASES 

Test cases are probably one of the most frequently used 
approaches in the validation of intelligent systems. 
They are a necessary part of  the comparison of  human 
experts to the system. Thus, their use in case-based 
systems is not unexpected. One approach to generate 
test cases is through the use of  genetic learning algo- 
rithms. 

Genetic algorithms employ a concept of adaptive 
efficiency in the context of  a probabilistic search 
method (Goldberg, 1989). They are called genetic al- 
gorithms because they employ methods analogous to 
genetic transfer from one organism to its offspring. 
They assume that, as in nature, the organisms that are 
best suited to the environment flourish and produce 
offspring with similar genetic traits. 

Genetic algorithms employ current-"generation" 
information (existing cases) to develop the next- and 
future-generation information (new cases). Typically, 
it is assumed that information is stored in a vector of  
components, where each element is either a 0 or a 1 
(have the at tr ibute/do not have the attribute). The 
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next-generation vector is reproduced by operations on 
the current set of  vectors. 

Genetic learning algorithms can be exploited to de- 
velop other generations of  cases for test purposes. As 
above, it is assumed that a case i can be written as a 
vector C~, where there are m attributes in each case, 
d~j, where j = 1, • • . ,  m.  For illustrative purposes, it 
will be assumed c i j  equals either 0 or 1, although this 
can be generalized. 

There are a number  of  operators that convert cur- 
rent-generation vectors into next-generation vectors. 
These include mutation and crossover. Mutation refers 
to the mutat ion of  individual elements in a given case. 
For example, c~j becomes "no t"  c~j. Crossover refers 
to merging elements from two different cases i and k. 
For example, C~ and Ck can be merged to create a new 
case with (c~.1, • • " ,  c~,h, C~,h+l, " " ",  C~,,,,). The new 
case contains elements from both vectors. 

This approach assumes that an outcome can be as- 
sociated with the new cases (e.g., guilty or not guilty). 
In some situations (e.g., Deugo & Oppacher, 1989), 
algorithms can be used to establish a corresponding 
benefit or outcome. Alternatively, the associated out- 
come possibly could be constructed based upon the 
original parent vector outcomes or established by expert 
analysis. 

11. Q U A L I T Y  OF CASE BASE: S I M I L A R I T Y  
B E T W E E N  CASES 

As noted earlier, one of  the most  critical aspects to 
system success can be diversity of  cases in the case 
base. Thus, part of  the validation of  the case base can 
be aimed at an analysis of  the relationship of  similarity 
between different cases. This section presents four dif- 
ferent approaches to measure the extent of  similarity 
between cases. 

11.1. Correlation Coefficient 

Probably the best-known statistical measure of  the re- 
lationship between two entities is the correlation coef- 
ficient. Assume that each of  the attribute slots and so- 
lutions are numeric. In that situation, the correlation 
coefficient will provide a summary  statistic for the sim- 
ilarity between two different cases. However, in many  
situations the attributes are not numeric. For those sit- 
uations, we can develop other measures of  similarity. 

11.2. Counts 

Next, assume that not every slot is numeric. Then, one 
measure of  the similarity of  one case to another is a 
numeric count of  the number  of  attributes they have 
in common,  normalized by the number  of  slots. De- 
pending upon the situation, the simultaneous slot con- 
tents of  nil may or may not be counted as an item of  

similarity. In the example cases, there are six attributes 
in c o m m o n  between the two cases, including nil re- 
sponses. Assuming a 15-attribute case structure, the 
two cases are related at the 40% level. 

11.3. Weighted Counts Between Cases 

The last approach can be extended to weigh the slots 
differentially in terms of  importance of  the slot or in 
terms of  difference of  content. For example, 
"GUESTS"  may be twice as important  as "HOST."  
Further, it may be that the difference between nil and 
any other value is more than any two nonnil values. 
Possibly, expert understanding of  individual case sit- 
uations could be used to establish weights on the at- 
tributes and content differences. The development of  
such weights would vary between individual applica- 
tions. 

11.4. Cross-Attribute Counts 

Similarly, the counts could be made across attribute. 
We could measure the extent of  similarity as (number  
of  occurrences of  value " x "  ) / (total number  of  cases). 
Thus, if  each case had the same value x for an attribute 
then we would have that ratio equal to 1. 

In the example, the " H O S T "  is common  to each of  
the two cases. Thus, on that dimension the cases are 
the same: There is no diversity of  HOST. Thus, a vector 
containing the percentage of  each attribute would iso- 
late those attributes that are similar across the case set. 

11.5. Use of Similarity Measures 

This section has suggested four similarity measures. 
Additional measures could be developed, for example, 
based upon semantic distances between slot contents. 
Ultimately, the use and meaning of  those measures 
would vary from application to application based upon 
our expectations. 

I f  the cases are " too"  similar, then that can indicate 
any of  a number  of  steps to be taken. First, it may 
indicate a need for a larger case base. This could require 
that some new cases that are not as similar as the ex- 
isting cases be added to the case base. Second, in this 
situation it could indicate that the cases are underspe- 
cified. Additional attributes could be solicited for each 
of  the cases that differentiate the cases from each other. 
Third, a high degree of similarity among the cases could 
indicate an error. In particular, a correlation of  I would 
indicate identical contents, that is, redundancy of cases. 

12. S U M M A R Y  

This article has investigated verification and validation 
of  case-based systems. Throughout, those methods were 
designed to exploit the unique factors of  case-based 
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systems. The limited case-based verification and vali- 
clarion research was summarized and new methods 
were developed. 

Two approaches to verification were discussed. Sta- 
tistical approaches were elicited for the determination 
of  cases that appeared to exhibit anomalous behavior. 
Approaches based upon the structure of  a case and 
structural relationships between cases were developed 
to isolate those situations where there were errors in 
those representations. 

The remainder of the article dealt with validation 
issues. An important criticism of  case-based systems, 
in general, with implications for validation was cap- 
tured in an analysis of  the impact of  sequence of cases 
processed and added to the knowledge base. It was 
found that sequence of processing cases can impact 
assignment of  solution. 

Then, two different approaches for generating com- 
parative solutions were developed. First, a goal program 
was presented that used the representations of the ex- 
isting case base to develop solutions. The models al- 
lowed for either a combination of  cases or choice of 
the single most similar case. Second, regression analysis 
was presented as another model for generating com- 
parable solutions to the case-based system. 

One of  the unique aspects of  case-based systems are 
the cases. The quality of the system solutions is in gen- 
eral a function of the quantity and quality of  the cases. 
Genetic algorithms were explored as a means of gen- 
erating test cases. A statistical approach was proposed 
as a vehicle for examining the quality of  the case base. 
Finally, measures for analysis of  the similarity of cases 
within the case base also were investigated. 
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