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ABSTRACT: Validating an expert system can be done by comparing decisions that
an expert would make to those of the system. Unfortunately, that approach can be
very costly and may be infeasible because there may be only a limited amount of
an expert’s time available to devote to validation. Accordingly, there is a need to
develop other methods of validation that take advantage of the limited time of an
expert. An alternative approach is to examine the knowledge base and characteris-
tics of it to determine those parts that do not behave in a manner similar to the rest
of the knowledge base or as expected. The limited resources of the validation
process could then be concentrated on, e.g., validating those weights that stand
apart from the other weights. In a rule-based expert system this means examining
the rules and the weights on the rules for any exceptions. This article focuses on
using statistical methodologies to determine those individual weights and those sets
of weights that do not behave as would be expected. Outlier analysis, determining
underlying probability distributions for the weights, statistical significance, boot-
strap resampling, and other computer-intensive statistical methods are used in the
analysis. A case study is used to demonstrate the methods developed throughout
this article.
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INTRODUCTION

A key issue in expert systems is the validation of expert systems. Recently, for
example, frameworks have been provided for the validation of expert sys-
tems."®'” These frameworks are designed to guide the validation effort by
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establishing those issues that need to be considered and providing general
methods that can be used in the validation of expert systems. This is particu-
larly apparent,"® where research methods are used to design the validation
effort.

However, there has been limited research in developing methods for the
actual process of validating expert systems. The purpose of this article is to
provide one such approach that can be useful as part of the validation process
for expert systems (ES).

Validating ES can be done by viewing the ES as a black box and determining
the quality of the decisions by comparing the decisions to human decision
makers or other models. Validating the ES may be taken a step further by
opening up the black box and having the expert examine the knowledge base to
determine why the ES made a particular decision.

However, such processes of validating ES can be expensive or infeasible.
Experts’ time is expensive. Further, experts’ time for such validation efforts
may be limited. A substantial time and effort investment would be required to
test all aspects of, say, a 2500-rule system.

Accordingly, other approaches toward validating expert systems are desir-
able. Because part of the validation process is aimed at ascertaining that what
the system “knows” is correct, part of the validation process can be aimed at
ensuring that the knowledge base is correct.

There are multiple forms of knowledge representation® used in knowledge
bases. A substantial portion of the ES built to date are rule-based, in part, for
example because much of the expert system software (shells) is rule-based.
Rule-based expert systems (RESs) are expert systems that have a knowledge
base of “if...then..,” rules. Often such systems have weights on the rules
indicating, for example, the strength of belief in the rule.

Accordingly, a portion of the validation process is concerned with ensuring
that the rules are consistent and complete and that the weights on the rules are
correct. Methods have been presented to aid in analyzing the logical structure
of the rules."” This article is concerned with developing methods to help guide
the efforts of the validator in assessing the possibilities that a weight or weights
may be incorrect.

Sources and Consequences of Incorrect Weights

Typically, the knowledge engineer solicits weights from the expert and has
the weights put in the knowledge base of the system. Accordingly, the weights
on the rules in an expert system may be incorrect for a number of reasons. First,
the wrong weight may have been recorded by the knowledge engineer, or the
wrong weight might have been keyed into the system by data entry personnel.

Second, the expert is likely to satisfice rather than optimize."® As a result, the
quality of the estimates generated by the expert are just “good enough” to meet .
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the expert’s time limitations and quality expectations. However, weights de-
veloped in this manner may not be satisfactory for an ES, since the model
depends entirely on the rules and the set of parameters generated for the rules
rather than on other knowledge available to the human. A weight that is “good
enough” when treated as a weight on an individual rule may not be “good
enough” when queries to the system lead to that weight being combined with
other weights (that also are just “good enough”) to determine the system’s
Judgment. Cascading a number of weights on rules that are “good enough” can
lead to a “not good enough” solution.

Third, the expert may find it difficult to express, for example, the strength of
belief on a particular rule as a number. In those cases, we might anticipate that
the weights are likely to be incorrect.

Fourth, the expert may not supply an accurate estimate for a weight because
the expert does not want to be “replaced by a machine.” Although the expert
may be cooperative in an initial prototype, as the potential capabilities of the
system are seen the expert may become less cooperative. If the expert supplies
inappropriate weights, the system may yield decisions that are not as good as
those of the expert.

In any case, if the weights on the rules are incorrect, then the system likely
will find solutions to user queries that do not represent the best or even the
better solutions. This can lead to a lack of confidence in and use of the particu-
lar system and expert systems in general. Accordingly, it is important to vali-
date those weights to ensure that they are correct.

APPROACHES TO VALIDATING THE WEIGHTS

One approach to validation of the weights is to have the expert examine each
of the weights to ensure that they are correct. Unfortunately, this approach may
not be feasible because of time or resource constraints, or it may not be cost-
beneficial for large systems. In addition, this approach may suffer from the
same satisficing problem discussed above. Further, if the expert supplied incor-
rect rules in an effort to undermine the system, then there is little reason to
assume that the behavior would change. Thus, it is important to develop alter-
native cost-beneficial validation methods.

If particular weights can be identified as possibly incorrect, then the validator
can concentrate on those weights in the validation effort—i.e., concentrate on
the exception. There are at least three approaches. First, the validator can
choose a selected subset of weights for further detailed examination. This
subset likely would consist of those weights that appear to stand apart from the
rest of the weights—i.e., the exceptions. Second, the validator can examine
characteristics of a set of the weights to determine if the weights’ behavior is as
the underlying theory—e.g., measurement theory and probability theory—
would predict. Third, the validator can analyze the weights’ behavior to deter-
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mine if the weights behave as would be expected on the expert system devel-
opment process—e.g., the weights may be expected to be from the same distri-
bution in the initial prototype and in a second version of the system. If the
weights do not behave as anticipated, then the entire set of weights in the
second version of the system may warrant further examination. This article
uses statistical techniques to test the relationships between the data and the
mathematical theory on which the weights are based to identify those weights
that stand apart from the rest of the weights and those sets of weights that
deserve further investigation because of measurably different behavior in dif-
ferent versions of the system.

Plan of this Article

This article proceeds as follows. The next section provides a background
discussion on the weights in a rule-based expert system. The following section
develops a case study that is used throughout the article to demonstrate the
various approaches that are developed to help validate the weights. Then rea-
sons for the weights coming from a single distribution or discernible groups of
distributions are analyzed. The next section uses analysis of outliers and
Chebyschev’s inequality to ascertain those weights that do not belong to the
same distribution as the rest of the weights and thus may warrant further
examination. The following section discusses estimating the type of distribution
from which the weights derive. The next section uses that distributional infor-
mation as the basis to estimate statistical significance of particular weights. The
following section analyzes the distribution of the means of the weights to
determine if the mean of the weights behaves as anticipated. For example, the
measurement structure of the weights may require that the weights have a
mean of zero. Then the next section investigates behavior of the correlational
relationship between two types of weights used in a system. The following
section discusses the relationship between the weights on the rules in successive
versions of the systems development and implementation efforts. The next
section discusses extension of the approaches in this article to other systems of
weights and to other types of numbers that require validation. The last section
summarizes the article.

WEIGHTS IN RULE-BASED EXPERT SYSTEMS

The weights in RESs have been implemented in two primary formats."
EMYCIN"™ uses “measures of belief” and “measures of disbelief” to develop
“certainty factors” (CFs), and AL/X™ uses positive weights (PWs) and nega-
tive weights (NWs). A number of RESs and expert system shells have been
developed using these alternative approaches to representing uncertainty.
Although this article discusses these two systems and later focuses on AL/X,
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the general nature of the discussion does not rely on a particular format for the
weights.

CFs provide one way to think about confirmation and quantification of
degrees of belief. Given the rule “If E then H,” the expert provides measures of
belief (MB) and measures of disbelief (MD) in hypothesis (0 = << MB, MD =
< 1), where MB and MD are formally as follows:

MB(H,E) = 1 if Pr(H) =1
_ Max [Pr(H|E),Pr(H)]—Pr(H) otherwise )

Max [1,0]—Pr(H)

MD (HE) = 1 if PR(H)=10
Min [Pr(H|E),Pr(H)]— Pr(H) otherwise )

Min [1,0]— Pr(H)

An examination of equations (1) and (2) indicates that one of MB or MD is
always zero.

The CF combines those two measures as CF= MB — MD. The assumption is
that the numbers developed by experts are “adequate” approximations to the
numbers that would be calculated if the requisite probabilities in equations (1)
and (2) were known.

PWs and NWs provide an alternative method of generating weights on the
rules. For the rule “If E then H,” let

PW = Log (Pr(E’|H) / Pr(E’|H")) (3)
NW = Log (Pr(E|H)/ Pr (E|H"), 4)

where E’and H’ correspond to “not E” and “not H.” Thus, in theory, each of
these weights is the logarithm of a likelihood ratio.

The PWs are “necessity factors” because a small value for PW means that a
high probability for E is necessary to produce a high probability of H. The NWs
are “sufficiency factors” because a large value of NW means that a high
probability for E is sufficient to produce a high probability of H.

The development of the weights is done by soliciting either the weights or
the probabilities. If the weights are gathered, then generally the PWs and the
NWs are scaled, as, for example, in the case in the next section, between —30
and 30. Alternatively, if the probabilities are gathered, then the probability of
errors in the relationship (Pr(E’|H) and Pr (E|H’)) can be gathered. In either
case, in order to generate equations (3) and (4) the expert must generate two
pieces of information.
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Table 1: Weights on Rules in AUDITOR—Initial Version*

Rule Positive Weights Negative Weights
1 -6.0 20
2 6.0 0.0
3 -6.0 0.0
4 -6.0 2.0
5 -3.0 1.5
6 3.0 0.0
74 3.0 0.0
8 2.0 -1.0
9 6.0 -1.0
10 -2.5 1.0
11 -2.0 1.0
12 -6.0 2.0
13 25 -1.0
Note: *The order of the weights is different than in Table 2.
Source: Dungan.

CASE STUDY: AL/X

There are few complete RES sets of rules and corresponding weights available
in the literature. However, Dungan® lists all the rules and weights for the expert
system AUDITOR. Accordingly, the weights in AUDITOR are used to illus-
trate the validation of the weights in a rule-based system. Although the AL/X
method of placing weights on the rules is used, this same validation approach
can be used on weights developed for EMYCIN.

AUDITOR was written in AL/X. Development of AUDITOR apparently
had two primary stages, First a set of thirteen rules and their corresponding
weights was developed. Second, in an effort to improve performance, the origi-
nal set of rules was expanded and changed to thirty-eight rules. The initial set
of weights is in Table 1. The final set of weights is summarized in Table 2
Histograms of the final weights are given in Figure 1.

Figure 1: Histograms of Weights
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Table 2: Weights on Rules in AUDITOR—Final Version

Rule  Positive Weights Negative Weights

1 -3.0 3.0

2 0.5 0.0

3 0.5 -0.5

4 30 -1.0

5 2.0 -1.0

6 -30.0 1.0

7 =20 4.0

8 -1.0 2.0

9 1.0 -0.5

10 3.0 0.0

11 20 0.0

12 -2.0 2.0

13 0.0 -0.5

14 5.0 -1.0

15 3.0 -1.0

16 1.5 0.0

17 4.5 0.0

18 1.0 -1.0

19 2.0 -0.5

20 3.0 -1.0

21 1.0 0.0

22 8.0 0.0

23 1.0 0.0

24 -3.0 3.0

25 2.0 0.0

26 2.0 0.0

27 7.0 -1.0

29 -3.0 3.0

30 -3.0 3.0

31 -3.0 3.0

32 5.0 0.0

33 3.0 0.0

34 6.0 -1.0

35 -2.0 0.0

36 5.0 0.0

37 20 -1.0

38 1.0 0.0

N Mean Median Std Dev
PW 38 0.868 1.750 5.987
PW (Rule #6 omitted) 37 1.703 2.000 3.108
NW 38 0289 0.000 1.478
NW (Rule #6 omitted) 37 0270 0.000 1.493
Source: Dungan.m

The PWs were developed from a composite of relative strength judgments of
four auditors. The four sets of relative strengths were translated into one nu-
merical estimate for each rule using an averaging approach.”’ The NWs were
assigned by Dungan after the PWs were developed.
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ASSUMPTION OF SINGLE OR DISCERNIBLE DISTRIBUTIONS

This article assumes that the weights come from a single distribution or that the
weights come from multiple distributions, yet the weights can be associated
with discernible distributions. Such an assumption is not unusual, and is neces-
sary to employ statistical-based analysis. Once this assumption is made, then
both distribution-free and particular-distribution assumptions can guide further
investigations.

There are several reasons to assume that the weights come from a single
discernibly or different distributions. First, if an expert develops the weights,
then each of the weights comes from the same source. In the example, the NWs
came from the same person. Second, the weights may have massaged or gener-
ated using the same process. In the example, the PWs were developed using the
same averaging process. Third, if the knowledge base refers to knowledge
about a single problem, then there is reason to assume that the weights come
from a single distribution. In the case study, a single auditing problem was
analyzed. Alternatively, the knowledge base may be separated into a number of
loosely connected segments, where each segment is concerned with a different
problem. In that case, the weights on the rules in each of the individual seg-
ments may be expected to derive from a different, yet discernible distribution.
Fourth, empirically the weights may appear to be from a single distribution.
Empirical evidence indicates that it appears that the PWs (with one weight
removed) come from the same distribution. Fifth, the mathematical theory on
which the weights are based may indicate that the weights are drawn from a
particular distribution. That is the case with AL/X and the example, as dis-
cussed later in the article.

DETERMINATION OF OUTLIERS—NO DISTRIBUTION FORM SPECIFIED

The validator may not be able to specify the form of the particular distribution.
In that case, one approach that can be used to ascertain the existence of those
weights that stand apart from the rest of the weights is to find those weights
that are outliers from the others. Thus, validation of the weights would then be
concerned with determining whether any of the weights do not come from the
same distribution as the other weights. If it appears that a weight does not come
from the same distribution as the other weights, then that weight would warrant
investigation.

Exploratory data analysis (EDA)®” can be used for general output analysis.
EDA is distribution-free. Rather than summarizing the data using the mean and
standard deviation, for example, the median and heuristically based distances
from the median are used to analyze the data. In addition to showing trends and
patterns, EDA techniques “reveal surprising, unexpected or amusing features
of the data that otherwise might go unnoticed.”” Using current computer
technology, these displays can be quickly generated. They can be repeated
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under a variety of different assumptions to observe sensitivities or changes in
the display. In addition, more traditional methods, such as regression analysis
and Chebyschev’s inequality, can be used to estimate which weights stand
apart from the other weights.

Outliers can be identified from the data using either univariate or bivariate
methods. We can investigate the PWs and the NWs either separately or as
pairs.

Outliers—Univariate

The stem-and-leaf display is a univariate EDA tool that contains all the
information of a histogram. It breaks the display of the data into groups (such
as 0.0t0 4.9,5.0 t0 9.9, etc., depending on the scaling), like the histogram. The
stem-and-leaf display uses three columns to summarize the data display. The
first column displays a cumulative count of values in each of the groups as the
groups approach the median, from both above and below the median. The line
(or stem) that contains the median shows a count of values at the median and is
denoted with parentheses. The second column of numbers holds the stem. This
corresponds to the leftmost digit of the numbers in the data set. Stems will
range from the leftmost digit of the smallest number in the set to the largest.
The third column—the right-hand portion of the display—holds the leaves.
Each leaf digit represents an individual value. The initial digits of that value are
the stem digits. This is followed by the leaf digit. Thus, a stem of 4 and a leaf of
2 could represent the number 42. The position of the decimal point is indicated
by the unit of the leaf digit printed at the top of the display.

The boxplot is a univariate EDA tool that focuses attention on extreme
values by showing outliers and providing a way of determining those values
that are a “measurable” distance from the median. The median is marked with
a plus (+). The median is used to split the data into two sets of data, one on each
side of the median. The middle half of each of those batches is referred to as a
hinge. The difference between the two hinges is the H-spread. The hinges are
used to form the vertical edges of the “box.” Thus, the box that is formed
(hinges on each side and the median in the middle) contains 50% of the data
set. The remaining 50% of the data set is equally split into two groups of 25%
that lie either below the lower hinge or above the upper hinge.

The hinges are then used to calculate the inner and outer fences, which are
used for outliers identification. They are calculated as follows:

H-spread = (upper hinge — lower hinge)
Lower Inner Fence = (lower hinge) 1.5*% (H-spread)
Upper Inner Fence = (upper hinge) 1.5% (H-spread)
Lower Outer Fence = (lower hinge) 3* (H-spread)
Upper Outer Fence = (upper hinge) 3* (H-spread)

[l

-+
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In a boxplot, dashed “whiskers” run from the hinges to the adjacent values
on each side. Values between the inner and outer fences are “possible outliers”
and are plotted with an asterisk (*). Values beyond the outer fences are “pos-
sible far outliers” and are plotted with a zero (0). Thus, boxplots provide both
outliers and a means of assessing groups of values (e.g., in the whiskers) that
may require further investigation.

Outliers—Bivariate

The X-Y plot is a bivariate EDA tool that displays the relationships between
the X and Y variables. Unusual points, such as outliers, do not fit whatever
pattern (e.g., a straight line) that might be present, making them more
noticeable.

One pattern that is accessible from a statistical perspective is a straight line.
Regression analysis can be used to fit a line to the data in the X-Y plot. Once
regression analysis is used, then supporting tests of regression analysis can be
analyzed. At least three different methods have been developed to aid in the
identification of outliers in regression data: leverage matrix analysis, residuals
analysis, or a combination of the two.

The leverage values (%), which are the diagonal elements are of the hat
matrix, can be used to find outlying X (independent variable) observations, The
element A; can be obtained from the product of (X%) (X’X)' (X)), where X;
corresponds to the ith-observation and X is the data matrix. Leverage values
exceeding 2p/n or 3p/n are considered outliers, where p is the number of
variables. Standardized residuals, ¢; (Yacia — Yoredgicrea) divided by the square
root of MSE, where MSE is the mean squared error) also can be used to assist in
the detection of Y (the dependent variable) outliers. There are several ways of
identifying those Y values that may be outliers,® including direct examination
of the standardized residuals for unusually large values.

Cook’s distance, D;"* combines both leverages and standardized residuals to
provide a measure of the impact of the ith-observation on the estimated regres-
sion coefficients. The D; values are calculated using the formula D; =
[(e:2)/ (p* MSE)]* [hi/ (1 — hi;)2]. While the D; does not follow the F-
distribution, researchers"® have suggested that if a D; value is at the 50 percen-
tile level (or more) for F(,»,) distribution (where 7 is the number of observa-
tions), then the observation should be considered as having substantial
influence on the regression (i.e., an outlier).

Case Study—Outliers

Analysis of the stem-and-leaf plots (Figure 2) shows that the —30.0 PW in
rule 6 is the largest (absolute) value and the most “unusual” value of the entire
rule set. No other values are as extreme. Both stem-and-leaf plots show evi-
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Figure 2: Stem-and-Leaf Plots of Weights

Stem-and-leaf of PW Stem-and-leaf of NW
N=38 N=38
Leaf Unit = 1.0 Leaf Unit = 0.10
al -3 0 al; -2 0
ik -2 1 =&
ak: -2 10 =1 000000000
1 =3 14 -0 5555
1 -1 (7) -0 0000000
1 -0 17 0 00000000
10 -0 333322221 9 0
(21) 0 000111111222222333334 9 T2 0
7 0 5556789 8 1

8 2 00

6 2

6 3 00000

1 3

1. 4 0

dence of some central tendency in the distributions of the positive and negative
weights; however, this is a tentative conclusion because of the relatively small
(N = 38) sample size.

The boxplot (Figure 3a) for the PWs substantiates the —30.0 value of rule 6
(noted previously) as a possible far outlier. The boxplot (Figure 3b) for the NWs
indicates that the 4 value of rule 7 is a possible far outlier, and those rules with a
value of 2 or 3 are possible outliers. Each of these weights warrant investigation.

Figure 3a: Boxplot for PWs
Figure 3b: Boxplot for NWs

Boxplot for PW's
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possible cutliers
possible far outliers
median

+ 0O
o
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Figure 4: X-Y Plot for PWs and NWs
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The X-Y plot of the PW values against the NW values (Figure 4) provides
further evidence of the strong influence of the —30.0 positive weight of rule 6.

In the development of AUDITOR, the PWs were developed by a team of
experts. Then, given those weights, the NWs were selected so that the expert
system performed correctly. Thus, there is reason to assume that the PWs can
be treated as the independent variable. Accordingly, it is reasonable to use a
bivariate outlier test. Further, the X-Y plot suggests a straight-line pattern.
However, the treatment of the NWs as an independent variable is also included
for illustrative purposes.

Leverages over 2 p/n or 3 p/n merit checking. The leverage for rule 6 when
the PWs are treated as the independent variable greatly exceeds 3 p/n, indicat-
ing that this observation is a possible outlier. No other PW has a significant
leverage. When NW is used as the independent variable, several leverages
barely exceed 2 p/n. The leverages are summarized in Table 3.

The standardized residuals indicate that rule 6 still dominates even if NW is
treated as the independent variable. As shown in Table 3, the standardized
residuals are large in both cases, but especially so when NW is used as the
independent variable. This is consistent with the results using leverages.

The results for the test of Cook’s D also are summarized in Table 3. The test
found that treating the PW as either the dependent or independent variable
yields rule 6 as an outlier. With PW as the dependent variable for rule 6, Cook’s
D-statistic was significant at the .999 level. With PW as an independent
variable for rule 6, Cook’s D statistic was significant at about the .500 level.

This discussion indicates that observation 6 is definitely an outlier from the
rest of the observations. If the observation is not deleted, then it will have a
large influence and probably distort any further correlational or distribution
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Table 3: Outlier Detection*
PW Independent NW Independent
Rule h; S Resid Cook’s D h;; S Resid Cook’s D
1 0.03251 1.8174 0.0555 0.11722 0.4068 0.0109
2 0.02641 -0.2502 0.0008 0.02735 -0.1676 0.0003
3, 0.02641 -0.6289 0.0054 0.03402 -0.3392 0.0020
4 0.02974 -0.7987 0.0098 0.04689 -0.0413 0.0000
5 0.02728 -0.8818 0.0109 0.04689 -0.2302 0.0013
6 0.74472 -4.0199 23.5720 0.03256 -5.5466 05177
7 0.03251 25772 0.1116 0.19667 0.8016 0.0786
8 0.02894 1.1398 0.0194 0.06252 0.2380 0.0018
9 0.02632 -0.5868 0.0047 0.03402 -0.2453 0.0010
10 0.02974 -0.0400 0.0000 0.02735 -0.3000 0.0012
11 0.02728 -0.1241 0.0002 0.02735 -0.1129 0.0001
12 0.03251 1.0576 0.0188 0.06252 0.0475 0.0000
13 0.02688 -0.6711 0.0062 0.03402 -0.4330 0.0033
14 0.03918 -0.6332 0.0082 0.04689 0.3365 0.0027
15 0.02974 -0.7987 0.0098 0.04689 -0.0413 0.0000
16 0.02661 -0.1661 0.0004 0.02735 0.0194 0.0000
17 0.03625 0.0866 0.0001 0.02735 0.5806 0.0047
18 0.02632 -0.9655 0.0126 0.04689 -0.4192 0.0043
19 0.02728 -0.5029 0.0035 0.03402 -0.0577 0.0000
20 0.02974 -0.7987 0.0098 0.04689 -0.0413 0.0000
21 0.02632 -0.2081 0.0006 0.02735 -0.0740 0.0000
22 0.06466 0.3883 0.0052 0.02735 1.2352 0.0214
23 0.02632 -0.2081 0.0006 0.02735 -0.0740 0.0000
24 0.03759 1.7375 0.0590 0.11722 0.2104 0.0029
25 0.02728 -0.1241 0.0002 0.02735 0.1129 0.0001
26 0.02728 -0.1241 0.0002 0.02735 0.1129 0.0001
27 0.05466 -0.4677 0.0063 0.04689 0.7145 0.0125
28 0.07616 -1.0779 0.0479 0.09117 0.7660 0.0294
29 0.03759 1.7375 0.0590 0.11722 0.2104 0.0029
30 0.03759 1.7375 0.0590 0.11722 0.2104 0.0029
31 0.03759 1.7375 0.0590 0.11722 0.2104 0.0029
32 0.03918 0.1291 0.0003 0.02735 0.6741 0.0063
33 0.02974 -0.0400 0.0000 0.02735 0.3000 0.0012
34 0.04617 -0.5506 0.0073 0.04689 0.5255 0.0067
35 0.03251 -0.4619 0.0036 0.02735 -0.6352 0.0056
36 0.03918 0.1291 0.0003 0.02735 0.6741 0.0063
37 0.02728 -0.8818 0.0109 0.04689 -0.2302 0.0013
38 0.02632 -0.2081 0.0006 0.02735 -0.0740 0.0000

Notes: *h; = h,_, S Resid = standardized residual.

analysis. Accordingly, for the remainder of the paper observation 6 will be
deleted from the sample. The X-Y plot and the stem-and-leaf diagram of the
revised data set are included as Figures 5 and 6.




266

Daniel E. O’Leary and Nils A, Kandelin

Figure 5: X-Y Plot with Observation 6 Deleted
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There is conflicting evidence on obser-
vation 7. Univariate tests indicate that it is
a far outlier. However, this is not con-
firmed in bivariate analysis. Accordingly,
observation 7 is not deleted, particularly
because this analysis is done for illustra-
tive purposes.

This section has presented some ways
of determining those weights that appear
to be outliers. It also presented ways of
choosing weights for investigation that
may deserve further consideration, rather
than arbitrarily choosing the weights (e.g.,
choose those weights in the whiskers of
the boxplots). Tests of this type likely are
useful in ascertaining those weights in

Figure 6: Stem-and-Leaf of PWs
with Observation 6 Deleted
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error, for example, rather than a “2” being used, a “20” is entered in the system.

Chebyschev’s Inequality

Unfortunately, the analysis of outliers, discussed above, does not provide a
quantitative estimate of the probability that a particular weight is not part of the
same distribution as the rest of the weights. A bound on an estimate of this
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probability can be obtained from Chebyschev’s inequality. That bound can then
be used to choose for examination the set of observations that meet certain
requirements.

Chebyschev’s inequality has been used in a number of applications"” to
isolate those members of a data set that may not be from the same distribution,
without making a distribution assumption. The inequality can be used to com-
pute an upper bound on the probability of a weight coming from the same
distribution as the rest of the weights.

However, the cost of getting an estimate of a probability is that other infor-
mation about the set of weights must be used. In particular, for Chebyschev’s
inequality we assume that the mean, u, and standard deviation, s, are known.
Still, there is no distribution assumption. The inequality gives an upper bound
on the probability of the variable being greater than a specified distance from
the mean of the distribution. The limitation of Chebyschev’s inequality is that it
is very conservative, reducing the power of the estimate.

Formally,"'® if d is the distance of the random variable from the mean of the
distribution, Chebyschev’s inequality states that

Pri|x—u|>=d)=<s"/d*

It is difficult to compare outlier analysis and Chebyschev’s inequality, in
general, because both have different information requirements. However, the
case study can provide a specific example that allows some comparison.

Case Study—Chebyschev’s Inequality

In our example, for the NWs, u = .289 and s = 1.478. Consider observation 7
with a value of 4. Using Chebyschev’s inequality (Alternatively, the mean and
standard estimates could be made while withholding the weight to be tested),

Pr(|x—.289|>=3.711) =< 2.184/13.772 = .158

This indicates that the probability is less than 0.158 that the weight has a value
of 4. As in the boxplot, this small probability is suggestive that the observation
stands apart.

DISTRIBUTION ESTIMATES OF THE WEIGHTS

The mathematical theory on which the weights are based may indicate that the
weights are drawn from a particular distribution (e.g., a normal distribution).
For example, the weights generated for AL/X are logarithms of likelihood
ratios. Under certain conditions the log of a likelihood ratio tends toward being
a chi-square distribution.”'” Under the assumption that the conditional proba-
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bilities are normally distributed, the likelihood ratios are chi-square distributions,
with one degree of freedom."?

Alternatively, the behavior of experts in developing weights may suggest that
weights are drawn from a particular distribution (e.g., normal) or that the
underlying decision process draws from a particular distribution. For example,
statisticians have found that the normal distribution is very robust for represent-
ing many underlying decision processes.

In addition, if a process is roughly normal, researchers have noted® that the
logarithm transformation often reduces the violations from normality. Accord-
ingly, for example, if the ratios of the probabilities used in calculating the PWs
and NWs are roughly normal, then we could expect that the logarithm trans-
form would reduce violations from normality.

Determining the type of distribution can aid the analysis in at least two ways.
First, it allows us to use distribution information to determine the likelihood
that particular observations are from the same distribution. This permits detail
outlier determination and analysis. Second, it allows us to determine of the
overall set of weights is behaving as we would anticipate—e.g., as a normal
distribution. This permits us to determine if the weights have been generated
appropriately.

Testing for a Normal Distribution

There are several methods to test the normality of the data. This article used
two different tests: normal probability plots and Kolmogorov-Smirnov (K-S)
tests.

Roughly speaking, the normal probability plots reflect the correlation
between the sample z scores and the theoretical z scores that would come from
a standard normal distribution of the same size as the sample. The z scores for
the values are computed as the difference between the sample observation and
the sample mean, divided by the sample standard deviation. The linearity of the
normal probability plots and the correlation of the sample data with the normal
scores measures the degree of normality. A table of critical values of the
correlations was generated in Filliben.”

The K-S test is a goodness-of-fit test based on the relationship of the sample
data to the theoretical distribution on a cumulative observation-by-observation
basis. The test compares the expected cumulative frequencies assuming the
normal distribution with the actual cumulative frequency from the data. If the
difference between the probability of the expected and the actual cumulative
frequencies exceeds a specified level, then the normality hypothesis is rejected.
The specified levels are summarized in specialized tables.” The K-S test
requires the standard deviation and mean of the distribution, either actual or
estimated. Specific procedures for calculating the K-S test statistic D and tables
of critical values are detailed in Ewart, Ford, and Lin.*®
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Testing for a Chi-Square Distribution

Unfortunately, there are not many tests that can be used to determine if a set
of data comes from a chi-square distribution. The same methods used in ex-
amining normality can be used to test for a chi-square; however, tables of
critical values are not readily available. Further research in this area might
include generation of critical value tables via simulation for testing for the
presence of a chi-square distribution in the same fashion as the normality plots
or the K-S test.

Case Study—Distribution Estimates of the Weights

The normal probability plots for the PWs and NWs (Figures 7 and 8, respec-
tively) suggest that the PWs are normal, with an observed correlation 0of 0.992
that is between the 75th percentile and 90th percentile of the null distribution.
This leads us to conclude that there is no evidence to reject the null hypothesis
of normality of the PWs.” However, the NWs are not normal. The correlation
for the NWs is 0.934, which falls between the Oth percentile and Sth percentile
of the null distribution. When the far outlier for the NWs (observation 7) is
removed, the correlation becomes .932. Thus, even when the far outlier is
removed, the test suggests that the NWs are not normal.

Estimates of the mean and standard deviation were computed from the data
for each set of weights and used to calculate D for the K-S test. The largest D
was 0.1207 for PWs and 0.2374 for NWs, which compares to a critical value

Figure 7: Normal Probability Plot of PWs with Observation 6 Deleted
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Figure 8:  Normal Probability Plot of NWs with Observation 6 Deleted
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(from the tables in ) of 0.1457. Therefore, the null hypothesis of normality is
not rejected for the PWs but is rejected for the NWi.

STATISTICAL SIGNIFICANCE

If the distribution is normal, then normality tests of significance can be used to
investigate the probability of a particular weight coming from the same distri-
bution as the other weights. If we assume a normal distribution, then the
deviation of a weight from the mean divided by the standard deviation provides
a measure of the distance, in the number of standard deviations, from the mean.

Case Study—Statistical Significance

In our example, the PWs (without observation 6) were approximately nor-
mal, with a mean of 1.703 and a standard deviation of 3. 108. Any observation
with an absolute value over 7.919 is more than two standard deviations from
the mean (X —1.703)/3.108=2=> X = 7.919). Thus, if the user decides to
examine all weights more than two standard deviations from the mean, then
observations 22 and 28 would be investigated.

In our example, the mean of the NWs is 0.289, and the standard deviation is
1.478. For observation number 7, the number of standard deviations is
(4.000—.289)/1.478 =2.511, which is at the .005 level, indicating that this
observation should be investigated.

These results are consistent with the findings where no distribution was
assumed. However, these tests are measurably more powerful than Cheby-
schev’s inequality (e.g., .005 as opposed to .158).
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DISTRIBUTION OF MEANS OF THE WEIGHTS

In some cases the weights of an expert system may have a mean that can be
derived from a theory, due to measurement scaling. For example, the weight
system may be constructed so that if the weights have been generated correctly,
then the mean is O (that is not the case with either EMYCIN or AL/ X). If that is
the case, then the mean of a particular data set can be tested to determine if it
meets those assumptions.

Bootstrap resampling!**' can be used to generate distributions of sample
means from the original data. These distributions can then be used to make
statements about the actual mean from the sample data.

Bootstrap resampling uses repetitive resampling from the original data to
generate a set of the same number of elements as the original data. Then the
mean of that sample is computed, and the mean is placed with the distribution
of the means. Then another sample of data is generated with resampling from
the original data, and the process is repeated. The process continues until an
appropriate number of means have been generated. The resulting set of means
provides a distribution of the means that can be used to develop confidence
intervals about the mean.

Case Study—Distribution of Means of the Weights

The weights in AL/X should not necessarily have a particular mean. How-
ever, in order to demonstrate bootstrap resampling a distribution of sample
means for both the PWs and NWs was generated. Two hundred samples were
taken from the data set of each weight, and for every sample the mean was
recorded.

The plot of the sample means from the bootstrap samples for the PWs
(Figure 9a) appears symmetric, with a mean of 1.6875 and a standard devia-
tion of 0.4861. The plot of the distribution of the sample means from the
bootstrap samples for the NWs (Figure 9b) displays a symmetric distribution,
with a mean of 0.3116 and a standard deviation of 0.2574. This bootstrap
sample distribution can provide interesting information when compared to the
actual sample means.

In general, we would expect that the bootstrap sample means would be
relatively close to the actual sample means because of the sampling approach.
For the NWs this appears true, as the actual sample means (0.289 including
and 0.270 excluding rule 6, respectively) are close to the bootstrap distributions
mean of 0.3116. Similarly, the actual sample mean of the PWs when rule 6 is
excluded of 1.703 is close to the distribution of bootstrap samples mean of
1.6875. However, when rule 6 is included the PWs sample mean becomes
0.868, which demonstrates that the influence of the —30 positive weight of rule
6. This provides further evidence that the —30 weight is from a different
distribution than the rest of the weights.
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Figure 9a: Distribution of Sample Means for PWs

* — Actual mean weight including rule 6
# - Actual mean weight excluding rule 6

N Mean Median Std Dev
mean 200 1.6872 1.6892 0.4861

Figure 9b: Distribution of Sample Means for NWs

* — Actual mean weight including rule 6
# - Actual mean weight excluding rule 6

N Mean Median Std Dev
mean 200 0.3116 0.3289 0.2574

CORRELATION BETWEEN THE TWO SETS OF WEIGHTS

The sets of weights in an RES may be mathematically or theoretically related.
If that is the case, then that relationship would manifest itself in the correlation
between the actual values implemented in a system; otherwise, it is likely that
the weights were not generated appropriately.

Simulation can be used to generate a distribution of correlations. That distri-
bution can then be used to check the likelihood of the correlation of the actual
data. If there is a small likelihood of the sample correlation, then the validator
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likely would devote more resources to the validation of the weights than if the
likelihood of the correlation was larger.

Distributions were developed for both AL/X weights and EMYCIN weights
to demonstrate the similar behavior of the two systems of weights. These distri-
butions illustrate the importance of accounting for the relationship between the
two sets of equations—i.e., PWs and NWs or the MBs and MDs, respectively.

Distributions of Correlations for PWs and NWs

The simulation was developed by randomly choosing probabilities, P, and Ps,
and using those probabilities to calculate PW and NW according to:

PW = Log {P./P,} )
NW'=Log {(I'—P) /(I —P,)} (6)

Probabilities were chosen in pairs of size 50 and 500 from the uniform distribu-
tion. In each of the two cases, 1001 pairs were generated. These probabilities
were then used to develop distributions of correlations of the PWs and NWs.
The findings of this simulation (see Figure 10) indicate that the correlation
between the PWs and the NWs are always negative and on the average large.

Figure 10: Simulations of Distribution of Correlations
for PWs and NWs with Varying Set Size

Each dot represents 3 points

—+-=—-Uniform/50
=-0.40

Each dot represents 9 points

-0.90 -0.80
Set Size N Mean Meidan Std Dev Min Max
Uniform/50 1001 -0.65803 -0.66264 0.07900 -0.83885 -0.38728

Uniform/500 1001 -0.64509 -0.64560 0.02600 -0.73567 -0.56683
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Accordingly, any set of weights generated for use by AL/X would be expected
to have a large negative correlation.

In addition, the distribution of correlations changes as the number of pairs of
weights per system (set) changes. In particular, the dispersion of the distribution
of correlations decreases as the number of pairs increases from 50 to 500
elements per system.

The simulated distribution can be used to develop an estimate of the proba-
bility of attaining a particular correlation from the system’s set of weights.
However, because the distribution changes as the number of elements in the set
increases, a different distribution of correlations must be used, depending on
the size of the system.

Distribution of Correlations for MBs and MDs

This same approach can be used to analyze other types of weights. In a
manner similar to the approach used for the PWs and NWs, a distribution of
correlations can be developed for the MBs and MDs. Because the approach is
similar to that of the PWs and NWs, only one distribution was developed, and a
slightly different approach was used for ease of computation. First, 1,000 pairs
of probabilities, Pr(H|E) and Pr(H), were randomly generated from a uniform
distribution. Second, 50 pairs of probabilities were randomly drawn from that
set of 1,000. Third, those values were placed in (1) and (2), and the correlation
between the MB and MD was computed. The second and third steps were done
1,001 times to develop the distribution in Figure 11.

For the case of a system size of 50 uniformly distributed probabilities, the
resulting distribution is similar to the distribution developed in Figure 10 for the
NWs and PWs.

Figure 11:  Simulation of Distribution of Correlations for MDs and MBs

Each dot represents 3 points

+-~ Correlations
=-0.42 (n = 50)

Mean Median Std Dev Mi Max

Correlations 1001 -0.59978 -0.60077 0.05158 -0.74776 -0.41674
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Case Study—Correlation Between the PWs and NWs

The results of the previous sections show that rule 6 is an outlier, and that
there is a negative relationship between positive and negative weight values.
The negative correlation of —0.450 is not readily apparent in the X-Y plot in
Figure 4 (where rule 6 is included). However, when rule 6 is omitted, the
correlation decreases to —0.747. The question is then whether or not this
correlation is unusual.

The correlation between the PWs and the NWs was simulated using sets of
37 pairs of uniform distribution-based weights. Assume that the simulated
correlations are arranged left to right, with increasing values (1,...,1,000). The
correlation of —0.747 lies between observations 199 and 200. The correlation
of —0.450, however, lies between observations 989 and 990. Thus the —0.747
does not appear to be an unusual correlation when compared to a distribution
of likely (or possible) correlations between PWs and NWs. The correlation of
—0.450 (resulting from the inclusion of rule 6) does appear to be highly
unusual.

RELATIONSHIP BETWEEN PRELIMINARY ESTIMATES OF WEIGHTS
AND FINAL VERSION OF THE WEIGHTS

The development of an expert system may require multiple revisions of the
weights. For example, in the development of AUDITOR," a major revision of
the first set of weights was done in order to get the final set of weights. The
relationship between the weights in different versions of the system can be
investigated statistically.

There are several reasons to expect that the weights in the original version
are or are not drawn from the same distribution as weights in the revised
version. If one version is substantially different from the other version (e.g., with
a number of rules or major changes in the understanding of the problem), then
it is likely that the weights in the original version are not drawn from the same
distribution as those in the revised version. However, if the versions of the
system are very similar, we might expect that the weights are drawn from the
same distribution.

In addition, if the expert sees that the initial prototype can perform certain
tasks in an appropriate manner, then the expert may not be as “cooperative” in
later versions of the process. This would likely yield a set of weights that comes
from a different distribution. Thus it is important to be able to monitor the
relationship between successive sets of weights.

Further, for systems with two sets of interlocking weights, such as AL/X and
EMYCIN, we most likely would expect that if one of the sets of weights (e.g.,
PWs) is drawn from the same (different) distribution in both versions of the
system, then the other sets of weights (e.g., NWs) are also drawn from the same
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(different) distribution in both versions. In either case, because of the interlock-
ing nature of equations (1) and (2) or (3) and (4), we would not expect to find
that one of the types of weights (e.g., PWs) would be drawn from the same
distribution for each version, while the other type of weights (e.g., NWs) was
not.

Ascertaining the relationship between the different versions of the system can
be accomplished by testing the difference in the means of the weights of the
different versions to see if the difference is significant. Randomization tests'* can
be used to test the null hypothesis that the weights are independent of the particu-
lar version of the system. The experiment would be designed so that the n;
weights of the first version and the n, weights of the second version were placed
in one list. The list would then be shuffled, and the mean of the n;, and the n;
weights would be computed. Then the absolute value of the difference between
those weights would be computed. This process would be performed a number of
times. Then the percentage of time that the original difference was exceeded could
be computed and would be used to estimate the probability of the hypothesis.

Case Study—Relationship Between Preliminary Estimates of Weights
and Final Version of the Weights

In the case study, the number of rules was increased from 13 to 38. In
addition, virtually all the weights for the original 13 rules were changed. As a
result, there is no reason to expect that the weights for the first version of the
system would come from the same distribution as the second version of the
system. In order to test this, we test the null hypothesis that the absolute value of
the difference in the means between the first and second version is not
significant.

The results of the randomization for absolute mean differences for the PWs,
based on 200 shuffles, are contained in Figure 12. The actual absolute value of

Figure 12: Absolute Differences Between Means—PWs
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Figure 13: Absolute Differences Between Means—NWs
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the difference in mean between versions was 2.395 for PWs. This was at the
2% level (between the ordered observations 196 and 197) and the generated
distribution. This is highly unlikely; thus we conclude that the PWs are from
different distributions.

The results of the randomization for absolute mean differences for the NWs,
based on 200 shuffles, are contained in Figure 13. The actual absolute value of
the difference in mean between versions was 0.2297 for NWs. This was at the
70% level (between the ordered observations 59 and 60) in the generated
distribution. This test indicates that there is no reason to reject the null hypothe-
sis that the two sets of NWs are not from different distributions.

These findings could result from the process by which the weights were
assigned. The PWs were assigned a composite average of judgments of various
experts (other than the developer), whereas the NW's were assigned exclusively
by the developer.

EXTENSION TO EMYCIN AND OTHER SYSTEMS

The procedures developed in this article are not limited to the approach used in
AL/X. The same outlier and distribution identification methods can be used in
EMYCIN weights (either CFs or the nonzero MBs or MDs). The existence of a
single expert or single process for the development of the weights could lead to
the assumption of a single distribution. However, the mathematical structure
does not provide a distribution of the MBs and MDs. The analysis of the
distribution of the means is not likely to find use in analysis of EMYCIN,
because there is no a priori basis to determine the expected mean. The correla-
tion analysis of the MBs and MDs is exactly the same as that one with AL/X, as
illustrated above. A simulated distribution can be used to provide estimates of



278 Daniel E. O’Leary and Nils A. Kandelin

the likelihood of the correlation of a particular set of weights. The analysis of
the revision of the weights of an EMYCIN system also would be similar to the
approach used in the AL/X example. The usefulness of the distribution of
correlations and the behavior of the revisions derives from the relationship
between the MBs and MDs.

The procedures in this article can also be used to validate other “numbers”
where distributional and correlational theory can be specified. For example,
accounting numbers, spreadsheet numbers, utility numbers, or other numbers in
an information system could benefit from a similar validation approach.

SUMMARY

The focus of this article has been on invoking probability and statistical theory
on which the weights of the rules in a RES are based. Then statistical tech-
niques are used to substantiate the theory-based assertions that could be made.

This article used some of the newer exploratory data techniques and
computer-intensive techniques, in conjunction with more traditional statistical
tools, such as Chebyschev’s inequality and normal distribution confidence
intervals, to analyze the assertions about membership in a distribution. In addi-
tion, the analysis took advantage of the distributional theory supporting the
PWs and NWs.

The analysis in this article also took advantage of the relationship between
the sets of weights in assessing the correlation. The analysis indicated that the
impact of the process of revising the weights could be analyzed by determining
if the weights are from the same distribution in successive revisions of the
weights.

Techniques as developed here can provide relatively low-cost validation
methods that could supplement or possibly replace some of the other, more
costly tests for expert system validation that require the expert’s involvement
throughout.

The techniques in this article can be used to aid in accomplishing a number
of validation goals for the weights. Outlier analysis and statistical significance
can be used to assess if particular values are part of the same distribution as the
other weights (e.g., all far outliers). Boxplots and statistical significance can
also be useful in determining an objective measure of choosing other weights
that should be examined (e.g., all those observations outside two standard
deviations or two H-spreads). Determining the correlation and the position of
the sample correlation in a simulated distribution of correlations can help
evaluate the quality of the weight-generation process. Sets of weights with
correlations in the fringes of the correlations distribution are likely to indicate
either outliers or an inappropriate development of the weights. Finally, analyz-
ing the relationship between successive sets of weights can help the validator
determine if there has been a change in the process of weight generation. This
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may prove particularly useful in identifying those cases where the expert pro-
vides incorrect estimates of the weights because of concern that a machine will
take over the expert’s job.
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