
Schema Evolution for

Object-Based Accounting Database Systems

Jia-Lin Chen and Dennis McLeod

Department of Computer Science

and
Daniel O'leary

School of Business

University of Southern California

Los Angeles, CA 90089, USA

Abstract When an (accounting) database schema does not meet the
requirements of a fmn, the schema must be changed. Such schema evolution
can be considered as realizable via a sequence of operators. This research
proceeds in the following three steps. First, we define a set of basic
evolution schema operators and employ the evolution heuristics to guide
the evolution process. Second, we explore how domain-specific knowledge
can be used to guide the use of evolution operators to complete the
evolution task. A well-known accounting data model is used here to guide
the schema evolution process. Third, we discuss a tool built to implement
the evolution operators, using the evolution heuristics and domain-specific
knowledge.

1. Introduction

1.1 Motivation

The static meta-data view of database management is that the schema of a database is
designed before the database is populated and remains relatively fixed over the life
cycle of the system. However, the need to support database evolution is clear: a static
meta-data view of a database can support neither next generation dynamic database
applications such as interactive multi-media information systems [5] nor traditional
database applications such as accounting information systems.

There are at least two reasons that a database schema would need to change. First, the
current schema may not meet the original requirements. Such a schema may be called
a "premature schema.," resulting from erroneous schema design or incomplete
requirement analysis. Second, the current schema may not meet new requirements.
This type of database schema may be tenned an "obsolete schema"; such obsolete
schema may be caused by changes in the real world and/or changes of users' views or
perceptions thereof.

In a traditional setting, a database administrator (DBA) and progrannners would spend
substantial time to correct a premature schema and update an obsolete schema even
after the database has been populated. However, with the proliferation of databases
within organizations, end-users today often act as DBAs. For example, often an
accounting database may be directly maintained by its users (accounting specialists or
clerks). Unfortunately, these users may lack the database knowledge and programming
skills required to change the database schema.

1.2 Research Approach

When an accounting database schema does not meet the requirements of a flfDl, the
schema must be changed. One important issue is how the data can be adapted to a new
schema. A classical way to deal with this is to write a conversion program to
manipulate the data to fit the new schema. An alternative approach is to develop a set
of evolution operators to handle the data adaptation. Database schema evolution can be
considered as realizable via a sequence ofoperators. These schema evolution operators
manipulate the original schema into a new schema, and the populated database is
modified accocdingly. We can consider two key questions here:

• Can we find a set of schema evolution operators that can be effectively used by
an eod user?

• What heuristics are necessary to guide a user in the choice of a sequence of
operators to complete a given evolution task?

This research addresses the above two questions in the following three steps. First, we
defme a set of basic schema evolution operators and employee evolution heuristics to
guide evolutioo process. Second, we explore how domain-specific knowledge can be
used to guide the evolution operators to complete tasks. The REA accounting data
model [9] is used here to guide the schema evolution process of an object-based
accounting database system. Third, we discuss a tool built to implement the evolution
operators, using the evolution heuristics and domain-specific knowledge. The tool
provides a user-friendly interface to guide a non-expert user to complete evolution
tasks.

This paper is organized as follows. Sectioo 2 provides background 00 related research
and introduces an object-based data model and its schema evolution operators. Section
3 introduces an object-based REA accounting model and discusses how the REA
model is used to guide schema evolutioo. Section 4 describes the architecture and
implementation of a schema evolution administration tool, REAtool, and shows the
look and feel of its prototype. The last section, Section 5, summaries this research,
and discusses some future research directions.

2. Background

2.1 Related Research

ORION [2], ENCORE [13], and GemStone [12] use object-orieoted data models and
support evolution mechanisms; ORION and ENCORE employ a screening approach
and Gemstone uses a conversioo approach. They define modeling invariants and rules
as schema evolution constraints. The semantics of schema evolution operators is used

-'-""--

to maintain the evolution constraints. PKM [8] identifies a rich set of evolution
patterns that can be used in a conceptual evolution process. OSAM* Schema
Tailoring Tool [11] is based on OSAM* data model [14] and allows a non-expert user
to redesign an OSAM* schema by tailoring its old schema. The tailoring process is
accomplished through evolution operations. These operations maintain the schema
constraints. If the modeling constraints are violated, the operations will be aborted.

Thus, several researchers have formulated schema evolution constraints as invariants
and rules of object-oriented data models. The semantics of a set of evolution operators
are then defined, based on the evolution constraints they proposed. However, their
research did not employ heuristics or domain knowledge to guide an end-user in
completing evolution tasks. In the research described in this paper, we indeed employ
heuristics and domain knowledge to structure the evolution process.

2.2. Object-Based Data Model and Schema Evolution Operators

A basic Object-Based Data Model (OBDM) is used here. Modeling constructs of
OBDM such as class, class hierarchy, attribute, inheritance, and their associated
constraints can be found in the literature of object-based data models [1,4, 7].

VALUE
CLASS

move

Figure 2.1 Schema Evolution Operators

Based on OBDM, we define four groups of schema evolution operators: 1) Schema
Enhancement Operators create and sprout; 2) Schema Reduction Operators merge
and delete; 3) Schema Restructure Operator move; and 4) Schema Conversion
Operator convert. (See Figure 2.1) The operator create creates a new class or
attribute. The new class can be a generalized class of several classes or a specialization
of some class. The operator sprout generates a new class with its instances having a
one-to-one mapping to its source class. The operator merge merges a class into

another class or an attribute into another attribute. The operator merge deletes the
meta-data such as classes or attributes, but keeps the data unchanged. The operator
delete will delete data as well as meta-data. The operator move changes the structure
of class hierarchy by moving classes or by moving attributes. The operator convert
converts a modeling construct among a value class, an entity class, and an attribute.

These schema evolution operators should obey modeling constraints to keep a schema
consistent after they have been applied. This is the consistency principle of schema
evolution. For example, the instances of a subclass should be the instances of its
superclass. To keep database consistent in schema evolution, evolution operators will
be ruled by modeling constraints to propagate the changes to related parts of a schema.
This is called a propagation effect. Since a propagation effect could change the data
and meta-data ofa schema that a user does not intend to change, a propagation effect
must be controlled to maintain the losslessness of the data and meta-data. This is
called the preservation principle of schema evolution. For example, when a subclass
is merged into its superclass, its attributes and the values defmed by these attributes
could be lost. One way to avoid this kind of loss of meta-data and data is to move
these attributes of the subclass to a superclass. The preservation principle is realized
by using a set of evolution heuristics to guide an evolution process. The details of
these evolution heuristics are described in [3].

3. Schema Evolution Guided by Domain Knowledge

3.1 Object-Based REA Accounting Model

Domain-specific knowledge can be used to guide a non-expert user to conduct schema
evolution tasks. In particular, this research explores an well-known accounting model
to guide the schema evolution in the context of accounting information systems.

stock

flow
stock-flow

inside
party

outside
party

contro

Figure 3.1 The Object-Based REA Accounting Model

The REA accounting model is a generalized accounting framework to capture the
interaction of economic resoW"ces, economic events and economic agents for

accounting systems [9]. Economic resources are scarce assets such as inventory or
cash under the control of an enterprise. Economic events are phenomena that reflect
changes in economic resources resulting from production, exchange, consumption,
and distribution. Purchase and cash disbursement are the examples of economic
events. Economic agents are persons and parties who participate in the economic
events, e.g. vendor. Economic units are a subset of economic agents and are inside
participants, e.g. cashier and buyer. (See Figure 3.1)

Their are four types of relationships between these REA entities:
1) Stock-flow relationship: This relationship is used to connect an economic

resource and an economic event. The stock part of the relationship is an
economic resource; and the flow part of the relationship is an economic event.
For example, the stock-flow relationship between Inventory and Purchase has
Inventory as its stock part and Purchase as its flow part.

2) Duality relationship: A duality relationship links two events. One event is an
increment part of the relationship and the other corresponding event would be a
decrement part of the relationship. For example, Purchase Payment is a duality
that links the event, Purchase, as its increment part and the event, Cash
Disbursement, as its decrement part.

3) Control relationship: A control relationship is a three-way association among
an economic event (as exchange transaction part), an economic agent (as
outside party), and an economic unit (as inside party). For example, Purchase
Supply is a control relationship that associates Purchase (an event with a role
as its exchange transaction part), Vendor (an agent with a role as its outside
party), and Buyer (a unit with a role as its inside party).

4) Responsibility relationship: This relationship indicates one economic unit as
its superior part and the other economic unit as its subordinate part. For
example, the relationship ·works for" is a responsibility that has Cashier as its
subordinate part and Treasurer Department as its superior part.

REA model was originally described in an entity-relationship representation. Since
this paper employs an object-based approach, the REA entities are modeled as classes
and their relationships are modeled as associative classes in an object-based model.
Since the evolution operators discussed here are based on the object-based data model,
the object-based REA model will be used directly to guide the use of these evolution
operators.

3.2 REA Guidance and Schema Evolution

The REA accounting model is used to guide schema evolution of an object-based
accounting database. From the viewpoint of an accounting database schema, REA
classes are meta-classes. A class of an accounting database are an instance of one of
classes of the REA model. For example, the class Purchase Payment is an instance
of the meta-class Duality. A class in an accounting database is said to be REA
compliant if and only if:

• The class is an instance of one of REA meta-classes;
• It inherits all the attributes from this REA meta-class; and
• The values of these attributes of the class are defined.

For example, Class Purchase Payment is defmed as an instance of REA meta
class Duality. The class inherits the attributes, increment and decrement, from
the meta-class Duality. Furthermore, its increment part is defmed as Purchase and
its decrement part is defmed as Cash Disbursement. Both of them are events.
Hence, Class Purchase Payment is REA-compliant. While all classes of an
accounting database are REA-compliant, the schema of this accounting database is
REA-compliant.

There are two contexts where the REA model is used to guide schema evolution: 1) A
schema is not REA-compliant. The schema is required to evolve to be REA
compliant. This case is called non-REA-to-REA evolution. 2) A schema is already
REA-compliant. The schema must be maintained to be REA-compliant while schema
evolution is required. This case is called REA-to-REA evolution.

Both cases of REA-to-REA and non-REA-to-REA evolution involve the following
three tasks:

• REA Description Tasks - Specify an accounting database class as an instance of
an REA meta-class. For example. Purchase is described as an economic event or
Purchase Payment as a duality relationship.

• Evolution Operation Tasks 	- Apply evolution operators to manipulate an
accounting database schema.

• REA Verification Tasks 	- Verify if an accounting database schema is REA
compliant.

The following three different methods will use the above tasks to guide evolution
process: (The next section, Schema Evolution Scenario, will give an example for each
method introduced here.)

1) REA RelationshiJrDriven Schema Evolution Method: This evolution method
starts with an REA relationship description task. While an REA relationship is
specified for an accounting database class, the system will evoke the related
operators (i.e. an evolution operation task) to complete the schema evolution
required by the specification and then evoke the REA verification task to
examine if the current schema is REA-compliant.

2) REA Entity-Driven Schema Evolution Method: This evolution method starts
with an REA entity description task. While an REA entity is specified for an
accounting database class, the system will evoke the related operators (i.e. an
evolution operation task) to complete the schema evolution required by the
specification and then evoke the REA verification task to examine if the
current scheme is REA-compliant.

3) Operation-Driven Schema Evolution Method: This evolution method starts
with applying an schema evolution operator. While the accounting database
schema is manipulated by evolution operators, the REA verification task is
evoked to examine if this evolution operation meet the requirements of REA
compliantness.

3.3 Schema Evolution Scenario

This section describes a schema evolution scenario and demonstrates how three
evolution methods can be used in the case of non-REA-to-REA evolution. The

example used here is a primitive accounting database for inventory purchases and it is
not compliant to the REA model. Its schema is shown in Figure 3.2. The task is to
evolve this non-REA-compliant schema into an REA-compliant schema. The scenario
of this non-REA-to-REA evolution contains several sessions where each session
corresponds to a major schema evolution task. After five sessions, this evolution
process reaches its target schema, an REA-compliant schema. The target schema is
shown in Figure 3.3.

Each session contains several steps, where each step corresponds to an REA
specification task or an evolution operation task. An REA verification task is the
final step of each session and will not be shown in the following discussion. To
illustrate this evolution process, we rename the classes of the starting schema to meet
the class names of its target schema, i.e. "Purchase Record" becomes "Purchase" and
"Payment Record" becomes "Cash Disbursement." (See Figure 3.2)

(Purchase) (Cash Disbursement)

lPurchase J lPayment J
Record Record

....

check_no ..

date
amount ..
chashier
..
InVOice- no

~ ..
Figure 3.2 Initial Schema of Inventory Purchase

Session I. Evolution Session for Purchase Payment In this session, an REA
relationship-driven schema evolution method is used.

Step 1 A user specifies a duality between Class Purchase and Class Cash
Disbursement.

[duality instantiate: "Purchase Payment"

increment: "Purchase"

decrement: "Cash Disbursement"]

~ The system specifies Class Purchase and Class Cash Disbursement
as events. Then. Classes Purchase and Cash Disbursement become the
instances of events.

[Event instantiate: "purchase"]

[Event instantiate: "Cash Disbursement"]

~ The domain of Attribute invoice_no of Class Cash Disbursement
will merge with Class Purchase. First, the domain of Attribute invoice_no
will evolve from a class which contains atomic data values (a "value class") to
one which contains abstract objects (an "entity class). Then, this entity class will
merge with Entity Class Purchase. Attribute Invoice Number will evolve to
Class Purchase Payment. Then, Class Purchase Payment becomes an
instance of Duality.

IInventory I (Buyer I
insidestOCK partyexchange

flow ~~_tr_a_n_sa_c_tI_'o_n~1 Pureh~
Supply

increment

Pureh~
Payment

decrement

exchange
flow , ,..tr_a_n_s_ac_t_io_n;, Payment

Supply

stock

Figure 3.3 Target Schema of Inventory Purehase

Session II. Evolution Session for Purchase SuW1y In this session, an REA entity
driven schema evolution method is used.

~ The user specifies Buyer as a unit and Vendor as an agent.

[Unit instantiate: "Buyer"]
[Agent instantiate: "Vendor"]

Step 2 Since the system already has Classes Purchase and Cash
Disbursement as events and REA control is a three-way relationship
connecting an event, a unit and an agent, the system creates a control
relationship. Since there are two events in the current schema, the user must
decide which one participates in this control relationship and also name the
control. Here, Class Purchase is chosen by the user.

[control instantiate: "Purchase Supply"

exchange_transaction: "Purchase"

inside_party: "Buyer"

outside_party: "vendor")

~According to the previous REA description, class Purchase will sprout
itself and generate a new class "Purchase Supply." Attributes vendor_no and
buyer_name of Class Purchase will be moved to Class Purchase Supply.
The domains of these attributes will be converted to Entity Classes Vendor and
Buyer, respectively.

Session III. Evolution Session for Payment Supply (This session uses the same
method as the Session II, and is omitted here.)

Session N. Evolution Session for Inflow Class In this session, an operation-driven
schema evolution method is used.

~ A user applies schema evolution operators to convert the domain of
Attribute parCno of Class Purchase into a class and merges this class with
Class Inventory. The user also renames Attribute parCno as "Inflow." Then,
the user converts Attribute Inflow to an associative class (viz., a class whose
instances model relationships). Class Inflow becomes a tW(rway relationship
connecting Class Purchase and Class Inventory.

~ The user describes Class Inventory as a resource and Class Inflow as
an REA relationship stock-flow. Since Class Purchase is an Event, Class
Inflow generated by schema operators should be an REA-compliant class.

Session V. Evolution Session for Outflow Class (This session uses the same method
as the Session IV, and is omitted here.)

4. REAtool: a Schema Evolution Guidance Tool

4.1 The Architecture or REAtool

A Schema Evolution and Administration Tool, SEAtool for short, is an experimental
prototype that implements the proposed schema evolution methodology and assists a
database user, designer, or administrator with the schema evolution. It also can
employ domain-specific knowledge, such as REA accounting model, to guide a user
to complete evolution tasks. The version of SEAtool that uses the REA accounting
model to guide schema evolution is called REAtool. The architecture of REAtool is
shown in Figure 4.1. Three main modules of REAtool are SEAshell, SEAengin and
SEAbase.

SEAshell provides necessary context information and guides a user through a dialog
to complete an evolution task. It also gives feedback to allow a user to validate
evolution operations. SEAshell supports the interaction required by evolution

---------------------_.................._.

operation tasks. SEAshell (REA Option) also supports the interaction required by
REA description tasks.

User

1I 06=5 1....+1....

SEAshell
(REA Option)

REAtool

~----------------------~
Figure 4.1 The Architecture of SEAtool

The SEAengine module accepts the requests issued by a user from SEAshell and uses
two kinds of generic knowledge to guide schema evolution:

• Model Constraints: The constraints required by Object-Based Data Model should
be maintained to keep database schema consistent.

• Evolution Heuristics: Schema evolution is guided by Preservation Principle to
minimize the loss of the data and meta-data.

The SEAengine module in REAtool uses two additional kinds of domain-specific
knowledge to guide schema evolution:

• Domain Knowledge: The REA accounting model is used as a generic model to
guide evolution process.

• Templates: Knowledge specific to a sub-domain can be used to guide schema
evolution, for example, industry-specific information about REA schema. 1he
current version of SEAtool does not include it.

The SEAbase module defmes the internal data structure to store the data and meta-data
ofa database. SEAbase is built on the top of Versant Object-Oriented DBMS and uses
function calls provided by Versant libraries [15]. SEAshell and SEAengine are
implemented in Objective-C and SEAbase is implemented in C++. SEAtool
prototype is developed under the NeXTSTEP programming environment [10].

4.2 REA Task Guidance

An evolution task is guided by the Task Ouidance Panel (TOP), portion of SEAshell.
TOP has four components:

I) 	Schema Browser. There are three kinds of browsers to be used. Network
Browser and Hierarchical Browser show the semantic relationship and
hierarchical structure of classes. REA Browser shows REA meta-classes and
their instances.

2) Context Display illustrates graphic objects involved in an evolution process.
Therefore, a user can get a comprehensive and coherent control of the evolution
process.

3) Task Catalog. A list of evolution tasks is listed in an organized way to allow a
user to choose. Three major kinds of tasks are: REA description, operation
specification and REA verification. For example, a user can choose to do the
task ofduality description.

4) Working Space. Evolution tasks are guided and completed here. Working Space
consists of a stack of Dialog Pages. A user is guided by the system to fill
Dialog Pages step by step to complete an evolution task.

SEA Task Guldln:e Panet (REA 0pU0n) ~

... , Context Display on , TasK Catalog.

RFA type duality

r------- New Duality Description -------r
Please insert the name ofthe duality and
specify its increment part and decrement part

dualitv

CANCEL I OK <-'"I

Figure 4.2 Snapshot of REAtool's Task Guidance Panel

A snapshot of Task Guidance Panel is shown in Figure 4.2 to demonstrate the look
and feel of SEAtool. Assume a user has chosen the task New Duality Description
from Task Catalog. A Dialog Page for describing a new duality is placed in Working
Space. The user is fIrSt asked to supply the name of the new duality. The user is also
asked to specify the Increment and Decrement parts of this duality. After the user

_....__._----

clicks the OK button to confum the REA description. evolution operators will be
evoked to complete the evolution task. After that. a newly created duality is shown in
the REA Browser.

5. Concluding Remarks

In this research, we have defined a set of basic evolution schema operators, and have
employed evolution heuristics to guide the evolution process. We have also explored
the use of domain·specific knowledge to guide the use of the evolution operators. The
REA accounting model has been used on our research as an example of such domam
specific knowledge. The SEAtool and REAtool experimental prototypes demonstrate
our reseults.

As a future research direction, we will explore more specific domain knowledge to
guide schema evolution. The REA accounting model has been successfully used to
guide an evolution process, but different types of fums may use different types of
accounting databases. For example, the accounting database of a manufacturing-type
firm may be quite different from that of a servi~type fum [6]. The REA model is a
general accounting model, which does not capture some specific sub--domain
knowledge. This specific knowledge for some type of fums can be used as a
"template" to guide an evolution process, In the architecture of REAtool, the su~
domain template is a source of knowledge that can further constrain and guide the
evolution process.

References

1. 	 Banerjee, J., Chou, H-T., Garza. J., Kim, W., Woelk, D., Ballou, N., and
Kim, H., "Data Model Issues for Object-Oriented Applications," ACM
TOOlS, 5: I, January, 1987.

2. 	 Banerjee, J., Kim, W., Kim, H., and Korth, H., Semantics and
Implementation of Schema Evolution in Object-Oriented Databases, Proc.
ACMlSIGMOD Annual Conference on Management of Data, San Francisco,
California, May 1987.

3. 	 Chen, J.-L. "Heuristic-Based Conceptual Database Schema Evolution,"
Technical Report, University of Southern California, September 1994.

4. 	 Chen, P. P., "The entity-relationship model: Toward a unified View of data.,"
ACM Transactions on Database Systems, 1:9-36, 1976.

5. 	Chiristodoulakis, S., Vanderbroek, J., Li, J., Wan. S., Wang, Y., Papa, M.,
and Bertino, E., "Development of a Multimedia Information System for an
Office Environment." In Proc. of the 10th Int'l Conf. on VLDB, 1984, pp.
261-271.

6. 	 Grabski, S. and Marsh, R., "Integrating AccOlmting and Advanced
Manufacturing Infonnation Systems: An ABC and REA-Based Approach,"
AIS Research Symposium, 1994, Phoenix, AZ.

7. 	 Hammer, M. and McLeod, D., "Database Description with SDM: A Semantic
Database Model", ACM TODS 6, 3, September 1981,351-387.

8. 	 Li, Q. and McLeod, D., Conceptual Database Evolution Through Learning,
Object-Oriented Databases and Applications, Gupta, R. and Horowitz, E.
(Editors), Prentice-Hall, 1989.

9. 	 McCarthy, W., "The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Environment," Accounting Review, July
1982, pp. 554-578.

10 	 NeXTSTEP Version 3, NeXT Computer, Inc., 1990. (note: NeXTstep is a
registed trademark of NeXT Computer, Inc.)

11. 	 Navathe, S. B., Geum, S., Desci, D. K., and Lam, H., "Conceptual Design
for Non-database Experts with an Interactive Schema Tailing Tool", Proc. of
the 9th Int1 Conf. on the Entity-Relationship approach, Lausanne,
Switzerland, Oct., 1990.

12. 	 Penney, D. J. and Stein, J., Class Modification in the GemStone Object
Oriented DBMS. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 111-117,1987.

13. 	 Skarra, A. H., and Zdonik, S. B., The Management of Changing Types in an
Object-Oriented Database, Proc. ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, Portland, Oregon,
September 1986. .

14. 	 So, S., Krishnamurthy, V. and Lam, H., "An Object-Oriented Semantic
Association Model (OSAM*)," AI in Industrial Engineering and
Manufacturing: Theoretical Issues and Applications, Komara, S., Kashyap, R.,
and Soyster, A. (Eds.). American Institue of Industrial Engineering, 1989.

15. 	 Versant ODBMS, "Versant System Manual," Versant Object technology,
1992, Menlo Park:, CA. (note: Versant is a trademark of Versant Object
Technology Co.)

