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ABSTRACT 

Assuring the quality ofan expert system 'is critical. A poor quality system 
may make costly errors resulting in considerable damage to the user or 
owner of the system, such as financial loss or human suffering. Hence 
validation is fundamentally important. This paper reviews the issues, 
methods, and teChniques for validating expert systems in presenting a 
survey and integration of the existing literature. Approaches to defining 
the quality of a system are discussed, drawing upon work in both 
computing and the model building disciplines, which leads to definitions 
of verification and validation and the associated concepts of credibility, 
assessment, and evaluation. Considerable attention is then given to the 
issues in structuring the vaJidation process, particularly the establishment 
ofcriteria by which the system is judged, the need to maintain objectivity, 
and the concept of reliability. This is followed by a review of methods 
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for validating both the components ofa system and the system as a whole, 
and includes examples of some useful statistical methods. The issue of 
managing the validation process is then discussed. 

I. INTRODUCTION 

Expert systems incorporate human expertise in computer programs to 
allow these programs to perform tasks normally requiring a human 
expert. More formally. an expert system has been defined as "a comput­
ing system capable of representing and reasoning about some knowl­
edge-rich domain with a view to solving problems and giving advice" 
(Jackson 1986) and "a computer model of expert human reasoning 
reaching the same conclusions the expert would reach if faced with a 
comparable problem" (Weiss and Kulikowski 1984). Examples ofdevel­
oped and implemented systems include R llXCON (Bachant and McDer­
mott 1983), which configures VAX computers for Digital; ExperTAX 
(Shpilberg and Graham 1989). developed by Coopers & Lybrand to give 
advice on corporate tax planning; ONCOCIN (Langlotz. and Shortliffe 
1983), which helps doctors determine appropriate treatments for chemo­
therapy patients; and CLASS (Duchessi. Shawky, and Seagle 1988), a 
system that supports commerCial loan decisions in a bank. Reviews of 
other systems can be found in Waterman (1986) and Ernst (1988). 

Showing that an expert system is in some sense correct is a critical 
task. An incorrect system may make costly errors or may not perform up 
to expectations. In either case the decisions generated by the system may 
be inappropriate or wrong, and if relied upon considerable damage such 
as financial loss or human suffering may result to the user or owner of 
the system. For example, expert medical diagnosis systems and income 
tax systems have encountered implementation difficulties due to con­
cerns over liability of the system's diagnosis. 

The purpose of this paper is to survey and integrate the literature on 
validating expert systems. Accordingly, this paper will discuss defini­
tions for verifying and validating expert systems, provide a basic struc­
ture to meet those concerns, and discuss some ofthe primary approaches. 
Throughout a fairly liberal interpretation is made of the term expert 
system. Often, expert systems generates notions of if . . . then . . . 
rule-based systems, but in this paper it will also be used to refer to a 
broader set of systems that employ other forms of knowledge repre­
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sentation and hybrid representation schemes or embed analytic tools in 
symbolic-based knowledge representations. 

II. VERIFICATION, VALIDATION, AND SYSTEM 

QUALITY 


A. A Hierarchic View of System Quality 

Verification is defmed by Adrion, Branstad, and Cherniavsky ( 1982) 
as "the demonstration of the consistency, completeness and correctness 
of the software." As noted by O'Keefe, Balci, and Smith (1987), "veri­
fication means building the system right." Verification is aimed at 
eliminating errors in the system and making sure that it corresponds to 
the specification. Adrion et al. (1982) indicate that "validation is the 
determination of the correctness of the final program or software pro­
duced from a development project with respect to the user needs and 
requirements," O'Keefe et al. (1987) note that "validation means build­
ing the right system." Validation is more concerned with the quality of 
the decisions made by the system. 

Computer professionals concerned with development rarely deal with 
more than verification and validation, so called V & V. However this is 
really just the first stage in ensuring the quality of the system. An issue 
that determines the use of the system is that of credibility: the extent to 
which a system is believable or the extent to which users can put credence 
in the system. That is, to what extent is the system credible to its users? 
(Balci 1987). Other issues concern the fit between the system and the 
user beyond the correctness of the decisions that the system makes. These 
issues (e.g., Buchanan and Shortliffe 1985) are summarized as assess­
ment (O'leary 1987) or evaluation (Liebowitz 1986) and include the 
nature of the discourse between the system and the user, the adequacy 
and efficiency of the hardware, the quality of the implementation, and 
the security and documentation of the system. In addition, development 
typically involves the analysis of questions such as What benefits does 
the system have? or Does the system do what is required of it? Since the 
validity of an expert system is often the key to its worth, evaluation is 
frequently mistaken for validation (e.g., Chandrasekaran 1983). 

The relationship among these five aspects of the quality of a system 
form a hierarchy, shown in Figure I. Essentially, each depends upon the 
level below it, and in many cases problems at a lower level will result in 
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Figure 1. A Hierarchical View of Aspects of Verification and Validation. 

problems at a higher level. For example, a system that cannot be shown 
to be valid may have little chance of being evaluated as worthwhile. 
Traditionally, different communities have concentrated on different parts 
of the hierarchy. Contrasted with V &V in computing, model-building 
professionals, such as operations research scientists, have concentrated 
on validation and credibility. Often managers, project sponsors, and end 
users, however, are concerned only with assessment and evaluation of 
the end product. 

B. Verification, Validation, and Credibility 

The types oferrors that can occur in software can be regarded, at least 
partially, as a function of the technology used to implement the system. 
For example, in a rule-based expert system it is possible to produce a 
knowledge base containing a reasoning cycle (where a chain of inference 
can lead back to the original premise), and these should normally be 
eliminated. The technology, in particular the knowledge representation 
scheme and method of handling uncertainty, establishes much of the 
basis for verification. 

Validation generally is regarded as a more complex task than verifi­
cation, which is not as dependent on the particular technology. Where a 
piece of software must perform in a predefined manner, such as a 
compiler developed for a programming language, measuring validity is 
relatively straightforward. A compiler that incorrectly compiles any legal 
code is invalid. A different view of validation stems from the process of 
model building, particularly the construction of statistical, econometric, 
and operations research models. A model is a representation of reality 
that will never be perfect. 
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Landry, Malouin, and Oral (1983) provide a conceptual framework 
for model validation. They define five types of validity: 

I. 	 Conceptual: "the degree of relevance of the assumptions and 
theories underlying the conceptual model . . . for the intended 
users and use of the model." 

2. 	 Logical: "the capacity of the formal model to describe correctly 
and accurately the problem situation." 

3. 	 Experimental: "the quality and efficiency of the solution mecha­
nism." 

4. 	 Operational: "the quality and applicability of the solutions and 
recommendations." 

5. 	 Data "the sufficiency, accuracy, a ppropriateness, and a vailabili ty 
of the data." 

Often model validation is an attempt to measure the generality of the 
model (for example, can it perform with different data sets or under 
differing assumptions?). Typically, model validation is often equated 
with operational validity-a model is judged by the quality of its solu­
tions--yet as Landry et al. point out, absolute validity based upon 
accuracy of solutions is a myth. The intended use of a model must be 
taken into account-a model may be valid for one application but not for 
another. Hence conceptual validation, and the criteria by which a model 
is judged, are both very important. 

Since a model is never absolutely valid (or for that matter, absolutely 
invalid), its acceptance is very dependent upon the intended use and user. 
Hence model builders have recently started to focus more on credibility 
(for instance, Balci 1987 and Gruhl 1982). It would be expected that the 
more valid a model the more credible it is, but there is no guarantee that 
a valid model will be perceived as credible. Although credibility is a 
useful concept, there is at present no way to measure it. It is known, 
however, that some of the techniques that can be used for validation have 
a positive impact on credibility, as discussed later. 

C. Assessment and Evaluation 

Although the focus of this paper is on validation it is important to 
understand the rest of the hierarchy. Verity, validity, and credibility do 
not guarantee a usable, let alone useful, system. A system may be 
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unusable, for example, because its response time is too slow or the 
interface is too complex. Such issues are certainly relevant when assess­
ing an expert system, but in general validation should be considered 
separately from assessment, not just as part of the assessment process 
(for instance, as done by Liebowitz 1986), since it is a prerequisite for 
adequate performance. A poorly validated system rapidly giving wrong 
advice through a beautifully designed interface may be dangerous: the 
superficial quality of the system may induce unwarranted credibility. 

Traditionally, it is promulgated that data-processing systems be evalu­
ated purely on a financial basis, such as return on investment. A feasibil­
ity study specifies the costs and benefits of a system, and development 
is initiated or otherwise based upon these projections. Increasingly for 
many information system, particularly decision support systems, the 
benefits are intangible. The value to an organization of improving the 
decision-making process is often very difficult to quantify (O'Keefe 
1989), and hence many systems are accepted for development, and 
subsequently evaluated, in an ad hoc manner (Hamilton and Chervany 
1981, Keen 1981). 

Similarly, the benefits of an expert system are often intangible and 
almost impossible to quantify. Hence formal evaluations that address the 
costs and worth of an expert system are rare, although this may happen 
implicitly. Further, to this poi.nt in time one of the benefits of many 
developed systems has been increased familiarity with the technology 
for both the user group and the developers. As expert systems become 
more pervasive it is likely that evaluation will become more stringent, 
and this in tum will create a need for more formal verification and 
validation. 

III. CHARACTERISTICS OF EXPERT SYSTEMS 

Different classes of software have particular characteristics that shape 
the way verification and validation are done. The dominant characteristic 
of expert systems that makes verification and validation difficult is that 
an expert system is simultaneously a piece ofsoftware and a model. Like 
any software, bugs can cause unwanted and unpredicted consequences, 
but an expert system is also a model of human knowledge and reasoning, 
and like all models, as mentioned above, will never be perfect. Even if 
the software is completely verified and reliable, the embodied model may 
be in error. Divorcing the software and the model is difficult, if not 
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impossible, although verification will normally concentrate on software 
aspects, whereas validation will concentrate on modeling aspects. 

Expert system validity will typically depend upon the extent that an 
expert's activity and knowledge have been captured in the expert system: 
the extent to which the system is a good model. Thus, as noted by O'Leary 
(1987), validation is normally concerned with "what the system knows, 
does not know, or knows incorrectly." A critical issue is the criteria by 
which the system is judged as valid, and this is discussed in detail later. 

Viewing an expert system as a model leads to a number of problems 
that affect verification and validation. First, one of the findings in the 
development of expert systems is that understanding the domain is 
critical, as with most model building activities (Waterman 1986). In 
many other types of software it is assumed that the program specifica­
tions need only be turned overto a programmer. who would then produce 
the code. However. generally, in order to produce the computer code that 
is used as an expert system the programmer must become a near-expert 
in the particular domain (Lethan and Jacobson 1987). Second. the domain 
defines what are the critical aspects of an expert system developed in that 
domain: reasoning and knowledge in one domain may not be the same 
as that in other domains. Third, the expertise that is modeled in an expert 
system is generally in short supply, is expensive, or is not readily 
available. This is in contrast to other types of software, where there is 
substantial expertise available, such as some accounting systems, but 
again is fairly common in model-building activities. 

In addition to the problems generated by the model characteristic of 
expert systems, three other characteristics pose problems for verification 
and validation. First, expert systems employ both numeric and symbolic 
information rather than just numeric information. Because symbolic 
information is used, techniques typically used for the validation of 
numeric information may be infeasible, and this leads to a need for new 
validation methods. A purely quantitative model may produce a number 
that can be compared against an actual observation-the difference 
between the two is thus an estimate of accuracy; contrast this with, for 
example, a page of textual advice representing a tax plan--comparison 
against an observed plan would require considerable expertise. and even 
then assessing the difference may be difficult. Kulikowski and Weiss 
(1982) discuss this problem in the context of the medical diagnosis 
system Casnet. 
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Second, expert systems generally are developed using a middle-out 
design rather than a traditional top-down or bottom-up approach. A 
middle-out approach starts with a prototype and gradually expands to 
meet the needs of the decision. Further, expert systems have a tendency 
to evolve over time as the decisions they model become better under­
stood. Hence, as discussed later, knowing when to actually validate an 
expert system can be difficult. 

Third, expert systems are often used to model tasks for which com­
puter programs have not been previously developed. Therefore, it is 
likely the task is not well understood prior to the development effort (at 
least not by the developers), and thus there is no preestablished under­
standing of the problem. 

IV. THE STRUCTURE OF VALIDATION 

Validation is thus a complex process dependent upon the criteria on 
which the system is to be judged and its intended use. Hence the 
validation process should be properly structured: the means whereby the 
system will be declared as valid or otherwise should be established at the 
outset of the process. This paper uses a framework, based on the theory 
of research methods, to investigate structuring validation efforts. That 
framework includes establishing criteria for validation, criterion vs. 
construct validity; maintaining objectivity,' and reliability. 

A. Establishing Criteria 

1. LevelofExpert~e 

The simplest approach to establishing a criterion for validating a 
system is to define the output level of expertise at which the system 
should perform. It may be required that a system performs at the level of 
an expert, better than an expert, or at the level of a good trainee. For 
example, the performance of both ONCOCIN and the infectious disease 
diagnosis and therapy selection system MYCIN were shown to be 
reasonably close to experts at the Stanford Medical Center, where the 
systems were developed (Hickam et at 1985, Yu et aL 1979a,b); it is 
sometimes stated that the mass spectrometer analysis program DEN­
ORAL, also developed at Stanford, performed at the level of an organic 
chemistry Ph.D. (Buchanan, Sutherland, and Feigenbaum 1969). 
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In some instances it will be required that the system perform better 
than an expert. This may be achievable, for example, by the system's 
being more consistent than an expert, not tiring, being able to deal with 
more data, and being able to sol ve problems more quickly. Hence, criteria 
concerning consistency, speed, and other factors may dominate criteria 
concerning, for instance, quality of solutions. A good example of this is 
the RIIXCON system (Bachant and McDermott 1983), where previous 
human performance was very mixed, and introduction of the system 
established some much needed consistency. 

Finally, in other situations, in order for the system to be usable it must 
function at least at some minimal level of performance. One view of that 
minimal level is that of a trainee or some other nonexpert level of 
performance. 

Two suggested methods for defining the level of expertise of a system 
require mention ifonly so that they can be subsequently disregarded. The 
first method is to get the expert on whose knowledge the system is based 
to sign-off on the system, stating that it performs at their level. Basden 
(1983) discusses some applications in an organization in which this has 
happened. This is obviously convenient from the viewpoint of legal 
liability: whether it validates a system is very debatable. The second is 
to get the system to sit an examination since many professions, such as 
accounting and medicine, have entrance exams that test basic compe­
tence. Such exams, however, generally test breadth, whereas most sys­
tems developed so far are narrow in their specialty domain. In addition, 
typically, such exams are minimal levels of performance rather than 
measure of expertise within those professions. 

2. Performance Range 

A convenient approach to measuring the level ofexpertise of a system 
is to judge its success in solving problems. The system will not neces­
sarily perform at the expert level, although it might, but will perform 
within some range. The level of performance acceptable to users and 
sponsors is called the acceptable performance range. 

Many developed expert systems have explicitly used performance 
range as an evaluation criterion. Typically, a number of case studies are 
presented to the system, and the number of correct answers, compared 
to those of an expert, are tallied. The system is then determined to be, for 
example, "90% correct," or "95% perfect." Such figures are meaningless: 

I 
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State ofthe expert system 

System is valjd System is invalid 

Accept as valid Correct decision User's risk (Type II error) 

Action 

Declare invalid Builder's risk (Type I error) Correct decision 

Figure 2. Type I and Type II Errors in Validation. 

they are simply a function of the cases presented to the system. What is 
more, in many instances a large number of cases dealt with by an expert 
are standard, and the leverage of the expert is determined by the difficult 
and obscure problems that are faced. 

As an example. consider the case of a system designed to evaluate 
firms for whether they will go bankrupt. Typically the success of such a 
system should be in its ability to find those relatively few firms that will 
go bankrupt. In any given year roughly 95-98% do not go bankrupt, and 
hence it is conceivable that a system may. correctly categorize 90-95% 
of the total without being able to determine more than 25-50% of the 
firms that actually went bankrupt. 

3. Builder's/User's Risk 

A more formal way to specify criteria for a performance range 
developed by Bald and Sargent (1981) is based upon the standard 
statistical concept of type I and type II errors, as shown in Figure 2. A 
type I error results if a system is rejected as valid when it is in fact valid; 
type II error results when an invalid system is accepted as valid. The 
probability of the first is builder's risk, since the effect is to prolong 
development of an acceptable system, and perhaps even abandon devel­
opment. The probability of the second is user's risk, since the effect may 
be dramatic for the user who accepts incorrect results, such as loss of life 
or large sums of money. 

For many expert systems it will be impossible to quantify either risk. 
However. for all systems it should be possible to consider the relative 
importance of each risk. For example, with RIIXCON a high user's risk 
was acceptable, due to the relatively poor performance of the human 
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predecessor, but with medical systems user's risk must be shown to be 
virtually zero. This is, of course, very difficult to do. 

For systems with a limited set of outcomes, such as many straightfor­
ward classification systems, relative risks can be expressed at the level 
of actual outcomes. Suppose that an expert system produces a classifi­
cation as A, B, or C. It may be that certain variations in performance are 
acceptable but others are not. For example, an incorrect classification of 
A as B may be acceptable, but A as C may not. Hence in validation it 
must be shown that prob(AIC) is zero, but prob(AIB) can be greater than 
zero. 

B. Criterion vs. Construct Validity 

All the various approaches to establishing criteria discussed above are 
in fact variations of what social science model builders call criterion 
validity. "Criterion validity is studied by comparing test or scale scores 
with one or more external variables or criteria, known or believed to 

measure the attribute under study" (KerIinger 1973). The attribute is 
expertise; the criteria are some variation of performance range. An 
alternative type of validity is construct validity: validation against the 
theory on which the system is based. As noted by Kerlinger (1973) "the 
significant point about construct validity that sets it apart from other types 
of validity is its preoccupation with theory and theoretical constructs." 

With the majority of expert systems the developer elicits the knowl­
edge base in a purely empirical manner, where knowledge is treated as 
something to be iteratively discovered without reference to any underly· 
ing theory to guide the investigation. There is no explicit theory against 
which the system can be validated, and hence criterion validity has 
dominated expert system validation and will likely continue to do so. 

Construct validity may have an increasing role to play, however. 
Recent developments in qualitative and causal reasoning have resulted 
in systems based upon first principles derived from an understanding of 
the causality in the domain being examined (for example, Davis 1984). 

There are at least three potential validation comparisons associated 
with construct validity: first, the comparison between the system and the 
first principles; second, the comparison ofthe first principles to a decision 
maker; third, the comparison of the system to the human expert. Thus, 
from one perspective, when validating such systems the developer is in 

-_........._------------------------------­
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actuality trying to validate the underlying theory, the decision maker, 
and/or the system. 

Construct validity can be investigated by either focusing on the 
subjective process of the existence of a theory (Did the development of 
the system include reference to theory?) or investigating the expertise on 
which the system is based (Does the expert reference theory?). In the 
case of a system that generates its knowledge from multiple experts, 
another issue needs to be examined: Are the experts using the same or 
different underlying principles? 

C. Objectivity 

Since verification investigates aspects that are not open to subjective 
appraisal (for instance, a cycle does or does not exist in the knowledge 
base) objectivity is generally not an issue. On the other hand, in valida­
tion, Objectivity is critical because the measurement of validity against 
established criteria may be open to interpretation. Objectivity is really a 
who issue: who will do the validation? In addition, it is an attitudinal 
issue. For example. what is the attitude of the validator if it is known that 
there is a computer giving expert advice. 

Ideally, validation tests are built into the software, similar to auto­
mated verification tests, and particular procedures are implemented 
without intervention. For all but the simplest of validation criteria, this 
is impossible to do. So it is necessary to check the objectivity of the 
human validator. 

1. Programmer Validation 

Typically the knowledge engineer is continually verifying and vali­
dating the system, based on skills that are brought to the system and 
gained during system development. However. those efforts may be less 
than objective due to a number of factors. First, if the developer is short 
on time or budget, the validation effort may be cut, since it may be seen 
as an overhead function. Second, if the developer has a vested interest in 
the system. then letting the programmer instigate the only verification 
and validation procedures is somewhat analogous to letting the fox guard 
the henhouse: there is a potential for substantial violations ofobjectivity. 
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In order to mitigate such violations, typically research methods em­
phasize the importance of the independence of the validator. If the model 
builder is the only validator, there can be conflicts of interest. 

2. Sponsor or End-User Validation 

With conventional software, software engineers often use an accep­
tance test by the sponsor or end user as the final step in the validation 
process. If validation criteria are well established, as discussed earlier, 
then a validation by the sponsor or end user provides evidence that at 
least the system meets those criteria. 

Unfortunately, if a system changes substantially, the notion of an 
acceptance test may be difficult to implement. Further, as noted in 
O'leary (1987), in some cases the end user or sponsor may have 
insufficient expertise to validate the system. Hence the developers have 
to establish validity and then build system credibility by professionally 
reporting the details of the validation process. 

3. Third-Party Experts 

An attractive approach to the establishment of objectivity is to get 
third-party experts, that is, experts not involved with the development effort, 
or not even part of the sponsoring organization, to validate the system. 

Some researchers, for example Buchanan and Shortliffe (1985), have 
reported that in some cases external validators may be biased in their 
validation of a system if they know that the problem solution was 
generated by a computer. They may expect less from the system or more 
likely have unreasonable expectations ofperformance (thi s is called "the 
super-human fallacy" by Chandrasekaran 1983). Other biases may also 
influence evaluators. If a human investigator finds that a problem solu­
tion is from a rival expert, or simply one from another school of thought, 
then that could impact the quality they attribute to the solution. Clearly, 
this means that blinding techniques must often be used to mitigate these 
types of violations of objectivity. 

D. Reliability 

In addition to performing within an acceptable range, a system must 
be a reliable representation of the expert's knowledge. The expert's 
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knowledge is captured by the knowledge engineer, who then casts his or 
her representation of that knowledge into a computer program. There are 
two possible interpretations of reliability here. In the first, total reliability 
occurs when the knowledge reported by the expert and the actual knowl­
edge of the expert are the same. In the second, total reliability occurs 
when the knowledge reported by the expert and the knowledge in the 
computer program are the same. One perspective on this notion of 
reliability is that the uncertainty of capturing knowledge cascades from 
one representation to another. 

1. An Analytic Model of Reliability in Weights 

Based on this, O'Leary (l988b) developed an analytic Bayesian model 
to investigate the impact ofcascaded reliability on expert system weights. 
In this case the concern is with the relationship between an actual event, 
a report of the event. and the corresponding weights in an expert system 
that relate to the evidence. For convenience and specificity the discussion 
employs the uncertainty representation used in Prospector and AUX 
(Duda. Gaschnig, and Hart 1979). 

Knowledge in AUX is represented as a set of rules and weights on the 
rules of the form: 

if E, then H (to degree S, N), 

where Sand N are numeric values that represent the strength of associa­
tion between E and H. S and N can be specified from the following 
likelihood ratios: 

S - S(E.H) =P(ElIf)IP(EIH') 

N - N(E',H) - P(EIH)IP(EIH'), 

where E' and S' are not E and not Sand P(.) is the probability measure. 
Sand N are used as logarithms. to the base 10. as, respectively, NW and 
PW. 

Let E# be the report of the evidence rather than the actual state of the 
evidence. Since we have E#, we are interested in S(E#JI) and N(E#'.H). 
Using the report of information and Bayes' theorem. we can determine 
that 

S(E#IH) - [P(E#IH and E)P(ElH) + P(E#IH and E)P(E'IH)V 
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[P(E#lH and E)P(ElH) + P(E#lH and E)P(EIH)] 

N(E#'IH) - [P(E#'IH and It)P(EIH) + P(E#'IH and E)P(EIH)V 

[P(E#'IH' and E')P(E'IH') + P(E#'IH' and E)P(E'IH')]. 

The factors P(E#I.) and P(E#,I,) characterize the uncertainty associated 
with the report of the evidence, that is, the reliability. Denote S(E#IH) as 
RS and N(E#'IH) as RN, where the R indicates the version that includes 
reliability. Denote PWand NW as RPW and NPW. O'Leary (1989b) 
provides a detailed analysis of RS and RN. A special case of that model 
that provides insight into the impact of reliability on the weights will be 
considered. 

Consider the case where P(E#I.) is not dependent on Hand P(E#IE) = 
P(E#'IE) ,.. r. In that case, 

RS - [r*P(EIH) + (I-r)*P(E'IH)]/[r*P(ElH') + (I-r)*P(E'IH')] 

RN - [r*P{E'IH) + (l-r)*P(EIH)]/[r*P(E'IH') + (I-r)*P{EIH')]. 

The factor r has a substantial impact on the weights that suggests that 
reliability be accounted for appropriately. The impact of the reliability 
factors on the RPW'sand RNW' s is illustrated in the following example: 

RPW's and RNW's for selected PW = -1.0 

P(ElH) 0.075 0.05 0.025 
P(ElIf) 0.75 0.50 0.25 

Reliability RPW RPW RPW 

1.0 -LO -1.0 -\.O PWValue 
0.9 -0.641 -0.553 -0.398 
0.8 -0.424 -0.337 -0.212 
0.7 -0.260 -0.193 -0.111 
0.6 -0.122 -0.086 -0.046 
0.5 0.0 0.0 0.0 
0.4 0.114 0.072 0.034 
0.3 0.224 0.134 0.061 
0.2 0.334 0.188 0.082 
0.1 0.447 0.235 0.099 
0.0 0.568 0.279 0.114 NWValue 

Owing to a duality theorem, RPW at reliability r yields an RPW at level 
1 - r. Other results include RPW = PWand RNW = NW when r::: 1. 

.' 
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V. VALIDATION METHODS 

Once criteria have been established, the goals of validation determined, 
and the various problems addressed. appropriate methods have to be 
chosen. The criteria, existence of a theory, and pragmatic issues such as 
the availability of experts and case studies will determine the appropriate 
methods. 

Expert systems can be validated by either examining the individual 
components, such as the weights or the knowledge base, or by examining 
the operation of the system as a whole. When testing the system as a 
whole the system can be treated as a black box simply to determine if it 
is making the right decisions, or it can be opened up to determine if the 
line of reasoning is correct, that is, it is making the right decisions for the 
right reasons (e.g., O'Leary 1988a). 

A. Component Validation 

1. Rule Validation 

A common method ofcomponent validation is to directly examine the 
knowledge base so as to assess the accuracy, representativeness, and 
validity of individual rules. The process of direct examination is facili­
tated by the manner in which some expert system shells allow the user " 

to access the knowledge. 
Where the knowledge base is too large to fully directly investigate, 

approaches can be used to choose which rules are more important to 
examine (O'Leary 1988a). For example, those rules that have the most 
costly consequences or largest profit generally should be investigated. 
When using an uncertainty measure, those rules with either the larger or 
smaller weights should be examined because they have the greatest 
impact on the solution generated by the system. Another approach is to 
determine which rules fife the most (or the least) in simulated paths 
through a rule base. Then those rules can be examined for their quality 
since they either are frequently or rarely in solutions generated. 

2. Weights 

O'Leary and Kandelin (1988) develop a number of approaches to 
validate the actual weights in an expert system. The basic assumption 
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underlying their investigation is that the behavior of the weights can be 
investigated using statistical approaches. One approach is designed to 
investigate for the presence ofoutliers. Finding weights that are substan­
tially different than the other weights is likely to indicate that those 
weights should be investigated further. 

Another issue concerns the existence of the relationship between 
different versions of the system. The relationship between the weights 
in, say, the first and second versions of the system can be used to measure 
that relationship. If there is some reason to suspect that there is a 
relationship. say. that there is no change in the way the weights were 
generated in subsequent versions of the system. then this can be tested 
statistically, for example, by examining the relationship between the 
means in the set of weights. Such a relationship might exist because the 
expert may change the approach to assigning the weights in order to 
change the behavior of the system. 

Still another issue relates to the relationship between multiple weights 
assigned to the same rule. For example, as discussed previously, in the 
system of weights developed for Prospector and AUX there are two 
interlinking weights associated with each rule, PW and NW. Since the 
weights are interconnected. a change in one weight typically should result 
in a corresponding change in the other weight. The relationships between 
these weights can also be tested statistically by doing a similar test of 
means of weights. If the means are different for one weight but not for 
the other in subsequent versions of the system, this may indicate that the 
development of the system was not appropriate. ' 

3. Heuristics 

An expert system, particularly a rule-based system, can be viewed as 
a collection of heuristics or a single large heuristic. A single rule may be 
a sensible heuristic in its own right, or, more likely, a combination of 
rules can be considered as a complete separate heuristic producing a 
solution given input. A modular system may be composed of a number 
of such heuristics. 

Previous work in validating mathematical heuristics, reviewed by 
Eglese (1986), provides a method for validating knowledge-based heu­
ristics. Many mathematical heuristics are used where existing optimiza­
tion methods are too inefficient for solving problems on a regular basis 
or in real time. In these cases the results from a heuristic can be compared 

" 
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against the optimum solution, and deviation from the optimum can 
provide a measure of the goodness of the heuristic. Similarly, where an 
expert systems works on a problem where complete enumeration of the 
state space or an optimization method can provide an optimum result, 
this comparison can be made. Some constraint reasoning systems, such 
as those developed to produce production plans and schedules (for 
example, the ISIS system developed at Carnegie-Mellon [Fox 1984]). 
fall into this category. 

Heuristic validation also uses a concept called worst case analysis. 
which is the maximum deviation from the optimum that can ever occur. 
For some mathematic heuristics the worst case can be proved; for 
knowledge-based heuristics this is unlikely to be possible, but experi­
mentation with numerous problems, or a detailed analysis of the search 
mechanisms, may supply an estimate of the worst case. 

A complicating factor in knowledge-based heuristics is uncertainty 
measures, where an uncertain estimate input by the user or produced by 
another heuristic affects the outcome. If the outcome itself is a measure 
of uncertainty, this will vary over some range depending upon the 
estimates input. For example, as the input varies from -1 to +1, the output 
itself will vary over all or some part of the range -1 to +1. Langlotz, 
Shortliffe, and Fagan (1986) show how this situation can be regarded as 
a distribution sampling simulation, where samples of the input produce 
a distribution for the output. This can then be used to aid assessment of 
the validity of the heuristic. 

4. Metamodels 

A metamodel expresses the relationships between the elements of a 
model: it is a model of a mode1. Where a knowledge base becomes large 
it can be useful to have a model of the constructs and concepts present: 
this can then be used to determine conceptual validity. 

Rushby (1988) concludes that any rule base should be accompanied 
by a causal model. Expressed in diagrammatic form, a causal model can 
be used by developers and experts to check for completeness of the 
knowledge base. Unlike the previously discussed contingency table, 
which relates rules to each other, a causal diagram relates the concepts 
that are expressed as rules. For example, Figure 3 shows two rules 
concerning automobile fault diagnosis and an associated causal link. 
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if car will not start battery dead or 
and run down 
lights are dim 

then check battery 

if car won't start car won't start 
and 
starter motor turns slowly 

then check battery 

Figure 3. Use of a Causal Diagram to Express Concepts in Rules. 

B. System Validation 

1. Test Cases 

Based on a survey ofexpert system developers (O'Leary and Watkins 
1989), using test cases seems to be the present dominant method for the 
systemic validation of expert systems. Cases previously solved by an 
expert are run through the system, or new cases are presented to both 
expert and system, and the solutions are compared. 

There are at least four guidelines that should be followed when 
selecting test cases. First, the problems to be encountered by the system 
should be reflected in the cases (Chandrasekaran 1983). If we use 
tenninology from software verification, this implies that there should be 
a prescribed input domain: the boundaries of the input that the system 
will receive should be specified. Second, a sufficient number of test cases 
is necessary to elicit the range of parameters necessary to test the system 
and to be able to establish some statistical measures of significance. 
However, as noted by 0'Keefe et al. ( 1987) "the issue is the coverage of 
the test data-that is, how well they reflect the input domain," not the 
number of cases that are used. A sufficient variation in the test problems 
is necessary to test the range of parameters in the system. 

Third, the nature of the problems investigated by the system should 
help establish the characteristics of the cases. As for the example of a 
system designed to investigate bankruptcy, in anyone year roughly 3-5% 
of United States firms go bankrupt. Thus, if a system was given test data 
in proportion to the occurrence of bankruptcy in the actual population 
(approx 96% not bankrupt and 4% bankrupt) the nonbankrupt firms 
would flood the system to result in a high success rate. 

-~-.... ---....---....---....--­
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Fourth, in some domains expert decisions may precipitate actual 
outcome. O'Keefe et al. (1987) give an example: "Suppose that a bank 
uses a performance prediction when deciding whether or not to support 
company X fmancially. If an expert had decided a year ago that the 
fmancial position of company X would be poor in a year's time and thus 
implemented withdrawal of financial support, the present poor financial 
position of company X might be due in part to that previous expert 
position." Choice of test cases is thus difficult, if not impossible, in such 
domains. 

In using test cases there is an assumption that the expert against whom 
the system is being compared is always correct, i.e. if the system differs 
from the expert then it is wro~g. This, quite obviously, is not always the 
case. One of the authors was involved in the development of a personnel 
selection system, which underwent extensive validation, where it was 
realized that in a number of the test cases the previous expert had missed 
or misinterpreted something, and hence had made an incorrect decision. 
When the system made a correct decision in these cases, the credibility 
of the system was greatly enhanced. 

In many instances test cases will not be available. Synthetic cases can 
be produced, but this is dangerous and demands considerable objectivity 
on behalfof the validators. There is a temptation to make the cases reflect 
the known strengths of the system. 

2. Turing Tests 

In the classic Turing test, a third-party has access to the output from 
both machine and human and has to determine which is which. As a 
validation tool, a Turing test refers to a third-party expert comparing the 
results from an expert system with those from a human expert. To 
overcome the objectivity problems discussed earlier, the process should 
be blinded so that it is not clear which is the computer's and which is the 
human's. 

Test cases are necessary for Turing 'tests, and the discussion above 
equally applies. Now, however, there is no assumption that the human 
expert is correct: the third-party expert can compare, rank, or criticize 
as deemed appropriate. For many expert systems, Turing tests are the 
most appropriate validation method. They are particularly useful when 
(a) it is difficult for the developer to assess output on a case study as 
correct, or otherwise, or make judgments about how it differs from a 
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human expert (this is often the case when output is holistic and difficult 
to quantify), or (b) the system must be validated against multiple experts 
and there is variation among the performance of the experts. 

MYCIN was validated using a Turing test methodology (Buchanan 
and Shortliffe 1985, Yu et aL 1979b). Ten cases were developed and 
analyzed by 10 experts, including the system. These 100 case results were 
then evaluated by 8 evaluators, using one of three alternatives on a rating 
system, to establish a level of performance for each expert. The rating 
system alternatives were "equivalent" (Le., the evaluator would have 
done the same thing), "acceptable alternative," or "not acceptable." 
Hickam et aL (1985) discuss a similar Turing test validation of the 
chemotherapy adviser ONCOCIN. 

Hansen and Messier (1986) discuss a test of the auditing expert system 
EDP-XPERT, and a second more extensive test is reported in Messier 
and Hansen (1992). EDP-XPERT provides a certainty measure for the 
electronic data processing controls in computerized accounting systems. 
It produces three measures representing confidence in the supervisory, 
data-base management, and application controls. In each test, expert 
auditors and the system produced a measure, and these were compared 
by the developers. Interestingly, the experts then had the opportunity to 
produce a second measure given the output from the system. In the first 
test, where the experts were low-level computer audit specialists (in the 
second test they were senior experienced specialists), a significant num­
ber changed their answer. This may be a useful approach to validating 
systems that will be used in a supporting role. 

Despite its power, the Turing test methodology may be difficult to 
implement in practice. First, it requires more expert time, and ideally 
these experts should not have been involved in the development of the 
original system. Second, comparison against multiple experts can be 
difficult to measure. Third, blinding the outputs from computer and 
human expert, which normally has to be done by putting them into a 
common form, can be very time consuming. 

3. Simulation 

In some instances, particularly real-time control expert systems, the 
analogy to test cases is connecting the system to a simulation model. Each 
simulation run is a test case, and different scenarios with various parame­
ter settings can produce a number of different runs. For simple determi­
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nistic simulation models, validation via simulation is very powerful. For 
complex domains, however, a major problem arises: the simulation itself 
is a model, not perfect, that performs within an acceptable range. Hence 
modeling problems, such as accuracy and reliability, cascade. An expert 
system that performs well with a simulation cannot be guaranteed to 
perform as well with the real system. 

4. Control Groups 

Many expert systems rely upon the combination of human user and 
system to solve problems, and so the system cannot be validated alone. 
Where this is the case, a Turing test can be combined with a control group 
methodology. Cases are presented to two separate groups: those with the 
system, and those without. The validation process then proceeds as 
before, although now it is hoped that the group with the system outper­
forms the control group. 

This approach, unfortunately, contains many pitfalls; The two groups 
may have performed differently irrespective of one group having access 
to the system, and a small number of case studies may not show up this 
inherent difference. Complexities in the system may mean that perform­
ance with it may only improve over time, or that its effect on performance 
is negligible until fully institutionalized. Hence a control group approach 
is normally seen as an evaluation tool used after implementation. For an 
example of using a control group as an evaluation tool see Hamilton and 
Chervany (1981). 

5. Sensitivity Analysis 

Where no case studies are available, the validation process is far more 
difficult. Often developers will verify the system and then simply use 
credibility as a complete surrogate measure: Is the system credible to the 
expert, the developers, and the potential users? Yet a few validation 
methods are applicable where no or few case studies exist, in particular 
sensitivity analysis. 

Assume there exists a single case C where intermediate results, the 
line of reasoning, and the final results are all known to be perfect (or, 
more likely, are judged by an expert to be reasonable), IfC uses inputs 
iI, i2 . .., in, then each can be systematically altered (either individually 
or in sensible combinations), and the change in output from the system 

" 
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assessed as reasonable or otherwise by an expert. In many instances, it 
is easy to generate tests where the output should not change given 
changes in input. For example, if in a financial analysis expert system it 
is known that a particular figure should have no effect on the results 
(perhaps since the situation is dominated by other concerns), then the 
system should be run with this figure set at its extreme values. 

6. Comparison against Other Models 

In some instances a different type of model, such as an optimization 
or statistical model, may already exist. Comparison of the system against 
this model can provide useful insights, for example, Moninger, Stewart, 
and McIntosh (1988) compare a weather forecasting expert system 
against a regression model to assess the comparative accuracy of the 
system. Typically it might be expected that a knowledge-based approach 
would be able to handle odd or different cases better due to use of specific 
knowledge. 

The availability of induction algorithms in many shells, such as 
Quinlan's ID3 (1979), means that induction of a rule set may be quite 
easy to do. Although the induced set may be very limited compared to 
the rule set crafted by hand following knowledge acquisition, due to lack 
of examples or limitations in the algodthm used, it does provide an 
alternative that can give insights into the validity of the acquired set. 

7. Line of Reasoning 

When validating many systems it is insufficient to validate just the 
results from the system: it is also necessary to show that the line of 
reasoning is correct. There are two reasons for this. First, if the user 
investigates the line of reasoning via facilities built into the shell, then it 
must be credible, otherwise the result will be disregarded. Second, if the 
system is to be developed further, the reasoning process must be capable 
of being scaled up to a larger domain (Chandrasekaran 1983). Line of 
reasoning can be used as evidence in a Turing test. However, this requires 
that human experts articulate their reasoning and that it can be presented 
to third-party experts in a form similar to the explanation facilities of the 
shell being used. 

A more complex approach is to compare aspects of the reasoning 
process, such as the relative time taken to reason, the amount of data 

.­
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used, or the number of hypotheses established and rejected. Meservy, 
Bailey, and Johnson (1986) derived knowledge from experts using 
protocol analysis, and then the expert's percentage oftime spent perform­
ing specific processes, such as cognitive processes (e.g., assuming, 
conjecturing, evaluating, and questioning) was compared to that of the 
system. 

C. Statistical Methods 

Although many validations will be entirely qualitative in nature, in 
other instances a quantitative approach using a statistical model is 
warranted. Such an approach will almost certainly be necessary when 
comparing the system to one or more human experts. 

Essentially, the validation process can be viewed as the following 
hypothesis test (O'Keefe et al. 1987): 

Ho: the expert system is valid for the acceptable performance range under the 
prescribed input domain, 

where the alternative hypothesis is that the system is invalid. Hence, until 
the acceptable performance range has been established and the type of 
problems the system will handle defined (and thus the future input 
domain prescribed), then statistical tests cannot be formally employed. 

This section gives something of the flavor of the use of statistics, 
covering confidence interval and consistency measure approaches. In 
any given situation, one particular approach from the vast array of 
statistical techniques may be better than others, and nonparametric 
approaches not discussed here, for example rank correlation, may be 
appropriate. Mosteller and Rourke (1973) cover many methods. If de­
tailed statistic analysis is used, the validation team should include a 
statistician: misuse of statistical measures can be worse than no analysis. 

1. Confidence Intervals 

Where a system produces a single result (for example, a certainty 
factor representing an estimate of the financial state of a company), 
comparison against an expert is quite straightforward. If the system's 
result is Xi, and that of the human expert is Yj, then the difference between 
them will be Di = Xi - Yi. For n case studies, there will be n observed 

" 



Performing and Managing Expert System Validation 165 

Table 1. Final Certainty Factors for 10 

Case Studies from a System and an Expert_ 

Case System Expert Diff 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

4.5 
3.2 

-1.4 
-3.0 

2.1 
3.5 
2.0 

-\.O 
3.5 

-4.5 

4.0 
4.5 

-2.0 
-1.5 

1.0 
3.0 
3.5 
1.5 
4.0 

-4.0 
mean 

sd 

0.5 
-1.3 

0.6 
-1.5 

1.1 
0.5 

-1.5 
-2,5 
-0.5 
-0.5 
-0.51 

1.114 

differences DJ to Dn. The confidence interval for the difference between 
system and expert is thus: 

d - In-J,a12 Sdln,d + tn-J,a12 Sdln, 

where d is the mean difference, Sd the standard deviation, and tn-I ,0/2 the 
value from the distribution with n degrees of freedom. If zero lies within 
the interval, there is no significant difference between the system and the 
expert. Note that the acceptable performance range will dictate the 
specification ofa. Table 1 shows an example where 10 case studies have 
been given to a system and an expert, and the result is a certainty factor 
ranging from -5 to +5. The mean difference d is -D.51, and so for a = 
0.1 and 10 degrees of freedom we have a confidence interval: 

-I. ] 557 < d < +0.] 357. 

Since zero lies in the range, the null hypothesis can be accepted. How­
ever, a small number of case studies will generally give rise to a large 
confidence interval half-width, due to the small number of degrees of 
freedom, so any conclusions have to be carefully interpreted. Certainly 
in this example d is only just in the range, and the system's results tend 
to be lower than those of the expert. 

Where a single result is not produced, this method can still be used if 
the output can be assessed as a whole. For example, in a Turing test, if 
the output of both system and expert are assessed by a third-part expert 
on a scale of 1 to 10, then Xi and Yi will be the absolute assessed 
performance measure. 

" 
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Where multiple results are produced, simultaneously applying a 
paired t-test to each result is inappropriate since the results may be 
correlated. O'Keefe et al. (1987) give an example of the correlated 
multiple-response problem: "In a medical diagnosis system prescribing 
drug treatment ... two types of drug can be validly prescribed if each is 
separately considered as independent-yet that combination of drugs 
may be unacceptable." Hence it is necessary to produce simultaneous 
confidence intervals. How this can be done is shown in Balci and Sargent 
(1984). 

2. Consistency Measures 

Originally developed to determine the consistency among raters, such 
as legal judges, consistency measures have a number of uses in expert 
system validation. First, they provide an alternative to confidence inter­
val approaches-an expert and the system can be viewed as two inde­
pendent raters. More important, they do not require the underlying 
distribution assumptions that confidence interval approaches do. Second, 
when comparing a system against mUltiple experts, the consistency 
between experts is of concern. Third. they have the advantage over other 
statistical techniques in that they can deal with categorical scales and are 
hence appropriate when dealing with classification systems or expert 
assessments of performance on a discrete scale. Consistency measures 
are covered in detail in Fleiss (1981) and the discussion here uses the 
same notation. 

The most useful consistency measure is the kappa statistic, originally 
developed by Cohen (1960), which measures agreement on a single 
category. The weighted kappa (Cohen 1968) measures overall agreement 
across all categories and was used by Hickham et al. (1985) in the 
ONCOCIN validation. To explain the use of the weighted kappa, Table 
2 shows the agreement between an expert and a system on 20 case studies 
with three result categories called A, B, and C. Each entry shows 
agreement as a proportion of the total cases; for example. both the expert 
and the system classified 50% of the cases as A. 

The weighted kappa k is defined as 

k =Po -p" 
1- PI!' 

" 



167 Performing and Managing Expert System Validation 

Table 2. Agreement between System and Expert on 20 

Cases with Three Categories 


Expert 

A B C TOlal 

A 0.5 0.1 0.05 0.65 

B 0.1 0.1 0.05 0.25 

C 0.05 0 0.05 0.1 

Total 0.65 0.2 0.15 1.0 


where po is the overall proportion of observed agreement, and pe is the 
overall proportion of chance expected agreement (the agreement that 
would be expected to occur at random). A value of +1 for k indicates 
perfect agreement, and a value of 0 indicates that agreement occurs no 
more than would be expected by chance; a value less than 0 obviously 
indicates disagreement. po is the sum of the agreement proportions, so 
here 

Po =0.5 + 0.1 +0.05 =0.65, 

and pe is the product of the total classifications by rater; thus 

pe =(0.65 x 0.65) + (0.2 x 0.25) + (0.15 x 0.1) =0.4875. 

Hence k =0.3171, which suggests that agreement does not vary much 
from what it would be by chance. 

This can be formally tested. Fleiss (1981) gives an expression for the 
standard error of the kappa,s.e.o(k). This example givess.e.o{k) =0.1962, 
and thus a z statistic can be calculated as 

k 0.3171 
z - --(== 01962 -1.6163s.e.O\k) . 

and compared against a standard normal distribution. This is not signifi­
cant, given that the z value for a =0.05 is 1.96. 

3. Multiple Experts 

A further variation of the kappa can give some insight into multiple 
experts where each rates the solution of a set of cases, by other experts 
and the system, in a Turing test. Suppose we have five experts who rate 
15 test cases. Using a three-way rating of 'good', 'acceptable' or 'poor', 
Table 3 gives an example. 
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Table 3. Classification of Expert Performance into 

Three Categories on 15 Cases by Five Experts 


Raling 

k 

2: xl/ 
Expen Good Acceptable Poor j-I 

I 10 4 1 117 
2 8 4 3 89 
3 12 3 2 157 
4 7 7 I 89 
5 10 5 0 125 
Total 47 23 5 377 

Again, using the notation of Fleiss (198 t), there are n = 5 raters, k = 
3 categories, and m = 15 ratings, and Xu is the number of ratings in the 
jth category for the ith rater. The proportions in each rating category are 

PI =47 175 =0.6267 


P2 =23 175 = 0.3067 


" [J3 =5/75 =0.0667. 

The weighted kappa k is now given by 

n k 

nm2 
- ~ ~xl/ 

i-I j-I
k - I - ----'-k~'-'----

nm(m-l) ~pil-pj) 
)-1 

and in this example has a value of 0.2872. Again, an estimate of the 
standard error can be used to give a z value, and for this example z is not 
significant. This implies that the experts are not consistent: decisions 
would have to be made about who or what the system is actually trying 
to model (this may mean narrowing or broadening the available range of 
expertise). 

In this example one could remove the cases solved by the expert 
system and produce another kappa value, and then compare the two. This 
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would show if the disagreement is due to the output from the system or 
in any case existed between the human experts. Producing a kappa for 
multiple experts prior to development of the system is a useful measure. 
If agreement between human experts is good, the system can be com­
pared against the joint agreement of all other experts using a statistic 
developed by Williams (1976). 

VI. MANAGING VALIDATION 

Whatever methods are used for validation, success may depend as much 
upon how these methods are managed as on the methods themselves. 
Three issues are particularly important: the location of validation in the 
development life cycle, the amount of money spent on validation. and 
the formality of the process. 

A. Location in the Life Cycle 

The position of validation in the life cycle has been discussed in detail 
in Gaschnig et al. (1983). Recently, Benbasat and Dhaliwal (1989) have 
expanded the impact of location of life cycle as a substantial portion of 
the basis of the choice of validation methods. The impact of the life cycle 
is basically analogous to the when issue in validation as discussed in 
O'Keefe et al. (1987): When do you do validation? 

There are a number of reasons that the location of validation in the life 
cycle has an impact on determining the type and extent of validation. 
First, it is critical to verify the programmed knowledge base before 
substantial validation efforts are begun. If validators find errors in the 
knowledge base due to inappropriate implementation of particular tech­
nologies. substantial doubt may be cast on the ability of the developers 
to produce a correct system (let alone a system that can perform the work 
of an expert), 

Second, some approaches to the validation ofexpert systems compare 
portions of the knowledge base at different stages of the life cycle (for 
example, O'Leary and Kandelin 1988), The expected relationships be­
tween information is compared to the actual relationships in order to gauge 
the extent of further validation efforts. Third, verification and validation 
efforts required in the initial stages ofdevelopment are likely to be different 
from those required later in the process. Initial efforts may concentrate on 

" 
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direct examination of components of the knowledge, while later efforts 
are likely to be aimed at evaluation of the system as a whole. 

Validation will be pursued at numerous stages of the life cycle. 
Recently. there has been a move to include expert knowledge valida­
tion as part of the knowledge acquisition process (Shaw and Wood­
ward 1988). As with other software. catching problems early will save 
considerable effort downstream. For systems that have a very low 
user's risk. it may be possible to field test the system: put it in place, 
and let the users find errors. This is possible, however, only if a user 
can determine when an error has occurred (for example. a piece of 
equipment still does not work after being mended under advice). For 
many systems. this will not be possible. When user's risk is high, a 
formal validation of the system prior to implementation is virtually 
obligatory (Hickam et al.. 1985). 

1. Knowledge Acquisition 

One of the initial processes in the development of an expert system is 
knowledge acquisition. There has been increasing emphasis on valida­
tion during knowledge acquisition. This is particularly the case with 
automated knowledge acquisition processes, for example. tools such as 
ACQUINAS (Boose and Bradshaw 1987). Such approaches are sug­
gested as validation techniques when supplemented with another knowl­
edge acquisition technique, such as protocol analysis (Benbasat and 
Dhaliwal 1989). 

2. Prototyping 

Typically. a prototyping methodology is used in the development 
of an expert system. Some of the validation effort can be done at the 
prototype stage; for example, selected test data can provide insight 
into the initial validity of the system. As noted in O'leary (I988c), 
prototypes can be an important validation tool, since "prototypes 
provide an opportunity to test assumptions about the knowledge base, 
inference strategies of the expert and other characteristics of the 
system." As noted earlier, prototypes also can provide for a test of 
underlying first principles. 

" 
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3. Knowledge-Base Maintenance 

If an expert systems evolves over time there is a need to build the 
validation process into the maintenance of the system. This often 
means that it must be the organizational responsibility of someone to 
validate new knowledge, alterations to existing knowledge, enhance­
ments to the system, and so on. In the O'Leary and Watkins (1989) 
survey, at least one company employed a knowledge-base manager. 
That manager was responsible for a particular expert system and for 
ensuring that any new knowledge added to the system was verified 
and validated. Typically, a knowledge-base manager will be someone 
with less technical understanding of the software but possibly more 
domain expertise. 

Expert system maintenance systems have become increasingly impor­
tant as systems grow in size and complexity. Such systems have varying 
capabilities, but verification is normally one of the primary concerns, in 
order to ensure that the knowledge added to the system is consistent. 
Shatz, Strahs, and Campbell (1987) present one such system. 

If case studies have been previously used to validate a system, they 
may be used to revalidate a system. Often, unfortunately, this is not 
possible, since changes to knowledge, information, or organization op­
erating procedures will make them outdated. " 

B. Costs and Benefits of Validation 

Implicitly and explicitly, cost assessments permeate virtually all sys­
tem development and validation efforts since there are always resource 
or time constraints. Hence the attention given to any part of the life cyle 
is to some extent dependent upon the perceived benefit of validation in 
that part of the process. 

The survey summarized in O'Leary and Watkins (1989) found that 
validation efforts rarely exceed budget and generally are allocated 
significantly less of the total system budget than is normally planned. 
Validation efforts are often driven out of the life cycle by the produc­
tion process of developing the expert system. Further development 
and enhancements are often perceived as more important than valida­
tion. Additionally, the cost and benefits of different validation meth­
odologies are likely to depend on their location in the development 
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process. For a system at the prototype level there may not be a detailed 
user interface. As a result it may prove quite costly to have the expert, 
end user, or sponsor involved directly in any validation efforts. 

C. Formality 

Virtually all the factors discussed in this paper impact the cost of 
validation of an expert system. However, generally the formality of the 
validation effort will be a major factor in the determination of the cost. 
The formality has an impact on who performs the validation, when the 
validation is performed, and of what the validation consists. 

In informal validation, the process is left to the developers and 
programmers, and possibly subsumed into other parts of the life cycle. 
In formal validation, the cost of the validation will include the time of 
experts (perhaps third party) spent on validation and the time of the 
sponsor of the project, and the cost ofacquiring or generating case studies 
or a simulation. A formal validation of the system is likely to take place 
at the conclusion of one of the major prototypes, and as a result, 
substantial up-front effort is likely to be made to ensure that the system 
meets the demands placed on it. Finally, in a formal validation, the 
validation process is likely to require a substantial amount of interaction 
with the system and include a specified sequence of tests, such as a 
Turing test. 

VII. GUIDELINES FOR MANAGEMENT 

This paper has presented a host of methods for validating expert systems 
and emphasized the importance of structuring the validation effort. 
Unfortunately, as concluded by O'Keefe et al. (1987), what we know 
about validation of expert systems does not easily translate into guide­
lines. Differences in application domains, the development life cycle, and 
the technology used make generalization difficult. Further, there are few 
published accounts of validation efforts, handicapping the generation of 
common experience. 

Despite this, our research and experience leads us to believe that there 
are three crucial components of the validation process, each of which 
should be followed in any validation effort. 

.' 
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Plan 

Plan in detail the validation effort: where it will occur in the development process. 
and how much money and time will be spent. If validation is to be effective. it 
likely should be formal. Ifonly informal validation is to be performed. understand 
the associated problems. Focus carefully on how the system is to be judged and 
establish clear criteria for validation. 

Perform 

Choose and use appropriate methods. Validate the components and then the 
system as a whole. Test cases. Turing tests. and simulation are three case-oriented 
methods; other methods discussed above may also be appropriate. A field test or 
control group experiment may also be viable. If possible. use statistical tests rather 
than subjective evaluation. 

Act 

The results ofvalidation are not good unless they are acted upon. This may req uire 
canceling the further development of a system, or investing more money into its 
development, but often validation effort will result in better systems that can be 
implemented more quickly. 

Validation is a key part of the methodology of expert systems. Improving 
validation will greatly improve the quality of the resulting systems. 
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