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ABSTRACT

In knowledge acquisition, it is often desirable to aggregate the judgments of multiple
expetts into a single system. In some cases this takes the form of averaging the judgments
of those experts. In these situations it is desitable to determine if the experts have different
views of the world before their individual judgments are aggregated. In validation, multiple
experts often are employed to compare the performance of expert systems and other human
actors. Often those judgments are then averaged to establish performance quality of the
expert system. An important part of the comparison process should be determining if the
experts have a similar view of the world. If the experts do not have similar views, their
evaluations of performance may differ, resulting in a meaningless average performance
measure. Alternatively, if all the validating experts do have similar views of the wotld then
the validation process may result in paradigm myopia.

Subject Areas: Decision Support Systems, Expert Systems, Group Decision Processes,
and Verification Theory.

INTRODUCTION

Sometimes in the knowledge acquisition process, developers of expert systems
have access to the judgment of multiple experts. In those cases it is likely that the -
developer may have to aggregate across the experts to develop a single system,
possibly averaging expertise. However, depending on the purpose of the system,
the developer probably should not aggregate the judgments of experts from different
camps (i.e., experts from different firms or experts with distinctly different views
of the world). For example, with a political expert system it is difficult to envision
who would be interested in a system that averaged the advice of a conservative
and a liberal. However, expert incompatibility is so easily established in few cases.

Similarly, in the validation process a Turing test [11] can be implemented to
determine the overall quality of the system by using multiple experts to evaluate
the comparative quality of an expert system and other human actors. In such
evaluative comparisons, it can be important to know if those multiple experts have
similar views of the world. Otherwise, the development of an average score to
compare the system to other human actors could be a meaningless integration of
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396 Determining Differences in Expert Judgment

judgments of apples and oranges. Alternatively, if all the validation comes from
experts from the same school there may be paradigm myopia. In that situation,
assumptions and important aspects missing from the system may be assumed away
by expert evaluators steeped in the same paradigm.

The purpose of this paper is to investigate the determination of whether multiple
experts (in either a knowledge acquisition or validation situation) have similar
views of the world. As a result, this paper also provides a comparison of some
statistical approaches. This paper accomplishes those purposes in the following
manner. The next section provides further discussion on the importance of deter-
mining whether experts view the world from a similar perspective. Two case studies
are presented which illustrate the approach used throughout the remainder of the
paper. Then the different statistical approaches used to evaluate the existence of
similarity of views of the multiple experts are discussed. Next the use of traditional
and computer intensive statistics, using the case study data, to assess the existence
of differences between experts are investigated. The following section extends the
approach to investigating measurement of the existence of differences between
groups of experts. The last section briefly summarizes the paper and investigates
some potential future research issues.

DIFFERENCES IN EXPERT JUDGMENTS

As noted eatlier the determination of differences in judgments among multiple
experts is important in both knowledge acquisition and validation.

Knowledge Acquisition

The development of a system using multiple experts can take at least two approaches.
First, each module of the system may employ a single different expert yet each of
those modules would be linked to other modules in some cascading manner. Thus,
one expert’s judgment would cascade into another’s judgment, and so on. It could
be important to have consistent expertise modeled in each of the modules, or else
decisions in one module might contradict decisions in another. Second, the system
may use some sort of average expertise of multiple experts in each module. Such
averaging takes place anytime knowledge from multiple sources is summarized
into a single representation. In that case the average judgment may be built into,
for example, the weights on rules. In order for that average to represent some
consistent set of experts, it is important to determine if those experts are from the
same camp.

Further, the examination of the similarity of judgment might be accomplished
either by pairwise comparison of individual experts or pairwise comparison of
groups of experts. These comparisons would be made if there was some basis to
expect differences among individual experts or if there was some reason to assume
that the experts from one group, department, or firm were different than the experts
from some other group, department, or firm. These two sets of categories of analysis
are summarized in Table 1.

There are four possible outcomes in the scenario developed in Table 1. The
two sets (1,3) and (2,4) each require different minimal sets of information for the
comparison to be made. First, it is assumed in cases 2 and 4 that there is sufficient
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Table 1: System use of different experts.

Comparison Basis Interlocking Expertise Average Expertise
One-to-One 1 2
Group-to-Group 3 4

information to compare the two experts or sets of experts with each other for an
entire set of decisions D=(d;, ..., d,) where those decisions dj;, could be, for
example, estimates of a weight on a rule. Second, for cases 1 and 3, to compare
two sets of decisions, Dy=(dy, ..., d,;) and D,=(d,;., .., d,,), Tespectively, pairs
of experts or groups of experts are required.

These different sets of information suggest that different approaches be used
to analyze the data. If for cases 1 and 3 there is information for a complete set of
decisions, then an analysis, similar to that for cases 2 and 4, may be used. However,
such availability of information is unlikely, since the rationale for developing
modules with different experts is often the limited time of experts to contribute to
the project or because different levels of expertise are needed with each module or
portion of the decision.

The focus of this paper is on cases 2 and 4. In either of those cases the similarity
of experts’ judgments across an entire set of decisions is the basis of analysis.

Validation

Typically implementations of the Turing test employ experts to rate the performance
of expert systems and other comparative human actors. The system and these other
human actors are given test problems and then rated for the quality of their per-
formance. The rating is likely to be on a scale of O to 10 where 0 is the lowest
quality rating and 10 is the highest, or 0 and 1, where 0 is unacceptable and 1 is
acceptable. Then those ratings often are averaged together to provide a measure of
the overall quality.

The development of such an overall average measure of quality could lose its
meaning if the experts have different perspectives. In that case, combining the
evaluations would be analogous to adding disparate commodities (apples and oranges).
Alternatively, if all the experts in the validation process are from the same school then
that may indicate that important aspects of the domain will be ignored or assumed
away (paradigm myopia). Thus, in either case, it is important to determine the experts’
view of the particular domain.

SYSTEM CASE STUDIES

This paper analyzes two case studies in the development and validation of expert
systems. Although this paper concerns itself only with these systems, the methods it
discusses are applicable to other systems. The discussion of the examples involves
relatively small samples. However, it is not unusual in practice for larger samples
of experts and experts’ decisions to be available.
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Aggregating the Judgment of Multiple Auditors

Some expert systems aggregate the judgments of multiple experts into a single
judgment. AUDITOR, an expert system, (Dungan [1, p. 1] and Dungan and Chandler
[2]) “presents expert advice in the form of an estimate of the probability that a
given account balance will prove uncollectable.” The weights on the rules in the
system were based, in part, on the expertise of four auditor experts. The assessments
of those four experts are summarized in Table 2.

If the experts are disparate in their estimates then it may not be reasonable to
aggregate their judgments into a single estimate of the weights on a rule. For
example, experts from one firm may respond differently to different criteria or
different experts may have different systems of belief. Thus, it may be appropriate
to build the model around only a subset of the experts. It may be more efficient to
use the judgments of experts from a single camp or firm to build the estimates.

Since the assessments of the weights are treated as numeric in the development
of the system by Dungan [1], one approach is to give each interpretation an integer
value (e.g., strong=4, moderate=3, etc.). Using those estimates, different test sta-
tistics can be developed and tested for their statistical significance.

Validation Using Mulitiple Experts

Hochman and Pearson [5] [6] developed an expert system, X-Breed, designed to
choose between eight different breeding strategies and to recommend the bull breed
from a list of ten types of breeds. The system was evaluated using a comparison
of the system to ten human evaluators, including students, advisory officers, case
providers, and research officers.

For nine different problems eleven responses were rated as either acceptable
or not acceptable solutions by each of four independent experts. (Summaries of the
nine different cases are included in Table 3.) Then the average of the number of
acceptable solutions was used to rank the system and the human actors. The study
used the same approach as in Yu, Fagan, Wraith, Clancey, Scott, Hannigan, Blum,
Buchanan, and Cohen [12]. However, [5] and [6] provide more detail to allow for
further investigation.

The Unit of Analysis

In the case of aggregating the judgments of multiple expert auditors, it is assumed
that the entire set of rules is an appropriate unit of analysis. The set of rules is
treated as an aggregate; within that aggregate we can expect that experts are from
one camp or another. If there is some reason to assume that different rules should
be treated differently then our analysis would take that patticular theory into account.
It may be that instead of using all rules as the unit of analysis subsets of rules
should be analyzed separately. However, throughout the remainder of the paper it
is assumed that the rule-base should be analyzed as a whole.

Similarly, in the case of validation using multiple experts, it is assumed that
the entire set of advisors is an appropriate unit of analysis throughout this paper.
The set of advisors is treated in the aggregate. If there is some reason to evaluate
some subset of the advisory officers differently, then that should be accounted for
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Table 2: Relative strengths of the rules.

Auditor

Rule Name Composite

Active
Bankrupt
Collected
Cotrespond
CreditMgr
Economic
Noncontact
NoResponse
NotPay
Problems
Rigorous
Workout
Writeoff

TwEZugE€ld€ddnnnu|»>
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Z2uzZzZunugifwunrvwnn U

" €XE€Z2ud€Tulwvn i |w
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S = Strong

M = Moderate

W = Weak

N = Little or no effect

Source: Dungan [1, p. 95]

in the analysis. Since there was no information regarding the specific type of
advisor in the information provided to the experts, there is no a priori reason that
the experts would treat the responses from any advisor differently.

In general, this indicates that the unit of analysis (ultimately, the data set
analyzed) is a critical issue. At some point in the process of statistically analyzing
knowledge acquisition or validation data, there should be an investigation into the
choice of the appropriate unit.

That choice is, to a large extent, a function of the specific application and
outside the scope of this paper. However, if there is a theory or rationale that
indicates that different subsets of the data should be treated separately or together,
then the analysis should exploit the theory. In the case of the aggregation of weights
on rules, the aggregate is assumed as the appropriate basis of analysis for a number
of reasons: the rules form a cohesive subject group; the rules all deal with similar
aspects of the same decision problem; the rules were all developed at the same
time; and other similar reasons.

STATISTICAL BASIS OF ANALYSIS

The choice of a test statistic requires careful consideration. The mean value of one
expert’s evaluations probably does not provide a suitable basis for comparison of
the mean value of another expert. Simply because the mean values of the expert
judgments are the same, does not ensure that the way the experts or groups of
experts assess the individual rules is the same. For example, one expert might
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Table 3: Multiple expert evaluation of recommendations.

Scote Score Score Score Mean
Advisor Expert 1 Expert 2 Expert 3 Expert 4 Score
X-breed(system) 9 9 7 9 8.50
Research Officer 9 9 7 9 8.50
Adpvisory Officer 9 7 6 7 7.25
Case Providers 8 7 6 7 7.00
Advisory Officer 7 7 5 8 6.75
Advisory Officer 7 8 5 6 6.75
Advisory Officer 5 8 6 6 6.25
Advisory Officer 7 6 5 7 6.25
Advisory Officer 5 6 4 6 5.25
Advisory Officet 5 2 4 6 4.25
Student 4 1 0 3 2.00

Note: Adapted from Hochman and Pearson [5].

assign two rules weights of 4 and 1, respectively, while another expert might assign
those same two rules values of 1 and 4, respectively. Clearly, the average would
be the same, yet the understanding of the rules for the process would be different
for each of those experts.

Alternatively the correlation coefficient provides pairwise comparison of different
components of experts’ judgements simultaneously. Thus, the correlation between
the assessments (either estimates of uncertainty factors or evaluations of quality)
made by different experts is a critical concern. If the assessments are significantly
correlated then we reject the notion that the evaluations come from different dis-
tributions. In that situation, the experts would be specified as coming from the same
camp. The evaluation of the significance of the correlation coefficient can employ
either traditional distributional approaches (e.g., a t-test) or computer intensive
approaches.

Traditional Approach

One of the most common approaches to the investigation of similarity of correlation
coefficients is a t-test. This approach was used on both case studies. However, this
approach assumes an underlying distribution to make such significance assessments.
In many situations the assumptions associated with those distributional assumptions
may be incorrect or inappropriate.

Computer Intensive Statistics

An alternative approach to the determination of significance are computer intensive
statistical methods. These methods are called computer intensive because the com-
puter recomputes the test statistics using the original sample a large number of
times (e.g., 100, 500, or 1000 times) to develop a distribution of that test statistic
(e.g., mean or standard deviation) for that particular sample (e.g., Noreen 9D.
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Traditional statistical approaches typically make distribution assumptions. Under
the assumption of a distribution (e.g., a normal distribution) quite powerful tests
have been developed. However, in those cases where no distributional assumption
is made, the resulting tests often are lacking. For example, Chebyschev’s inequality
[7] can be used to obtain an upper bound on the probability of a random variable
being more than a specified distance from the mean of the distribution. Unfortunately,
such approaches often provide very loose estimates, and as a result are of little use.

Making distributional assumptions may be inappropriate and could lead to
questionable results. Since expertise and the process of gathering expertise generally
are not well understood, it typically is difficult to make a priori distributional
assumptions about the data. For example, often experts employed to assess the
quality of an expert system provide integer estimates of comparisons between
systems and human experts. In addition, typically those estimates are bounded (e.g.,
between O and 100 in the case of percentages or between 1 and 9 in the case of
survey scales). These are not typical assumptions made on data for continuous
distributions. Accordingly, an alternative to distribution-based statistics is desired
to investigate expertise.

Unlike traditional statistical methods, computer intensive statistics make few,
if any, distributional assumptions. Yet these methods have been found to provide
powerful results. Instead of distributional assumptions, computer intensive statistics
use the sample data to develop empirical distributions. The argument behind the
use of the sample is that the sample contains all that is known of the underlying
distribution (e.g., Efron [4]). Thus, computer intensive statistics can fill an important
void.

This paper discusses three different types of computer intensive tests: enumeration
(Noreen [9]), randomization (Edgington [3] and Noreen [9]), and bootstrap resampling
(Efron [4] and Noreen [9]). Enumeration is where each feasible case is enumerated
to establish the distribution. Enumeration involves enumerating all feasible com-
binations of a specific sample then computing the test statistic in order to develop
an exact distribution of that test statistic. Randomization involves shuffling or
randomizing one variable relative to another, computing a test statistic for that
random variable, using that test statistic to continue to build a distribution, and then
randomizing once again. Such a process is done a large number of times, to develop
an approximation of the exact distribution, which may be computationally infeasible
to develop.

Randomization generally is used to investigate the null hypothesis that one
random variable is distributed independently of another random variable [9]. Boot-
strap resampling assumes that the sample population is representative of the actual
population. As noted by Efron [4] since the sample contains all the information
about the population, we proceed as if the sample is the total population. Bootstrap
resampling is simulation analysis, under the assumption that the simulation generates
its observations by successively resampling from the sample data with replacement.

RESULTS OF THE PAIRWISE COMPARISONS OF EXPERTS

Both traditional and computer intensive approaches were used to analyze the data
from the two case studies.
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Knowledge Acquisition Case

Assuming that the assessments by the experts can be summarized as a set of
integers (strong=4, etc.), the correlations between each pair of experts are summa-
rized in Table 4. Using a t-test, each pair is found to be significant at the .01 level
(and better) except for the comparison of experts A and B, which is significant at
the .05 level.

For the computer intensive approach, a distribution of correlations for each
pair of experts was developed. The results were not as statistically significant as
those using the -test approach. Using this approach, the correlation between A and
B is not significant at the .1 level. In addition, both the comparison B:C and B:D
are less significant using the computer intensive approach. These findings suggest
that expert B judges weights on the rules differently than expert A. Thus, it may
be beneficial in the development of the expert system to aggregate the judgment
of experts in the set B, C, and D or the set A, C, and D.

Validation Case

Pairwise analysis of each of the experts in the validation process resulted in statis-
tically significant correlation coefficients using both t-test and computer intensive
methods. Using a -test approach, each of the correlations in Table 5 was significant
at the .001 level. However, as with the other case study, the computer intensive
approach yielded a number of correlations where the test statistics were not as
significant. For example, the correlation for the pair 1:2 was between the 92nd and
93rd observations.

These results indicate that the human experts in the validation effort apparently
come from the same school. Unfortunately, if this is the only comparison there is
potential for paradigm myopia.

Comparison of Statistical Approaches

The two case studies presented here also illustrate some of the differences that can
occur with the use of, for example, a t-distribution and a computer intensive
approach. In the case 1 comparison of A:B, the t-distribution estimate of statistical
significance was at the .05 level, yet the computer intensive approach estimated
the statistical significance at the .25 level. These two statistical estimates suggest
alternative actions: combine versus not combine estimates of probabilities.

In addition, in both studies, measures of statistical significance differed from
pair to pair. For example, in case 2, the pair 1:3 had a correlation of .783 that was
found above the 100th observation in a distribution of 100 correlations. Pair 3:4
had a correlation of .886 and was located below the 100th observation.

These findings suggest that both computer intensive and t-distribution approaches
be used to evaluate the significance of the correlation between different experts. If
both are significant at an appropriate level then the experts would be judged as
coming from the same school. Otherwise, the experts may not be from the same camp.

Test for Goodness of Fit of a Normal Distribution

Prior to performing a -test, the knowledge engineer may wish to perform a test to
determine the goodness of fit of a normal distribution to, for example, the expert
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Table 4: Results of randomizing correlations on relative strengths.”

Pair Correlation Location*

AB .339 Approximately the 75th observation
A:C .794 Above 100th observation

A:D .664 Above 100th observation

B:C .662 At 97th observation

B:D .598 At 97th observation

CD a7 Above 100th observation

*+Assumes a distribution of 100 elements. Based on Table 2.
*Roughly the significance level is (100-Location)/100.

Table 5: Results of randomizing correlations on recommendations.”

Pair Correlation Location*

1:2 .723 Between 92nd and 93rd Observation
1:3 .783 Above 100th Observation

1:4 .827 At 100th Observation

2:4 776 At 98th Observation

2:3 .882 Above 100th Observation

34 .886 Between 99th and 100th Observation

*+Assumes a distribution of 100 elements. Based on Table 3.
*Roughly the significance level is (100-Location)/100.

recommendations such as those in Table 3. The Kolmogorov-Smirnov (K-S) test
of normality, with both the mean and the standard deviation estimated, provides
one approach.

The K-S test is applied to expert 3 and summarized in Table 6. It is found that
the hypothesis, the responses from expert 3 are drawn from a normal distribution,
can be rejected at the .05 level.

Table 6 is constructed and evaluated using the table of critical values constructed
in Lilliefors [8]. The first column is the set of values in the data. The second column
is the cumulative frequency f; of those values. The third column is the ratio (data
value-mean)/(standard deviation). The fourth column is the amount of area under
the normal curve for the ratio from column three, f,. Finally, column five is the
absolute value of f,-f,. If the maximum value in column five exceeds the appropriate
critical value, then the hypotheses can be rejected. The critical value is derived
from Lilliefors [8], given a sample size of ten and significance level of .05. In this
case, the critical value is .258, while the maximum value is .278, and thus the
hypothesis of normality can be rejected.

The K-S test can be extended to any continuous distribution. In addition, other
distribution tests could be used. For example, the chi-square goodness of fit test
might be used.
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Table 6: Kolmogorov-Smirnov goodness of fit test distributional analysis of expert #3.*

Cumulative Normal Column 2 -
Frequency Curve Column 4
Data Value Percentage z Ratio Area Absolute Value
0 .1000 -5.092 .0001 .0999
4 .3000 -1.388 .0828 2172
5 .6000 -462 3218 2782
6 .9000 462 6783 2217
7 1.0000 1.388 9182 .0818

*Data for expert #3 is contained in Table 3.

EXTENSIONS: DETERMINING THE EXISTENCE OF
DIFFERENCES DUE TO FIRM EFFECT

The investigation of the existence of differences due to different experts being from
different firms requires an alternative approach. The existence of expertise in dif-
ferent firms (departments, etc.) uses a construct of at least one expert per firm
construct, so that a correlation between two individual experts may no longer be
appropriate. Instead the concern would be whether the set of experts’ judgments
from two different firms comes from the same distribution. In this situation, we
either assume, or test to determine, that the experts’ judgments within each of the
individual firms come from the same distribution. Such testing can be done as was
outlined above.

In the case where we know that experts come from, say, two different depart-
ments or firms (or some other theory), the null hypothesis could be that the experts’
ranking of the strength of the rules is independent of, say, the firm for which that
expert works. (A similar scenario would be constructed for validation.) Assume a
matrix of data x; J for each expert j=1, ..., m, and strength given to rule i=1, ..., n.
Assume that m, experts work for one firm and m, experts work for another firm
(m1+m2-m).

Enumeration/Randomization

In order to measure the significance of the difference assigned by the experts in
the two firms we can use either an exact or approximate approach. In the approximate
approach, we shuffle the vectors X;=(x j....X, ), where x; ; is the value on the ith
rule for the jth expert, into two groups, of m; and m, vectors. Then we compute
the test statistic (e.g., average scores for each i) for each of the two groups. This
gives two vectors of averages. The average of the sum of the absolute values of
the differences between the two vectors forms the value for that shuffle. This would
be done a large number of times (e.g., 1000) in order to establish an estimate of
the distribution of such absolute differences. Then the original sum of the absolute
value of the differences for the two groups would be compared to the derived
distribution to determine if there was a significant difference between the two firms.
The computer generated distribution would be used to measure the significance of
the sum of absolute differences of the original data.
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The exact approach is similar to the approximate approach, except that each
possible shuffle would be done exactly once. If m is reasonably small, such an
approach is feasible. In general, this analysis would use groups of the size suggested
by the theory (e.g., all members of one firm would be one group).

The small number of experts in the case examples makes it difficult to generate
a reasonable sample size, even with complete enumeration of all possible combi-
nations. Distributions based on groups of experts of size 2 and 2, and groups of
size 3 and 1, were developed. The resulting two distributions are summarized in
Table 7. These distributions are presented for illustrative purposes only.

Bootstrapping

An alternative approach to developing a distribution is bootstrapping (Efron [4]).
The following approach could be used in order to investigate the null hypothesis
that there is no firm effect.

Because the number of experts from each firm may be different, that must be
accounted for in the test developed. Divide the sample into the two different sets
of experts’ vectors (e.g., by different firms) so that there are m, in one set and m,
in the other. Bootstrapping uses sampling with replacement from those two sets.
Randomly choose an expert’s vector from the first set, keep track of the contents
of the vector, replace that vector back into the first set, then choose another from
the first set. Do that procedure m; times. Given those m, vectors, compute an
average for each i, resulting in a vector of averages. Use the same procedure to
develop a vector of averages for the second set (instead sample m; times from those
observations). Then compute the sum of the absolute values of the differences
between the two different vectors of averages.

Do this procedure a large number of times in order to develop a distribution.
The resulting distribution can be used to assess the significance of the difference
between the vectors of averages based on using each of the m; and m, elements,
respectively. Unfortunately, the sample systems have only four experts. Such small
samples make it difficult to illustrate the technique.

SUMMARY AND FUTURE RESEARCH

This paper addressed the determination of whether multiple experts came from
different camps. The issue was identified as important to both knowledge acquisi-
tion and validation. This section briefly summarizes the paper and discusses some
extensions.

Summary

Two comparative approaches were investigated: the one-on-one comparison of the
similarity of pairs of different experts and the comparison of different, a priori,
(e.g., firm employees) groups of experts. Throughout, it was assumed that the basic
unit of analysis was the complete set of data available from each of the cases.

In the situation of one-on-one comparison of experts, correlation was used to
ascertain the similarity of expert judgments. The analysis of the first case study
found that one pair of experts used to develop the weights on the rules (A:B) appear
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Table 7: Enumeration of two sets of groups ranked according to sums of absolute

differences.
Group X Group Y Sum of Absolute Differences in Rules*
Groups of 2 and 2
A, B C,D 4
AC B,D 5
A D C,B 6
Groups of 3 and 1
A,B,D C 4
A,B,C D 6
B,C,D A 6
A,C,D B 7.333

*Sum of absolute differences computed by developing average for one group and compar-
ing average to other group, based on numerical scores assigned to the values in Table 2 of
S=4, M=3, W=2, and N=1.

to come from different camps. This could result in the development of weights that
do not represent a consistent set of experts. The analysis of the second case study
found that each of the evaluating experts came from the same camp. Potentially,
this could limit the quality of the validation effort because of paradigm myopia.

A t-test and randomization were used to provide statistical evidence. It was
found, in some situations, that the two approaches had critical differences between
the extent of statistical significance associated with the test statistics. Those differ-
ences would impact the actions associated with the different interpretations (e.g.,
combine expert estimates, not combine expert estimates.) The differences may
result from a lack of fit of a distribution assumption on the data made in the r-test.

The statistical approaches were then extended to the case of group-to-group
comparisons. The problem of determining whether experts are from different camps
was investigated using both randomization and bootstrapping. The small population
of the case studies limited group-to-group comparisons.

Future Research

There are a number of directions for future research. First, larger sample case
studies could be developed to generate data for more extensive group-to-group
studies. That could also facilitate a comparison of randomization and bootstrapping
for investigation of knowledge bases in group-to-group studies.

Second, the generation of an exact distribution for a group-to-group approach
could be extended. Rather than using constant group sizes, as in Table 6, a distri-
bution for all possible combinations of different group sizes, my=1, ..., m-1 and
my=m-1, ..., 1, respectively, could be the basis of the distribution. Such an approach
allows the generation of a larger distribution size than the constant group size
assumption.
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Third, data from other aspects of expert systems could be investigated. This
paper has focused on validation and knowledge acquisition, but other aspects, such
as choosing which rules should be implemented from a multiple expert knowledge
acquisition effort, might be investigated.

Fourth, this paper was concerned primarily with averaging. Future research
could focus on interlocking expert judgments as discussed above. [Received:
September 16, 1991. Accepted: September 10, 1992.]
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