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We study dynamic pricing policies for a monopolist selling perishable products over a finite time horizon to
buyers who are strategic. Buyers are strategic in the sense that they anticipate the firm’s pricing policies. We
are interested in situations in which auctions are not feasible and in which it is costly to change prices. We
begin by showing that unless strategic buyers expect shortages dynamic pricing will not increase revenues.
We investigate two pricing schemes that we call posted and contingent pricing. In the posted pricing scheme
at the beginning of the horizon the firm announces a set of prices. In the contingent pricing scheme price
evolution depends upon demand realization. Our focus is on the posted pricing scheme because of its ease of
implementation. In equilibrium, buyers will employ a threshold policy in both pricing regimes i.e., they will
buy only if their private valuations are above a particular threshold. We show that a multi-unit auction with
a reservation price provides an upper bound for the expected revenues for both pricing schemes. Numerical
examples suggest that a posted pricing scheme with two or three price changes is enough to achieve revenues
that are close to the upper bound. Counter to intuition we find that neither a posted pricing scheme nor a
contingent pricing scheme is dominant. The difference in expected revenues of these two schemes is small.
We also investigate whether or not it is optimal for the seller to conceal inventory and sales information
from buyers. A firm benefits if it reveals the number of units it has for sale and subsequently withholds
information about the number of units sold at different prices.
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1. Introduction.

In this paper we study a monopolist selling a fixed quantity of a perishable product over a finite
time horizon. Examples of such products include airline tickets, fashion goods, and tee times on
golf courses. Two important feature common to these products are (i) that replenishment may not
be possible and that even if it is, costs may be too high, and (ii) that any unsold product at the
end of the horizon is either worthless or of considerably lower value.

One strategy for increasing revenues is to segment the market and to offer the product at a
different price to each segment. In the airline industry, the market can be segmented on the basis
of purchase time – willingness to pay for a flight ticket increases as you get closer to departure
time. When the seller cannot effectively segment the market, an alternative approach for increasing
revenue is to dynamically change prices. Of course, if segmentation is possible, dynamic pricing
can also be used in conjunction with segmentation strategies. Dynamic pricing is inter-temporal
price discrimination, with a focus on demand uncertainty.

Work that has preceded ours in the sub-field of dynamic pricing1. , implicitly assumes that
customers do not anticipate prices and behave myopically (Bitran and Mondschein (1997)). We
argue that many customers are aware of pricing paths and that they time their purchases. Evidence
of customers’ strategic behavior abound; customers waiting for after-Christmas sales, anticipating
price mark-downs of fashion goods and electronic products (McWilliams (2004)), and tracking
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prices of airline tickets, are just a few examples. Lazear (1986) suggests that consumers can be
divided into (i) shoppers who are exploring prices, and (ii) buyers who are ready to purchase.

We try to shed light on the influence of customers’ strategic behavior on seller’s equilibrium
pricing policies. Auction theory, and more specifically literature on mechanism design is directly
concerned with this question (Krishna (2002)). There are, however, many retail settings in which
mechanisms such as auctions are not practical. Changing prices in retail outlets is a complex process
that consumes resources (Levy et al. (1997)) and brick and mortar retailer are not set up to handle
bids from buyers. Therefore, we are interested in mechanisms that involve a small number of price
changes. We consider a number of pricing strategies. The simplest policy would be to announce
and commit to a set of prices at the beginning of the selling horizon 2. . At the other extreme, the
firm can change prices after observing sales. In addition, it can either reveal its sales and inventory
levels to all buyers or conceal this information. In this paper, we study two different pricing policies
we call posted and contingent. In the posted pricing policy, the firm commits to a price path at
the beginning of the season. In the contingent pricing policy, the firm determines its price based
on realized sales. In both schemes, the firm commits to the number of price changes3. .

We assume that all buyers are present at the beginning of the selling horizon and ignore uncer-
tainty in the arrival process. All buyers are strategic and not just a subset as suggested by Lazear
(1986), and they constantly monitoring prices. This is the polar extreme of the assumption tra-
ditionally made in the revenue management literature that none of the buyers are strategic. We
believe that examining this extreme is valuable to isolate the impact of strategic behavior.

We assume that a single product is being sold and consumers differ only in the value they place
on the product. The buyers and sellers have information about the number of units for sale, the
size of the market, the number of price changes, and the distribution of valuations. Our analysis
readily incorporates uncertainty in the size of the market. We assume that the duration of the
selling horizon is short and ignore discounting. Because all buyers are present at the beginning,
the actual duration of the selling period is inconsequential and all that matters is the number of
price changes.

Presence of strategic buyers raises a number of interesting questions. What are the consequences
on revenues if a firm ignores strategic behavior? What is the impact of strategic behavior on pricing
policies? What is the loss in optimality if the firm commits to posted prices? How many price
changes are needed? How do factors such as the size of the market, level of supply, uncertainty
in the size of the market, and the distribution of the valuations influence the performance of the
different pricing policies? How many units should the firm stock? Should the firm reveal the number
of units it has for sale? Should the firm conceal information about the number of units sold at
different prices?

1.1. Main Findings

The characteristics of optimal dynamic pricing policies and the ability of the firm to extract
consumer surplus are significantly altered when consumers anticipate pricing policies. For one
thing, it is costly for the firm to ignore such behavior when developing pricing policies. Pricing
schemes that account for strategic buyers are qualitatively different. The gap between the lowest
price and the highest price is reduced. If consumers are not strategic, it is well known (Gallego
and van Ryzin (1994)) that dynamic pricing will increase a firm’s revenues if there is uncertainty
in the customer arrival process. On the other hand, if buyers are strategic then even if there is
uncertainty in demand, dynamic pricing need not increase the firm’s revenues. For dynamic pricing
to be useful it is essential that consumers anticipate a shortage. Static pricing is optimal regardless
of whether or not demand is uncertain, as long as buyers are assured of supply. Further, when
buyers are strategic and shortages are perceived, dynamic pricing is better than static pricing even
if demand is deterministic.
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A strategic buyer, except in the terminal period, will buy the product only if his or her valuation
is above a threshold. This threshold, except at the lowest price, is strictly greater than the prevailing
price. When the valuation is close to the prevailing price, a buyer may find it worth while to wait
for a lower price, even though there is a risk of a stock-out. Models that ignore strategic behavior
assume that everyone whose valuation is above the given price will buy the product. The threshold
depends on the size of the market, and the level of scarcity. We use the ratio of the number of units
for sale(K) to the number of customers (N) as a measure of the level of scarcity.

In the limit as the number of price changes approaches infinity, posted and contingent pricing
schemes maximize expected revenues. They are revenue-equivalent to a multi-unit auctions with
reservation prices. This linkage enables us to derive an upper bound for expected revenues. When
the number of prices changes is restricted the loss in optimality depends on the level of scarcity
(K

N
), the distribution of valuations, and the size of the market. If K

N
≥ 1 or K

N
is close to zero, a

single price is optimal or nearly optimal, respectively. Also as N →∞, regardless of the ratio K
N

,
no more than one price change is needed to maximize expected revenues.

When prices can be changed limitlessly, expected revenues are not effected by whether or not
buyers are aware of the number of units remaining unsold. However, when the number of price
changes is finite information about the sales and inventories influence expected revenues. Based
on our numerical examples we conjecture that the firm should reveal the number of units that are
available for sale at the beginning of the season, but subsequently conceal the inventory levels.

Contingent pricing clearly dominates posted pricing when consumers are not strategic. This is no
longer true when buyers anticipate prices. Neither scheme is dominant. The difference in expected
revenues, however, is quite small. Overall our numerical examples suggest that simple policies of
pre-announcing a few prices in advance achieves near optimal revenues. This is particularly true
when there are more than 30 buyers or the number of units for sale is in excess of 50% of the
market size.

1.2. Organization of the Paper

In the next section, we review related literature. In section 3, we introduce our model and show
that customers have to perceive a shortage for dynamic pricing to be useful. In section 4, we
analyze buyers’ equilibrium strategies and show that in all of the pricing schemes there is a unique
equilibrium. In section 5, we derive properties of the pricing policies and show that in the limit
as the number of price changes approaches infinity both schemes are optimal and are equivalent
to a descending price auction with a reservation price. We also derive sufficient conditions under
which it is optimal for the firm to conceal sales information. Section 6 contains numerical examples
that assess the value of multiple price changes, compares the two pricing schemes, and explores
the benefits of concealing inventories. We conclude in section 7. All proofs are in the appendix.

2. Literature Review

Economists were among the earliest researchers to study pricing when customers behave strate-
gically. This work was concerned with consumer durables, and ignored capacity and inventory
constraints. The well-known Coase theorem ( Coase (1972)) considers a monopolist selling a con-
sumer durable. In equilibrium, a declining price path is subgame perfect, and rational customers
anticipating the pricing path would not buy the product until the last period (Stockey (1981)).
The price steadily declines to marginal cost, thereby eliminating all monopoly power. If customers
tradeoff the value of consuming right away against the benefits of differing consumption for a
lower price then customers with high valuations would buy in the early periods while low valuation
customers would buy in a later period.

Researchers in marketing have also studied optimal pricing strategies when buyers anticipate
prices. The price-skimming phenomenon has been investigated by Besanko and Winston (1990)).
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In their model, customers’ valuations are assumed to be uniformly distributed. The authors char-
acterize a subgame perfect Nash equilibrium involving a rational seller and rational consumers and
establish the optimality of a declining price path. Through numerical examples, they also demon-
strate that a seller who ignores consumer strategic behavior will observe a substantial decline in
profits. Unlike our work, papers in marketing are not concerned with perishable assets (Besanko
and Winston (1990), Moorthy (1988)). They assume that the manufacturer can produce additional
product in each period.

The dynamic pricing and revenue management literature is concerned with pricing perishable
assets that cannot be replenished. This literature is vast, and a recent book by Talluri and van
Ryzin (2004b) provides an excellent overview of this literature. Readers are also referred to reviews
by McGill and van Ryzin (1999)), Bitran and Caldentey (2003), and Elmaghraby and Keskinocak
(2003)). Early work in dynamic pricing did not consider strategic behavior. In recent years many
papers have been developed on dynamic pricing that take into account consumer behavior. Several
papers consider how consumers select among different products (Talluri and van Ryzin (2004a),
Zhang and Cooper (2005), Savin and Xiao (2006),and Maglaras and Meissner (2006)). These papers
are concerned with selection among alternative products, but do not worry about consumers timing
their purchases.

Arnold and Lippman (2001) study a posted pricing problem. The firm announces a price and
spends money to stimulate demand. A random number of customers arrive, and all buyers whose
valuations exceed the prevailing price buy the product. They show that a declining price path
is optimal. The key difference between our work and theirs is that in their model consumers do
not anticipate price changes. We argue that the number of price changes are finite because it is
expensive for the firm to change prices. Arnold and Lippman (2001) explicitly consider this cost
and we do not. Nevertheless, in our model the seller can determine the expected revenues for
different number of price changes and then select the optimum number.

Su (2006)) considers strategic buyers who time their purchases. In his model buyers arrive at
a constant deterministic rate. Buyers fall into four groups depending on their valuation (high or
low) and patience level (high or low). The number of buyers in each of the four groups is known
for certain. He shows that whether or not prices increase or decrease depends on how the total
population is distributed among these four groups. A declining price path is optimal if there are
many impatient high value customers or there are many patient low value customers. The converse
is true in the other cases. In our model pricing decisions by the seller and the purchase decisions by
the buyer are driven by the uncertainty in demand. Su (2006)) model is a deterministic model. Due
to these difference, the insights obtained by him are also very different from those in this paper.

Liu and van Ryzin (2006) also study a deterministic demand model that incorporates customers’
strategic behavior. They are concerned with rationing policies. Buyers are risk averse and decide
when to buy a single unit of the product. The prices are exogenous to their model, and are known
to everyone. Thus they also study a posted pricing scheme. They explore whether or not a firm
should ration the amount of stock available for sale at different prices. We derive optimal prices
under uncertainty and do not address whether or not a firm should ration. We, however, show that
revenues are maximized under both pricing schemes we study here, if we permit the number of
price changes are allowed to grow to infinity.

Dynamic pricing when consumers are strategic is akin to auctions with a restriction on the
number of price changes. We therefore draw from the auction literature (see Milgrom (2004)).
Harris (1981) was the first to identify mechanisms that maximize seller’s earnings. He showed
that when the number of buyers exceeds the number of items available for sale a Vickery auction
with an appropriate reserve price is optimal. Employing the revenue equivalence principle we show
quite easily that if prices can be changed an infinite number of times then in the limit both of the
dynamic pricing schemes we consider here maximize seller’s expected revenues.
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3. Model Formulation

We have a monopolist selling K perishable objects to N risk-neutral consumers over a finite time
horizon T . Each customer wants to buy at most one unit of the product. As stated earlier, in order
to highlight the effect of consumers’ surplus-maximizing behavior, we assume the following: (1) all
customers arrive at the start of the selling season; (2) consumption takes place immediately upon
purchase and there is no discounting; (3) since the initial capacity is assumed to be exogenous, the
cost of the product is zero; and (4) consumers’ values are independent identically distributed and
are private. These values remain constant throughout the horizon.

The seller does not know each consumer’s valuation, but she and all other buyers know the
distribution of the valuations. Without loss of generality, we normalize the support of the valuations
to the range [0,1] and denote the valuation distribution by G(v), for v ∈ [0,1]. The seller and all of
the buyers at the start of the selling horizon are aware of the number of units for sale (K) and the
size of the market (N), the number of price changes (T ), and the distribution of private valuations.
For ease of exposition, we develop our analysis with the assumption that the number of buyers
is known. Our analysis extends to situations in which N is a random variable, provided everyone
has the same prior distribution. Because all buyers are present at the beginning and there is no
discounting, the length of the selling horizon is irrelevant. With a bit of abuse of notation, we will
use the term periods to denote price changes.

We begin by identifying conditions under which dynamic pricing is preferred to static pricing. We
first study the role of capacity. If supply exceeds market size(K ≥N) in a posted pricing scheme,
it is easy to show that the optimal price should be a single price. In the contingent pricing scheme
things appear a little more complex because buyers see an uncertain price path, and the “lowest”
price may not be obvious. However, adopting the concept of rational expectation equilibrium first
proposed by Stockey (1979), we show below that a single price is still optimal.

In a two-period model, the seller’s pricing decision is a vector (P1, P2), in which Pi is the price
in period i, with i = 1,2 (note that period 2 follows period 1). In the contingent pricing scheme,
the seller’s pricing scheme should be denoted as (P1, f(P2)), where f(.) is the probability density
function of the period 2 price and would depend on P1. In rational expectation equilibrium, buyers
and the seller share the same knowledge about the distribution of the period 2 price.

Lemma 1. If K ≥N , for any given price P1 , and if a consumer with valuation vb finds it optimal
to buy in period 1, then all consumers with valuation v≥ vb will also buy in period 1; if a consumer
with valuation vb decides to postpone purchase to period 2, all consumers with valuation v < vb will
also postpone purchases to period 2 even if their valuation exceeds the current price.

The following proposition establishes the fact that no matter what pricing scheme is adopted, a
single price is optimal when supply exceeds demand.

Proposition 1. Let πr be the optimal revenue for the seller under the pricing scheme (P1, f(P2)),
and πs be the optimal revenue for the seller in the single price scheme. If K ≥ N then E(πr) ≤
E(πs).

We see that dynamic pricing is not useful when there is no shortage. The consumers’ ability to
time their purchases eliminates the possible benefits of inter-temporal price discrimination by the
seller. Therefore, in the remainder of this paper, we restrict ourselves to the case in which supply is
limited (K < N). Because the number of price changes is finite, it is conceivable that at some price
the number of offers received by the seller exceeds the number of units for sale. Since the buyer
cannot rank the buyers on their valuations, we assume that a proportional rationing mechanism is
employed to allocate the objects.

We next study the role of demand uncertainty. Uncertainty in demand can be due to uncertainty
in valuations and uncertainty in the number of buyers. Here we assume the number of buyers
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is known. We investigate whether dynamic pricing is better than static pricing when demand is
deterministic. The following example provides some insights.

Example 1. Suppose a seller has 2 units of product to sell, and there are 10 buyers. The valuation
vector is: (100,40,35,30,28,26,25,23,21,20). The optimal single price for the seller is 100, with a
realized sale of 1 and a total revenue of 100. The clearing price of 40 yields a revenue of 40×2 = 80.
Alternatively, the seller can pre-announce prices (82,20). The consumer with valuation 100 can get
a surplus of 100-82=18 for sure in period 1, or can get an expected surplus of (100−20)×2÷10 = 16
in period 2, provided a proportional rationing mechanism is used. Obviously, the first unit will be
sold at price 82 to the customer with valuation 100. As a result, the total revenue of the seller will
be 82+20, which is larger than 100. We conclude that for this particular case a dynamic price path
(82,20) is superior to the optimal single-price policy.

This example at least shows that a single price policy may not be optimal. However we may ask,
since a single-pricing policy is not optimal in this deterministic demand case, what is the structure
of an optimal pricing policy? How many price changes are needed? We answer this question in the
following lemma, which is interesting in its own right.

Lemma 2. If demand is deterministic and demand exceeds supply, the optimal pricing scheme has
no more than one price change.

When demand is deterministic everyone is aware of the clearance price. At any price above the
clearance price all bidders are assured of supply and at any price below the clearance price, the
firm can liquidate all inventories. Thus in any optimal pricing scheme there can be at most one
price above the clearance price and one price below the clearance price.

Based on these findings, in the remainder of this paper we assume that K < N and that demand
is uncertain.

4. Equilibrium Buying Behavior

4.1. Posted Pricing Scheme

In the posted pricing scheme, the seller announces and commits to a price path (P1, P2, ..PT ).
Clearly P1 ≥ P2 ≥ ..PT−1 ≥ PT . Let us begin with a two-period problem. We show next that the
equilibrium strategy is for all buyers with valuations above a threshold (y) to purchase in the first
period. In our analysis we treat the N th buyer as the focal buyer. We derive the optimal response
for this buyer given the strategies of the other N − 1 buyers.

Let:
i, j : Number of bidders in period 1 and period 2, respectively;
Pr1(i) : Probability that i− out− of − (N − 1) buyers bid in period 1;
Pr2(j|i) : Probability that j−out−of − (N −1− i) buyers bid in period 2 given that i buyers bid
in period 1;
π1(y) : Probability of the N th buyer getting the product in period 1; and
π2(y) : Probability of the N th buyer getting the product in period 2.

Proposition 2. For any set of prices (P1,P2), the following characterizes the unique Bayesian
Nash equilibrium:

Let y∗ be the smallest solution for equation(1) in the range [P1,1]. All buyers with valuations
v ∈ [y∗,1] will bid in period 1, and buyers with valuation v ∈ [P2, y

∗) will bid in period 2.
If equation(1) has no solution within the range [P1,1] , no one will bid for the product in period

1 and those with valuations in the range [P2,1] will bid in period 2.

π1(y)(y−P1) = π2(y)(y−P2), (1)
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N K Pricing if Buyers Are Assumed to Be Myopic Pricing if Buyers Are Assumed to Be Strategic
10 2 0.85,0.64 0.76,0.64
20 4 0.86,0.68 0.78,0.68
30 6 0.86,0.70 0.80,0.71
40 8 0.86,0.71 0.78,0.68
50 10 0.87,0.72 0.77,0.65

Table 1 Comparison of Optimal Prices, Buyers Distribution are U(0,1)

where:

π1(y) =
k−1∑
i=0

Pr1(i)+
N−1∑
i=k

k

i+1
Pr1(i)

π2(y) = EI,J [min(
k− i

j +1
,1)] =

k−1∑
i=0

Pr1(i)
j=N−1−i∑

j=0

Pr2(j|i)min(
K − i

j +1
,1)

Pr1(i) =
(

N − 1
i

)
(1−G(y))iG(y)(N−1−i) for i = 0,1, .....N − 1

Pr2(j|i) =
(

N − 1− i

j

)
(1− P2

G(y)
)j(

P2

G(y)
)(N−1−i−j) for i = 0, ..K − 1; j = 0, ..(N − 1− i)

Pr2(j|i) = 0, for i = K, ...N − 1; j = 0,1..(N − 1− i)
(2)

A buyer with valuation v will expect a surplus of (v−P1)π1(y) if he decides to purchase in period
1 and a surplus of (v−P2)π2(y) if he decides to wait till period 2. In both periods, the probability
of obtaining a unit of product depends upon the initial capacity level K, total population N , as
well as the decisions of all other consumers. Buyers with valuations sufficiently above P1 prefer to
buy in period 1 to reduce the likelihood of not getting the product. If the valuation is close to the
prevailing price, a buyer may find it worth while to wait for a lower price. The drop in price may
compensate for the decrease in probability of successful getting the product.

The fact that only buyers whose valuations are strictly greater than P1 are willing to purchase
at the higher price is one of the consequences of strategic behavior. This clearly decreases the
demand at the higher price and the expected revenues. The difference between the threshold level
y and P1 depends on the difference between P1 and P2. For a given P2 as we increase P1, y keeps
increasing. If the gap between P1 and P2 increases beyond a critical point, no one will offer to buy
at the higher price. Thus, a second major consequence of strategic behavior is a compression in
the prices. At optimality, the gap between P1 and P2 will be smaller relative to what it would be
if buyers were not strategic. Table 1 illustrates this point. In this example the valuations of all the
buyers are uniformly distributed between 0 and 1.

The threshold policy derived above extends to a general T period problem.

Proposition 3. For a T -period pricing scheme (P1, . . . , PT ), in each period t only buyers with
valuations greater than or equal to a threshold y∗t (kt) will bid for the product. The threshold depends
upon the number of units (kt) available for sale. For 1≤ t < T , y∗t (kt)≥ Pt and for t = T , y∗T (kT ) =
PT .

Proofs of these propositions hinge on the fact that, regardless of the strategy employed by other
buyers, for any given buyer the expected probability of obtaining the product does not increase
as the prices drop. This remains true even if N is a random variable. Hence a threshold policy
remains an equilibrium strategy when N is a random variable.
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Proposition 4. Let N be a random variable with probability density function η(.). This distrib-
ution is common knowledge among all the buyers and the seller. For a T -period pricing scheme
(P1, . . . , PT ), in each period t only buyers with valuations greater than or equal to a threshold y∗t (kt)
will bid for the product. The threshold depends upon the number of units (kt) available for sale. For
1≤ t < T , y∗t (kt)≥ Pt and for t = T , y∗T (kT ) = PT .

4.2. Contingent Pricing

In the contingent pricing scheme, the seller determines the price based on the inventory on hand
and does not commit to a price path. The buyers anticipate prices based on realized sales. Despite
the difference between contingent and posted pricing schemes, the structure of the equilibrium
remains the same. For brevity we derive the equilibrium for a two-price setting. The analysis can
be extended to multiple prices and uncertain N in a manner similar to that for the posted pricing
scheme.

Let P1 be the price in period 1, and P2i be the optimal price to be charged in period 2 when
i− out− of − (N − 1) other buyers bid in period 1; that is:

P2i = {p : max
p

p[
K−i∑
j=0

(
N − i

j

)
(1−F1(p))jF1(p)(N−i−j)j +

N−i∑
j=K−i+1

(
N − i

j

)
)(1−F1(p))j

F1(p)(N−i−j)(K − i)]} (3)

Let βi be the probability that the N th buyer will get the product if i− out− of −N − 1 other
buyers bid in period 1 and and the buyer decides to bid in period 2. Thus:

βi = Ej[min(
k− i

j +1
,1)] =

N−1−i∑
j=0

Pr2(j|i)min(
K − i

j +1
,1) for i = 0, . . . ,K − 1

βi = 0 for i = K, ...N − 1

Proposition 5. For any prices P1 the following characterizes the unique Bayesian Nash equilib-
rium. Let y∗ be the smallest solution for equation (4) in the range [P1,1]. All buyers with valuations
v ∈ [y∗,1] will bid in period 1. If equation(4) has no solution within the range [P1,1] , no one will
bid for the product in period 1. In period 2 all those whose valuations exceed P2 but are less than
y∗ will bid. P2 is contingent upon sales at price P1 and solves (3).

π1(y∗)(y−P1) =
k−1∑
i=0

Pr1(i)βi(y−P ∗
2i) (4)

5. Analysis of the Optimal Pricing Schemes

One of our goals is to understand types of pricing policies that firms can employ when consumers
anticipate prices. In particular, we want to evaluate the effectiveness of a posted pricing scheme
that involves one or two price changes. More generally, we would like to shed light on the following
questions:

1. What is the loss in revenues if a firm ignores strategic behavior?
2. Because scarcity drives dynamic pricing, what is the relationship between scarcity and the

value of dynamic pricing?
3. What is the optimum stocking level when buyers are strategic?
4. How many price changes are needed?
5. How do the characteristics of the valuation distribution influence pricing decisions?
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6. How effective is the posted pricing scheme as compared with the contingent pricing scheme?
7. How does uncertainty in the size of the market influence the performance of different pricing

schemes?
8. What is the value of withholding inventory information from buyers?
Determining optimal posted prices entails solving non-linear optimization problems that involve

polynomial equations of a high order. Unfortunately, this makes it difficult to gain analytic insights
into many of these questions. As a result, we have to resort to numerical experiments, and we
do so in the next section. Nevertheless, there are a handful of analytic insights that we are able
to elicit and we begin with the asymptotic properties of these policies. We explore the structure
of the policy when the number of price changes T approaches ∞ or the number of players in
the market N approaches ∞, while holding the ratio K/N constant. As the number of price
changes, T , approaches infinity, we can be sure that that allocations are made to those with the
highest valuations. This is significant as it enables us to determine the expected revenues. Also,
as N approaches infinity, the influence of uncertainty in valuations decreases, thereby simplifying
the structure of the optimal policies. Asymptotic analysis, besides being of independent interest,
provides us with an upper bound on expected revenues. Asymptotic analysis also gives us some
insights into the optimal stocking level decisions. We are able to provide a bound on the maximum
stock level for large markets (N). Finally, we derive sufficient conditions under which the firm is
better off concealing inventory levels.

5.1. Asymptotic Analysis

As the number of price changes T approaches ∞, the posted and contingent pricing schemes resem-
ble auctions. Accordingly, we draw on findings in auction theory to establish limiting properties.
Based on work by Milgrom and Weber(2000), it is fairly straight-forward to show that a firm
maximizes its revenues if it uses a first-price, simultaneous auction with a reserve price 4. . The
posted and contingent pricing schemes also have the objective of maximizing a firm’s revenues, and
we are able to show that both of these schemes are revenue-equivalent to the optimal mechanism.
Further, the lowest price charged in the limit in both schemes will be strictly greater than zero
and will correspond to the reservation price in the first-price auction. These results are formally
presented below, and for brevity we focus only on the posted pricing scheme. Let
J(vi) = [vi− 1−Gi(vi)

gi(vi)
],

V : vector of valuations of all N buyers
V−i: vector of valuations of N − 1 buyers other than i,
V j
−i: jth largest value in the vector V−i, and

yi(V ) = Max(J−1(0), V K
−i)

Proposition 6. If distribution G(.) is such that J(.) is non-decreasing, then in a posted pricing
scheme, as the number of price changes T →∞:

1. The lowest posted price PT → v∗, where v∗ = {v : J(v) = 0, for v ∈ (0,1) }.
2. The buyers with K highest valuations will get the product, provided their valuations are greater

than v∗.
3. The seller expected revenues are maximized

Let Q(vi, V−i) denote the probability that the ith buyer gets the product when his valuations is vi

and the valuation of the others is V−i. Set Q(vi, V−i) = 1 if vi > yi(vi, V−i) and 0 otherwise.
In the limit the seller’s expected revenues are given by:

∑
i∈N

EV [J(vi)Qi(vi, V−i)] (5)
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Note 1−Gi(vi)

gi(vi)
is the inverse of the hazard rate. If the valuation distribution G(.) has a non-

decreasing hazard rate then the virtual value function J(.) is strictly increasing (Krishnan (2002)).
An interesting consequence of strategic buyer behavior is that the lowest price charged will in
general be greater than zero, even if we permit an unlimited number of price change. The lowest
price charged will be such that the virtual valuation is zero, not the actual value. For example,
if the valuations are uniformly distributed between zero and one, then the lowest price will 0.5.
Proposition 6, also provides us with an upper bound on the expected revenues that is easy to
compute. We will use this upper bound to numerically evaluate pricing schemes.

We have seen in section 3 that when demand is deterministic we need at most two prices. In the
limit, as N becomes large we would intuitively expect, due to the law of large numbers, the effect
of uncertainty to progressively diminish. Thus, it is useful to understand the impact of the size of
the market on the pricing policies. We show in the following proposition that in the limit, as N
approaches ∞ and K/N is held constant, we need at most two prices. This is the same result we
had when there was no uncertainty in valuations.

Proposition 7. For any fixed ratio K/N , as N approaches ∞ the optimal pricing scheme involves
at most two prices.

In the next section, we use numerical experiments to provide an understanding of how rapidly a
two-price scheme converges to the optimal value as the market size grows.

5.2. Optimal Stocking Levels

We have seen in section 3 that as the ratio K
N

approaches 0 or 1, a single price is adequate. In
our numerical experiments we find that the performance of the pricing schemes depends upon this
ratio. In this context, the optimal stocking ratios become relevant. Are the optimal stocking levels
such that only a few price changes result in near optimal revenues? We can show that optimal
revenues are concave increasing in the number of units K available for sale. We also find that as
the number of buyers in the market N grows large the firm finds it optimal to stock no more than
the fraction of the market that can afford the optimal reservation price.

Proposition 8. The optimal expected revenues are concave increasing in K for fixed N .

Proposition 9. As N approaches ∞, the optimal stocking level approaches N ∗ (1−G(v∗)), where
v∗ = {v : [vi− 1−Gi(vi)

gi(vi)
] = 0, for v ∈ (0,1) }

The optimal stocking level, in the limit, is a percentile of the valuation distribution. For example,
for uniformly distributed valuations, the optimal stocking level is the 50th percentile. The inventory
level in a newsvendor problem is also a percentile, but of the demand distribution. In the newsven-
dor problem, the uncertainty is in the number of buyers that will purchase at a given price. Here
too there is uncertainty in demand at a given price, but we optimally change prices.

5.3. Value of Inventory Information

Should sellers reveal the number of units they have for sale? Should a seller reveal the number
of units for sale and then conceal the actual sales information? If the seller chooses not to reveal
the number of units available for sale then the firm forgoes the ability to price optimally based on
available stock. Thus, hiding initial sales quantity may not benefit the seller. On the other hand in
a posted pricing scheme, concealing the number of units sold at different prices impacts the seller
and buyer in different ways. Under this scheme, the seller is setting prices based on anticipated
sales. By concealing sales information, the seller is forcing the buyers to work with the same limited
information set that the buyer used to determine prices. We conjecture that it always beneficial
for the seller to conceal sales information, although we are unable to establish this analytically. We
can only provide sufficient conditions under which hiding sales information benefits a seller.
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The question of whether or not a firm should conceal sales data is equivalent to studying the
impact on profits if prices are fixed but the number of units for sale is a random variable. For
simplicity, and without loss of generality, let us suppose that inventory levels are believed to be
either high or low. The probability of inventories being high will increase the propensity to wait
for lower prices, and the possibility of the inventories being low will cause buyers to bid at higher
prices. Since we are considering situations in which initial sales quantities (K), market size (N),
and the distribution of the valuations (G(.)) are known, beliefs about the number of unsold units
should be unbiased and well calibrated.

Below, we provide sufficient conditions under which concealing inventories increases expected
revenues.

Let Π(K,N,P1, P2, y) be expected profits for the firm when the threshold is y and the number
units for sale is known to be K.

Proposition 10. Let us suppose that the buyers believe that with probability α the inventory level
is K1 and with probability 1−α the inventory level is K2. With these assumptions and for posted
prices P1 and P2, let the threshold value be given by y(α). If y(α) is convex and Π(K,N,P1, P2, y)
is concave in y, then a firm’s expected profits are higher if it does not reveal inventory levels.

The properties of two factors y(.) and Π(.) are central to proposition 10. Interestingly, y(.) is related
to buyers’ behavior and Π(.) depends upon the valuation distribution G(.).

As α increases, the likelihood of the inventory being high increases. This should induce more
buyers to defer their bid. Recall only buyers whose valuations exceed y(α) bid when the price is
P1. Consequently, as α increases, for a given set of prices the threshold level y(α) will increase. If
y(α) is convex, then it means that the threshold levels will decrease rapidly as α drops below one;
on the other hand, as α increases from zero the threshold level rises very slowly. Convexity of y(.)
implies that for most values of α the threshold level is ”low”. This, in turn, means that buyers bid
more aggressively or act as if they are averse to stock-outs.

Proposition 10 only contains sufficient conditions for hiding sales information. We conjecture
that for a posted pricing scheme the seller always benefits from concealing sales data. The above
discussion also suggests that if buyers are risk averse this benefit is likely to be greater. In our
numerical examples, we find that y(.) is convex for valuations that are uniformly distributed. We
do not assume risk aversion.

6. Numerical Experiments

We begin this section with examples that measure the cost of ignoring strategic behavior. Next,
we investigate the loss in optimality due to limiting the number of price changes. We know from
proposition 6 that as the number of price changes increases the performance of both the posted
and contingent pricing schemes will improve, and in the limit attain optimality. This proposition
also gives us the upper bound that will be used to determine the loss in optimality from limited
price changes.

There are several factors that influence the performance of the pricing schemes. Two of them
are market size and scarcity levels (K/N). We therefore vary these two parameters. The third
factor that has a bearing on revenues is the distribution of customer valuations (G(.)). We consider
three different valuation distributions: Uniform, Beta(8,2), and Beta(2,8). Beta (8,2) is skewed to
the right, and under this distribution most of the buyers have high valuations. B(2,8) is skewed
to the left. The fourth factor is uncertainty in the market size. Intuitively, we would expect the
performance of a limited price change scheme to deteriorate if we introduce uncertainty in the
number of buyers.

Finally, we present examples that explore whether or not the firm should conceal inventory
levels. We have seen in the previous section that there are two different approaches to concealing
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Figure 1 Drop in expected revenues when seller uses two posted prices without considering strategic behavior

inventory information. One method is for the firm to conceal the number of units for sale at the
beginning of the selling horizon. An alternate approach is to truthfully reveal the number of units
for sale at the beginning but withhold sales information. For uniformly distributed valuations, we
study these two situations.

Figure 1 shows the consequences of ignoring strategic behavior. A firm that ignores strategic
behavior will set prices based on the assumption that a buyer will purchase if his or her valuation
exceeds the current price. We refer to prices set under this assumption as naive prices. Figure 1
shows the percentage drop in expected revenues if a seller employs naive prices instead of the opti-
mal posted prices that consider strategic behavior. Here, valuations are assumed to be distributed
uniformly between 0 and 1. For this distribution, the percentage loss in revenues varies between
5.5% and 13%. As the market size N increases, the percentage loss decreases. For higher K/N
ratios, the loss in expected revenues also appears to be lower.

In Figure 2 to 6 we graph the percentage loss in optimality when a firm uses two or three posted
prices. We compare the expected revenue from the posted price scheme with the maximum possible
revenues (upper bound). For uniform distribution and three prices (Figure 3) the loss is no more
than 3%. When the K/N ratio is close to 50% the percentage loss is generally under 1% for three
prices. Figures 4 through 6 show the effect of the valuation distribution (G(.)). It is interesting
to compare Figures 5 and 6. For Beta(8,2), which is right-skewed, we find that we are close to
the upper bound with just two prices. On the other hand, when valuations are Beta(2,8) and the
bulk of the buyers have lower valuations, the performance of the two-price scheme is considerably
worse. In this case, it appears that you need more price changes. On the positive side, for all three
distributions for N greater than 30, and with stocking levels of 50%, it appears that two posted
prices are adequate.

The stocking decision will of course depend upon the product cost. Table 2 contains the optimal
stocking levels for different costs, when N = 20 and the valuations are U(0,1).

We know from proposition 9 that for large N the stocking level depends upon the reservation
price level v∗. When N is large even if the cost of the product is zero, the firm will not stock much
more than N ∗ (1−G(v∗)), and the corresponding K/N ratio will be 1−G(v∗). For U(0,1), this
limit is 50%, for Beta(8,2) (right skewed) the ratio is 13.5% and for Beta(2,8) (left skewed) the
ratio is 92%. This suggests that when the distribution is left-skewed the stocking levels are going
to be higher, decreasing the loss in optimality from a limited number of price changes.



Author: Article Short Title
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 13

10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Buyers

 %
 D

ec
re

as
e

2 Posted Prices, Uniform Distribution

K/N=10%
K/N=20%
K/N=50%

Figure 2 % loss in optimality, 2 posted prices and uniform distribution

10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Number of Buyers

 %
 D

ec
re

as
e

3 Posted Prices, Uniform Distribution

K/N=10%
K/N=20%
K/N=50%

Figure 3 % loss in optimality, 3 posted prices and uniform distribution

Cost Optimal K/N
0.1 50%
0.2 40%
0.3 35%
0.4 30%
0.5 25%

Table 2 N=20,Valuation U(0,1)

Let us now compare the posted pricing scheme with the contingent pricing scheme. If buyers
are not strategic then clearly the contingent pricing scheme dominates the posted pricing scheme.
However, this need not be true when buyers are strategic. A seller who adopts a posted pricing
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Figure 5 % loss in optimality, 3 posted prices, Beta(2,8):left skewed

forgoes some flexibility, but this commitment also eliminates options for the buyer. Thus, on bal-
ance, it is difficult to predict the impact on expected revenues. Our computational experiments
suggest that neither procedure dominates. Figure 7 compares the percentage difference in expected
profits between posted and contingent pricing schemes5. for N = 20. Both schemes employ two
prices. The differences between the two is small. The maximum difference we found is 1.6% and this
difference will decrease further if either N or the number of price changes increases. This suggests
that a posted pricing scheme may be adequate if the only uncertainty is that of buyer valuations.

For the seller, is there greater value to the option of delaying pricing decisions if there is uncer-
tainty in the size of the market? Figure 8 sheds some light on this question. Here we assume that
N is either small(7) or large (20) with probabilities α and 1−α, respectively. The number of units
for sale is fixed at 5. The two schemes are within one or two percentage points of each other, and
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Figure 7 Comparison of Posted and Contingent Pricing Schemes, Fixed N

the relative performance seems to depend upon the expected value of the scarcity ratio (K/N).
For higher levels of scarcity or lower values of K/N , contingent pricing appears to be marginally
better than a posted pricing scheme. This little example does not, however, present a compelling
reason to abandon a posted pricing scheme in favor of the contingent pricing.

The last two examples explore the role of inventory information. We begin with the question
of whether or not a firm should conceal the number of units available for sale at the start of the
season. We assume that the valuations are U(0,1) and that there are 20 buyers who all believe
that the stock level is either 5 or 15 with probabilities α and 1−α, respectively. These beliefs are
unbiased and well calibrated. The firm, however, knows the actual stock level. In this situation the
firm can either price based on the actual stock level or act as if it too does not know the true stock
level but holds the same beliefs as the buyers. Once the prices are announced by the firm, buyers
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Figure 9 Value of Revealing Initial Sales Quantity, Valuations U(0,1), N=20

can discern the approach adopted by the firm. Figure 9 shows the change in expected revenues if
the firm bases its prices on actual stock levels instead of treating stock levels as random variables.
In this example, the firm is marginally better off if it reveals the stock levels.

In the last example we consider the question of whether the firm should hide sales information.
Because this is an intermediary stage in the selling process, and because we are assuming posted
prices, the firm can not change price based on the inventory level. We therefore fix prices and
compute expected profits for different estimates of the number of units available for sale. Here
N = 12 and K = 2 with probability α and N = 12 and K = 4 with probability 1−α. The valuations
are assumed to be U(0,1). In this case (Figure 10) we find that it is beneficial for the firm to hide
sales information. Overall the value of inventory information does not seem significant.
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Figure 10 Value of Concealing Sales, Valuations Are U(0,1), N=20

7. Conclusion

The objective of this paper was to understand optimal pricing policies when consumers are strategic
and it is difficult to change prices frequently. One of our main findings is that when buyers are
strategic dynamic pricing is valuable only if buyers consider stock-outs as a possibility. Strategic
buyers purchase a product only if their valuations exceed a threshold. This threshold is higher than
the prevailing price and depends on the perceived level of scarcity. Thus at any given price fewer
buyers will buy than a firm which ignores such behavior would expect to sell. More over, when
buyers are strategic the the gap between the highest and the lowest prices is compressed. Stated
another way, if a seller ignores strategic behavior while setting prices his or her initial price will be
too high, and most buyers will prefer to wait for a price drop. We also find that, given any level of
supply, as the size of the market increases the need for price changes decreases. Even for markets
with 50 buyers two prices result in near optimal revenues. Overall our computations suggest that
a simple policy of announcing a small number of prices at the beginning of the sales season is close
to optimal. We arrive at this finding assuming that all buyers are strategic. Interestingly Mantrala
and Rao (2001) also find that two or three prices changes are adequate. Their analysis, however,
assumes that none of the buyers are strategic.

Our analysis is based on several restrictive assumptions, the most significant of which is that
buyers have the ability and find it worthwhile to compute their equilibrium strategies. It will be
interesting to conduct experiments to see how buyers actually make purchase decisions in such
situations. Another assumption we make is that the number of buyers, or the distribution of the
number of buyers in the market, is common knowledge. It is quite likely that for many short-life-
cycle products the biggest challenge may lie in determining the size of the market. We also assume
that all buyers are strategic. We do so to isolate the impact of strategic behavior. In practice only
a percentage of the buyers are likely to be strategic. The presence of non-strategic buyers will
increase sales at higher prices, and increase the likelihood of stock-outs at lower prices. This in
turn should cause the threshold levels for strategic buyers to decrease. The net result could be a
mitigation of the role played by strategic buyers.

There are a number of directions in which this work needs to be extended, which include incorpo-
rating different types of customers some of whom are strategic and other who are not, incorporating
search costs for buyers, and allowing multiple substitutable products.
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Appendix. Proofs

[ Proof of Lemma 1]
For a buyer with valuation v ∈ (P1,1], let Z(v) denote the change in the expected surplus if the

buyer bids in period 2 instead of period 1. Buyers with valuations less than P1 will not bid in
period 1. Recall that f(p) is the probability density function of prices to be charged in period 2. We
therefore have Z(v) = (v−P1)−

∫ v

0
(v−p)f(p)dp = (v−P1)−vF (v)+

∫ v

0
pf(p)dp, for any v ∈ (P1,1).

Taking the first derivative we get ∂Z(v)

∂v
|v≥P1

= 1−F (v)≥ 0. Hence Z(v) is an nondecreasing function
of v ∈ (P1,1).

Due to the continuity and monotonicity of the function Z(v), if there is an indifference point
v∗ ∈ (P1,1) such that Z(v∗) = 0, then v∗ must be the unique. The monotonicity of Z(.) implies that
only consumers with valuation v≥ v∗ will bid in period 1.

[ Proof of Proposition 1] We first consider the case in which there exists a v∗ such that Z(v∗) =
0. Expected sales in period 1 is NPr(v ≥ v∗) = N(1−G(v∗)) and expected sales in period 2 is
NPr(P2 < v < v∗) = N [G(v∗) − G(P2)]. Hence, the expected revenue of the contingent pricing
scheme is:

E(πR) = N [1−G(v∗)]P1 +
∫ v

0

N [G(v∗)−G(P2)P2f(P2)dP2

subject to : (v∗−P1)−
∫ v∗

0

(v∗−P2)f(P2)dp2 = 0

This implies:

P1 = v∗−
∫ v∗

0

(v∗−P2)f(P2)dP2

E(πR) = N [1−G(v∗)]v∗[1−F (v∗)]+ [1−G(v∗)]
∫ v∗

0

P2f(P2)dP2 +
∫ v∗

0

[G(v∗)−G(P1)]P1f(P1)dP1

= N [1−G(v∗)]v∗[1−F (v∗)]+
∫ v∗

0

[1−G(P1)]P1f(P1)dP1

≤ E(πs)[1−F (v∗)]+E(πs)F (v∗)
= E(πs)

Here, E(πs) is defined as E(πs) = maxp∈(0,1)N [1−G(p)]p.
If the indifference point v∗ does not exist, then because Z(.) is monotone increasing and Z(1) < 0

every buyer would be better off if he postpones bidding until period 2. Therefore, the optimal
pricing strategy for the seller is just a single price that maximizes her expected revenues E(πs).

[ Proof of Lemma 2] When demand is deterministic, if capacity is limited, there always exists
a clearing price Pc that equates supply and demand. Clearly, the set of optimal prices cannot all
be lower than Pc nor can they all be above Pc. The range of the optimal prices must include the
clearing price Pc.

Let us assume for the sake of a contradiction that the optimal pricing scheme consists of three
prices P1 > P2 > P3. First, assume that P1 > Pc > P2 > P3. In this case, sellers cannot be worse off
if they employs a pricing scheme (P1, P2) instead of (P1, P2, P3). At price P2, all inventories can be
cleared for sure.

On the other hand, if P1 > P2 > Pc > P3, buyers know for sure that at price P2 there will not be
a stock-out. Hence, no sales will occur at price P1. The seller would be indifferent between (P2, P3)
and (P1,P2,P3).

By the same logic, we can show that the optimal pricing schemes can never have more than
three prices.
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[ Proof of Proposition 2] A very general policy is for a buyer with valuation v to bid with
probability p(v) in period 1. Clearly we must have the following:

a1) p(v) = 0 if v≤ P1, and
a2) all buyers with valuations greater than P2 bid either in period 1 or period 2.

Let B be the set of values for which p(v) > 0. We also require that:
a3) for v distributed as G(.), Prob(v ∈B) > 0.

Assume N − 1 buyers follow the bidding strategy given above. Let π1 and π2 be the probabilities
that the N th buyer gets the product in periods 1 and 2, respectively. Let v∗ ∈ [P1,1] be a solution
to the equation:

(v−P1)π1 = (v−P2)π2 (6)

Let Z(v) = (v−P1)π1− (v−P2)π2. Z(.) represents the incremental value of bidding in period 1
instead of period 2. Since v∗ solves equation(6), Z(v) = (v − v∗)(π1 − π2). Due to (a1), (a2), and
(a3) π1 > π2. Thus, Z() is strictly monotone increasing. Hence, if the valuation of the N th buyer
v≥ v∗, then Z(v) > 0 and it is optimal for the N th buyer to bid in period 1. Strict monotonicity of
Z(.) also implies that there is at most one solution for equation(6). If equation(6) does not have
a solution the N th buyer will not bid in period 1. What we have just shown is that regardless of
the strategies followed by the other N − 1 buyers the optimal strategy for the N th buyer is to bid
if his valuation exceeds y∗. This in turn establishes that the unique equilibrium strategy is for all
buyers to bid in the first period if and only if their valuations exceed some threshold.

Solutions to equation(1) represent candidate threshold values. If there is only one solution y∗

to this equation in the range [P1,1], then everyone with a valuation above y∗ will bid in period 1.
What if there are multiple solutions in the range [P1,1]? In that case, we let y∗ be the smallest
solution. Even if N − 1 buyers elect to bid if their valuations exceed y∗, it is still attractive for
the N th bidder to bid if his valuation exceeds y∗. Let y′ be another solution to equation(1). By
definition y′ > y∗. If some of the buyers choose to bid only if their values are higher than y′, then
these buyers decrease competition in period 1, making it more attractive for those bidding in period
1. Thus, everyone with valuations above y∗ will bid in period 1.

What if there is no solution to equation(1)? Because Z(P1) < 0 and Z(y) are continuous for any
y ∈ (P1,1), we know that Z(y) < 0 for any y ∈ (P1,1) (otherwise Z(y) = 0 would have a solution).
In particular, we have Z(1) < 0. Thus even if all of the other buyers delay their purchases to the
second period, the N th buyer will also not bid in the first period.

[ Proof of Proposition 3]
Proposition 2 establishes the equilibrium for a two-period problem. We use induction on the

number of time periods to extend that result to a T period pricing problem.
Assume that for a T − 1 period posted pricing scheme with prices (P1, . . . , PT−1), where Pi >

Pj for any i, j ∈ {1, . . . , T − 1}, and i < j, buyers’ behavior is characterized by a set of thresh-
olds: y∗1(k1)≥ . . . y∗j (kj)≥ · · · ≥ y∗T−1(kT−1) = PT−1. Only buyers with valuations within the range
[y∗j (kj), y∗j−1(kj−1)] bid for the products at price Pj. The threshold value (y∗j ) depends upon the
number of units available for sale (kj). Let us now consider a T -period problem, and for ease of
notation we will denote this additional period as period 0. The T periods pricing scheme is now
given by: (P0, P1, . . . , PT−1).

Let πi(y) denote the probability that the focal buyer obtains the product given that all buyers
follow the policy [y∗1(k1), . . . , y∗i (ki), . . . , y∗T−1(kT−1)] and follow the bidding strategy described in
Proposition 2 in period 0. As in the proof of Proposition 2, we have πi(y) ≥ πj(y) for all i, j ∈
{0,1, . . . , T − 1} and i < j. Next, consider the following equation:

π0(y)(y−P0) = max
j=1,...,T−1

{πj(y)(y−Pj)} (7)
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If equation (7) has a solution y = y∗0 , then due to the reasons employed in proposition 2, the focal
buyer will buy in period 0 if his valuation y ≥ y∗0 , otherwise this buyer will delay bidding until a
future period.

If equation (7) has no solution in the range of (P0,1], no buyer will bid for the product in period
0 as ws also explained in the proof of proposition 2.

Once again, because πi(y)≥ πj(y) if equation(7) has multiple solutions, the smallest solution in
the range [P0,1] is chosen as the threshold.

Thus, we see that in the first period of a T -periods pricing scheme (P0, . . . , PT−1), the strategic
buyers’ equilibrium is also a threshold policy and proposition 2 extends fully to a T -period case.

[ Proof of Proposition 4] This proof is similar to that of proposition 3, and we omit the details.
If N is uncertain, then we merely have to condition probabilities of a successful bid on N .

[ Proof of Proposition 5] Note that the right-hand side (RHS)of (4) is a piece-wise linear function
of y for any given y∗. Also, we see that the slope of the left-hand side (LHS) is greater than the

slope of RHS for each cut-off value y∗, since π1(y∗) =
K−1∑
i=0

Pr1(i)+
N−1∑
i=k

Pr1(i) K
i+1

>
K−1∑
i=0

Pr1(i)βi.

Let y∗ be the smallest solution in [P1,1] for equation (4). For any buyer with a valuation y > y∗,
the difference in expected surplus between buying in period 1 and buying in period 2, given that all

the other buyers follow the policy of threshold value y∗,is : D(y) = π1(y∗)(y−P1)−
K−1∑
i=0

Pr1(i)βi(y−
p∗2r) = (y − y∗)[π1(y∗)−

∑
K−1
i=0 Pr1(i)βi] > 0. It is straightforward to see thatD(y) < 0 for any

y < y∗. This concludes our proof.
[ Proof of Proposition 6] We need to derive the optimal mechanism and show that a T -period

posted pricing scheme with PT converging to v∗ yields the same revenues as the optimal mechanism.
Given any mechanism, let mi(v) denote the expected payment by a buyer with a valuation v. The
mechanism will also determine probabilities Qi(vi, V−i). Define q(vi) =

∫
V−i

Q(vi,X−i)g(X−i)dX−i.
Due to the revelation principle (Milgrom,2002,1998; and Krishnan, 2002: page 63), expected rev-
enues for any mechanism under equilibrium are given by:

EΠQ =
∑
i∈N

mi(0)+
∑
i∈N

∫

v

J(vi)Qi(vi, V−i)g(vi, V−i)dV (8)

Design of an optimal mechanism then becomes one of finding Qi(vi, V−i) so as to maximize EΠQ,
subject to (a) incentive compatibility, (b) individual rationality, and (c) capacity constraints. These
constraints in turn can be formulated as follows (Krishnan,2002: page 63):

q(v)− q(v′)≥ 0 for all v≥ v′ (9)
mi(0)≤ 0 (10)

N∑
i=1

Qi(v) ≤ K (11)

Any allocation scheme that sells the product to buyers with the K highest valuations, provided
their valuations are above the threshold v∗, will result in allocation probabilities Q(vi, V−i) = 1 if
vi > yi(vi, V−i) and 0 otherwise. This allocation scheme ensures that mi(0) = 0 and satisfies the
capacity constraint (10). It also maximizes the objective value by allocating unit weights to the
K largest J(vi) for every outcome V , provided J(vi)≥ 0 (See also Krishnan 2002, page 63). The
only thing left to show is that the constraint set (8) is satisfied. Observe that if Q(vi, V−i) = 1 for
vi = v′, then for all vi > v′, Q(vi, V−i) = 1. This ensures that the constraint set (8) is satisfied and
establishes the optimality of the proposed allocation scheme. To complete the proof, we have to
show that in a posted price scheme with the limit T →∞ and in which PT → v∗ buyers with the K
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highest valuations get the product, provided that their valuations are above v∗. Since in the limit
PT equals v∗, only those with valuations above v∗ will get the product. All that is left to show is
that those with the highest valuations get the product.

Suppose there are K ′ objects available for sale and the current price is P . In the next ”period”
the price is going to be P − ∆P . A buyer with valuation y, will buy now if: π (y−P ) >
(π−∆π) (y−P +∆P ), where π is the probability that the buyer will get the product at price P .
Clearly, if the inequality holds for some y′, then it holds for all y ≥ y′. Hence, buyers with higher
valuations will bid earlier in the process.

[ Proof of Proposition 7] Proof: Let θ > 0 be a large positive number that is used for scaling the
market by having θN potential customers and θK units to sell.

For any given pricing scheme (P θ
1 , . . . , P θ

T ), where 1 ≥ P θ
i > P θ

i+1 for i = 1, . . . , T − 1, we know
there exist a series of threshold values yθ

1 , ..y
θ
T−1 that characterize customer’s purchasing behavior.

The number of customers N(P θ
i ) who bid at price P θ

i is a random number with mean Nθ[F (yθ
i−1)−

F (yθ
i )]. By the law of large numbers as θ→∞,

N(P θ
i )

θ
→N [F (P(i−1)r)−F (Pir)] almost surely.

Thus, we have deterministic demand in the limit. Using lemma 2, we conclude that at most two
prices are needed. Further, if two prices are needed then the clearing price is located between these
two prices.

[ Proof of Proposition 8] The proof is based on sample path arguments. For any given realization
of value vi, i = 1, . . . ,N , the optimal revenue is

R(K) =
N∑

i=1

Ji(vi)Qi(vi, v−i)

Now, let us increase the capacity K by one unit. If the (K +1)st largest value in the realization
vi, i = 1, . . . ,N is no greater than the reservation price v∗, then R(K) = R(K + i), i = 1, . . . ,N −K.
Thus the expected revenue does not change if we increase the supply.

If the (K +1)st largest value vK+1 in the realization vi, i = 1, . . . ,N is greater than the reservation
price v∗, then ∆R(K) = J(vK+1). Because of the nature of order statistics and our assumption
about increasing virtual value function J(.), the revenue improvement, if positive, will be non-
increasing.

Thus, for fixed N expected marginal revenue is a non-increasing, non-negative function of K.
[ Proof of Proposition 9] As shown in proposition 8, if we increase the number of units available

for sale from K to K +1, then revenues will increase provided the valuations of the buyer with the
K +1th highest valuation exceeds v∗. By the law of large numbers,the number of customers whose
valuations are no less than v∗ is asymptotically N [1−G(v∗)] for sure as N →∞. In other words,
the optimal number of units sold asymptotically approaches N [1−G(v∗)] as N →∞.

[ Proof of Proposition 10] Let us assume that the firm has inventory levels K1 and K2, where
N > K1 > K2, with probabilities α and (1 − α), respectively. If the firm truthfully reveals its
inventory levels then the expected revenues are

αΠ(K1,N,P1, P2, y1)+ (1−α) ∗Π(K2,N − (K1−K2), P1, P2, y2) (12)

On the other hand, if the firm does not reveal its inventory levels, the expected profits are:

αΠ(K1,N,P1,P2, yα)+ (1−α)Π(K2,N − (K1−K2), P1, P2, yα) (13)
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It will be optimal for the firm to hide inventories if

αΠ(K1,N,P1, P2, yα)+ (1−α)Π(K2,N − (K1−K2), P1, P2, yα)
≥ αΠ(K1,N,P1, P2, y1)+ (1−α)Π(K2,N − (K1−K2), P1, P2, y2) (14)

The right hand side of (14) is linear in α, and for α = 0 andα = 1 the left-hand side and right-hand
side are equal. Therefore inequality (14) holds if we can show that the left-hand side is a concave
function of α.

Let H(α) = αΠ(K1,N,P1, P2, yα)+ (1−α)Π(K2,N − (K1−K2), P1, P2, yα). For ease of notation
let Πi = Π(Ki,N − (K1−Ki), P1, P2, yα). We need to show d2H(α)

dα2 ≤ 0. Using the chain rule, we get:

d2H(α)
dα2

= 2[
dΠ1

dy
− dΠ2

dy
]
dy

dα
+ [α

d2Π1

d2y
+(1−α)

d2Π2

d2y
][

dy

dα
]2 + [α

dΠ1

dy
+(1−α)

dΠ2

dy
]
d2y

d2α
(15)

As α increases, the probability of higher inventory levels increase; this in turn implies that threshold
levels will decrease. Therefore, dy

dα
≤ 0. Also, as inventory levels increase the loss for the firm from

increasing threshold levels is greater (i.e.,you are more likely to lose a sale) and thus [dΠ1
dy
− dΠ2

dy
]≥ 0.

Consequently, the first term on the right-hand side is negative. Since the profit function is assumed
to be concave in y, the second term is negative, and the third term is negative because profits
decrease with increases in threshold levels and we have assumed that yα is convex. Because all
three terms are negative, the proof is complete.

Endnotes

1. Dynamic pricing is a sub-field for general pricing theory. In pricing theory there is a long
tradition of incorporating strategic consumer behavior. In our literature review we elaborate on
this point.
2. Filene’s basement store in Boston is famous for using this approach (www.filenesbasement.com)
3. Pricing strategies in which number of price changes is random may increase a firm’s expected
revenues. We ignore that possibility and view the number of price changes as an industry norm.
4. This is one of several allocation mechanisms that maximize revenues.
5. The figure plots (posted−contingent)

posted
against K
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