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Abstract: In this article we address an important class of supply contracts called the Rolling Horizon Flexibility (RHF) contracts.
Under such a contract, at the beginning of the horizon a buyer has to commit requirements for components for each period into the
future. Usually, a supplier provides limited flexibility to the buyer to adjust the current order and future commitments in a rolling
horizon manner. We present a general model for a buyer’s procurement decision under RHF contracts. We propose two heuristics
and derive a lower bound. Numerically, we demonstrate the effectiveness of the heuristics for both stationary and non-stationary
demands. We show that the heuristics are easy to compute, and hence, amenable to practical implementation. We also propose
two measures for the order process that allow us to (a) evaluate the effectiveness of RHF contracts in restricting the variability in
the orders, and (b) measure the accuracy of advance information vis-a-vis the actual orders. Numerically we demonstrate that the
order process variability decreases significantly as flexibility decreases without a dramatic increase in expected costs. Our numer-
ical studies provide several other managerial insights for the buyer; for example, we provide insights into how much flexibility is
sufficient, the value of additional flexibility, the effect of flexibility on customer satisfaction (as measured by fill rate), etc. © 2008
Wiley Periodicals, Inc. Naval Research Logistics 55: 459–477, 2008
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1. INTRODUCTION

A major part of every manufacturing and distribution
activity is to ensure a smooth supply of raw materials and
components needed to produce and assemble the final prod-
uct in a cost-effective manner. This is especially important
because, increasingly, in many industries the cost of raw
materials/components constitutes approximately 60–70% of
the cost of an end-product. A manufacturer needs to make
sourcing, supplier selection, and business allocation deci-
sions in the presence of several types of uncertainties in
supply and demand. Supply contracts can play an important
role in managing these uncertainties.

Different supply contracts will have different impact on
the behavior of the parties involved, risks imposed on them,
and the resulting efficiencies; see for example, discussions in
Anupindi and Bassok [4]. Fundamentally, a buyer faced with
stochastic demand takes on the demand risk by keeping some
safety stock; this is unavoidable as long as the buyer has to
place orders before observing the demand. A supplier’s risk is
due to the uncertainty in the order process which may affect its
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production costs. Suppliers wary of taking the risk might ask
for firm commitments from the buyer, which in turn imposes
risk on the buyer. In the classical uncapacitated newsvendor
problem with no commitments the order process has the same
level of uncertainty as the demand process; such “newsven-
dor contracts” may not be acceptable to the supplier. Realistic
contracts should strike a balance between the risks faced by a
supplier (of uncertainty in orders) and risks faced by the buyer
(of making commitments to purchase certain quantities).

Various types of contracts can be proposed that try to
achieve this balance between risk sharing and commitment.
In this article, we analyze one such class of contracts popu-
larly used in the industry, called a rolling horizon flexibility
(RHF) contract. Under such a contract, at the beginning of
the horizon a buyer has to forecast and make commitments
for components for each period into the future. Usually, a
supplier provides limited flexibility to the buyer to adjust the
current order and future commitments in a rolling horizon
manner. Consider the following example: a supplier allows
a 5% flexibility to adjust the current period order, 10% flex-
ibility to adjust the commitment one-period from now, and
20% flexibility to adjust the commitment two periods from
now. We illustrate the dynamics of such a RHF model in
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Figure 1. The Dynamics of a RHF Contract. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Fig. 1 where the current period is represented by a dia-
mond and future periods by a rectangle. Suppose that the
commitment for period 3 in period 0 was 120. In period 1,
this commitment can be adjusted by 20%. Thus the period 3
commitment made in period 1 could be between [96, 144].
Say, the commitment updated in period 1 for period 3 is
110. In period 2, the commitment made for period 3 can
be adjusted by 10%; that is, the new commitment could be
between [99, 121]. Say the buyer chooses 100. In period 3, the
buyer is allowed to actually purchase within 5% of previous
commitment of 100, i.e., between 95 and 105.

Usually these types of contracts provide the manufacturer
with a high level of long-term and a low level of short-term
flexibility. The short-term flexibility is low because the sup-
plier may have limited means to adjust quantities within the
production lead-time. Bassok et al. [8] discuss an example of
such a contract used by the printer division of a major com-
puter manufacturer. Sun Microsystems uses similar contracts
for the purchase of various components [12]. Tsay and Love-
joy [21] present several examples of companies in electronic
and nonelectronic industries that use RHF contracts.

RHF contracts are useful under two situations. First, sup-
pose a supplier’s productions costs are affected by the vari-
ability in the order process. Note that the buyer’s operating
costs are clearly affected by the variability of the demand
process. The type of flexibility contract observed will then
depend on the cost of variability to each player and the
channel structure (for e.g., centralized vs. decentralized). For
example, Anupindi [1] shows that a flexibility contract will
be observed under a cooperative game theoretic setting as
long as both players have costs of variability. Furthermore,
the variability in the order process could be adversely affected
by a forecasting process adopted by a buyer under either

stationary [11] or nonstationary [15] demands. Thus, such
contracts could be of potentially greater value to a supplier
when a buyer adopts some forecasting process for market
demand. Second, suppose that there is asymmetric informa-
tion between a buyer and a seller regarding market demand.
In this case a buyer may have an incentive to mis-state his
intended purchase. Flexibility contracts (by limiting flexibil-
ity unlike in a newsvendor contract) make a buyer partially
responsible for any advance information regarding orders that
he passes to the supplier.

In this article we present a general model for an RHF con-
tract for procurement. Our article focuses on the analysis of
the buyer’s procurement problem. Informally, in an RHF con-
tract a buyer needs to compute the initial commitments for
the entire horizon knowing that he has the flexibility to (a)
adjust the actual purchase in a period and (b) update future
commitments, such that the expected costs are minimized. An
optimal solution to the general RHF contract is unknown and
perhaps complex. We present two heuristics. One of them is
based on the concept of open loop feedback control (OLFC).
The second is based on a specialization of the RHF con-
tract, called a zero leadtime flexibility (ZLF) contract. Under
a ZLF contract, a supplier offers some flexibility to adjust
the actual order quantity in any given period based on a pri-
ori commitment for that period but does not allow the future
commitments to be adjusted; because the adjustment to obtain
the order quantity for a period is done in that period, we call
this a ZLF contract. We discuss the optimal policy structure
for a ZLF contract. We then show that optimal solutions to
appropriately derived ZLF contracts give us an upper and a
lower bound on the optimal costs under the RHF contract.
Furthermore, we propose two metrics for the order process
that allow us to measure the variability in the order process
and the nature of advance information provided through the
commitments.

Our objective, in addition to studying the policy struc-
tures and algorithms for the various contracts, is two-fold:
(a) to provide technical insights into the problem and solu-
tion structures that enable fast computation, and (b) to provide
managerial insights, whenever possible, regarding the perfor-
mance of such contracts. From a managerial perspective, we
are primarily interested in answers to the following types
of questions: (i) How much flexibility of any given type is
sufficient? (ii) What is the value of an additional (say, 5%)
flexibility? (iii) What is the impact of various types of con-
tracts on the variability of the order process? (iv) What is the
nature of advance information provided by an RHF contract?
In addition, we discuss the appropriateness of an RHF con-
tract for various demand patterns. For example, we show that
for several cases (depending on the demand patterns and cost
structure) for every RHF contract there is a ZLF contract that
results in the same expected costs to the buyer but a signifi-
cantly lower order process variability. When this happens, a
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buyer should be indifferent between RHF and ZLF contracts
while the supplier should prefer the latter. Clearly, answers
to such questions may depend on the cost and demand para-
meters. Therefore, we believe that the technical insights are
also important as they allow us to quickly evaluate complex
contracts and test various what-if scenarios.

The rest of the article is organized as follows. In Section 2,
we present a brief review of literature on supply contracts with
quantity commitments. In Section 3, we present a general
model for the RHF contract. We also present two measures
to compare the order process characteristics for the various
contracts. In Section 4, we develop two heuristics for the gen-
eral RHF contract as well a lower bound. First we derive the
OLFC optimal solution to the RHF contract and give a con-
structive algorithm. Then we construct the ZLF contract and
show that the optimal solution to an appropriately defined
ZLF contract gives us an upper bound to the solution of the
RHF contract. Finally, we derive a lower bound (based on a
variant of the ZLF contract) to the optimal solution for the
RHF contract. We discuss the optimal policy structure and
algorithms for the ZLF contract in Section 5. We present
computational studies and managerial insights in Section 6.
We conclude in Section 7. All algorithms appear in Appen-
dix A; Appendix B contains proofs of all results; Appendix
C outlines the implementation of various heuristics and the
lower bound; and, Appendix D presents a new heuristic based
on the two proposed in the main article.

2. LITERATURE REVIEW

Quantity commitment contracts were first analyzed by
Anupindi [1]. He discussed a contract similar to the ZLF
contract described here but that differed in the way flexibility
is modeled. His model allowed for non-negative adjustments
of committed quantities and also supplier’s responsiveness
to deliver on the adjustments. That is, previously commit-
ted quantities are delivered in the respective periods whereas
dynamic adjustments may or may not be delivered in the
same period. In contrast we allow for positive and nega-
tive adjustments but do not model supplier responsiveness
explicitly. For the case of stationary commitments, Anupindi
and Akella [2] show that the commitment contract reduces
the variance (as compared to the newsvendor model) of the
order process. Moinzadeh and Nahmias [16] study a contin-
uous review equivalent of a similar contract with stationary
commitments under a diffusion approximation of demand.
Scheller-Wolf and Tayur [18] show how quantity contracts
can be used to reduce international risk under exchange rate
uncertainty. Supply contracts with quantity commitments
and flexibility to adjust, modeled through purchase of real
options, is analyzed by Barnes-Schuster et al. [5]. Although

the contracts mentioned thus far allow for periodical com-
mitments, supply contracts with total volume commitment
for single products and total dollar volume commitments for
multiple products, respectively, are analyzed by Bassok and
Anupindi [6], Anupindi and Bassok [3], and Chen and Krass
[10].

Bassok et al. [8] present a heuristic to determine the near-
optimal purchasing quantity and the near-optimal periodical
forecasts for an RHF contract. They assume a RHF contract
with stationary flexibilities and their heuristic assumes that
demands are normally distributed. They show that the heuris-
tic performs quite well under realistic assumptions. Tsay
and Lovejoy [21]—henceforth referred to as TL99—analyze
RHF-type contracts for a multi-echelon environment. In their
model each stage in the supply chain is subject to an RHF con-
tract. The downstream stage faces stochastic market demand
which is a nonstationary process modeled as an exponentially
weighted moving average process. They present heuristics
for operation of various stages of the supply chain. In exten-
sive numerical studies they evaluate the impact of demand
variance, exponential smoothing factor, and flexibility para-
meters on inventory, costs, fill-rate, and variability in order
and forecast processes. Our work is similar in many respects
but focuses on a more in-depth analysis of a single stage
system that faces nonstationary market demand. Both pieces
of work are based on heuristics. For the last stage, TL99
present several heuristics (all modifications based on open
loop feedback control mechanism) and select one for fur-
ther analysis based on comparison between the heuristics. In
contrast, we present two heuristics (the first is similar to the
chosen heuristic in TL99) and also a lower bound. We com-
pare the heuristics to one another and to the lower bound. We
show that the relative performance of the heuristics depend
on the problem parameters. We see that the end-of-horizon
salvage value critically impacts the performance of various
heuristics. Furthermore, we define two performance metrics
for the order process. The order process variability measure
is similar to the one described in TL99 except that while
they measure standard deviation we report the coefficient of
variation. In addition, we define a metric to measure the reli-
ability of the advance information provided to the supplier
through the commitment process. While our numerical stud-
ies confirm several findings in TL99, in addition, we give
insights into the nature/reliability of advance information,
performance of various heuristics, gap with respect to a lower
bound, and appropriateness of contracts for various scenarios.

Tsay [20] demonstrates the role of flexibility contracts to
achieve channel coordination in a single period model with
asymmetric information between one buyer and one supplier.
Lee et al. [15] mention the use of a RHF-type contract as an
instrument to share forecast information, risk, and flexibility
between a buyer and a supplier in the computer and retail
companies. They suggest these contracts as a way to counter
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the gaming strategies that lead to information distortion in
the supply chain.

Anupindi and Bassok [4] provide a general framework for
the study of supply contracts and present a brief overview of
supply contracts with quantity commitments. A recent survey
of research in supply contracts appears in Tsay et al. [22].

More recent research has focused on computational
approaches to solving the complex optimization arising from
the use of RHF contracts. For example, Tal et al. [19] present
a robust optimization approach to solving RHF contracts with
a min-max objective.

3. A GENERAL MODEL

A finite horizon RHF contract is described as follows. At
the beginning of the horizon, the buyer gives an initial com-
mitment Q1,i for all periods i = 1, . . . , T in the horizon.
The supplier offers flexibility to adjust the commitments for
future periods and actual orders, upwards or downwards, in
any period. Let αi,j , i ≤ j , be the fraction by which the buyer
may adjust period j commitment (or actual order if j = i)
downward at the beginning of period i. Similarly, let αi,j ,
i ≤ j , be the fraction by which the buyer may adjust period
j commitment (or actual order if j = i) upward at the begin-
ning of period i. Clearly, αi,j = 0 and αi,j = 0 for i > j .
Let Qt ,t+i denote the commitment for period t + i made in
period t . Then,

• the actual order quantity in period t , Qt ,t given
the updated commitments and available flexibility is
constrained to be as follows:

(1 − αt ,t )Qt−1,t ≤ Qt ,t ≤ (1 + αt ,t )Qt−1,t ; (1)

• the commitment Qt ,t+i for a future period, t + i, given
the previous commitment for this period Qt−1,t+i

is constrained by the corresponding downward and
upward flexibilities to be as follows:

(1 − αt ,t+i )Qt−1,t+i ≤ Qt ,t+i ≤ (1 + αt ,t+i )Qt−1,t+i .
(2)

The upward and downward flexibilities may be specified as
two matrices [α] and [α] with entries αi,j and αi,j , respec-
tively. This characterization of an RHF contract is most
general because it allows for asymmetric and non-stationary
flexibility for adjustments. Usually, most RHF contracts have
the property that αt1,t1+j = αt2,t2+j , and αt1,t1+j = αt2,t2+j for
all t1, t2, and j . That is, the flexibility offered for a future
period depends only in the number periods into the future.

The buyer faces a stochastic demand in each period; let Dt

represent the random variable for demand with a probability
density function of ft (·) and a cumulative density function of

Ft(·). Observe that we allow for demands to be nonstationary.
We only assume that they be independent across periods.1 At
the beginning of each period t , he observes his inventory posi-
tion xt and orders a quantity Qt ,t for period t (constrained as
in (1)). In addition, he updates the commitment for the future
periods (constrained as in (2)). The quantity ordered for the
current period is delivered immediately. Subsequently, the
buyer sees the period t demand and satisfies it from stock
on-hand as much as possible. Any excess demand is backo-
rdered. The marginal holding, penalty and purchase costs per
period are h, p, and c, respectively. In the last period, any
excess inventory may be salvaged at a unit price of s ≥ 0.

In every period t the buyer needs to determine the actual
order quantity to purchase and update commitments for future
periods so as to minimize total expected costs. This problem
can be formulated as a stochastic dynamic program. Let xt

be the starting inventory in period t before ordering. The sin-
gle period expected holding and penalty costs when the total
quantity on hand at the beginning of period t after receiving
the orders is xt + Qt ,t is written as:

Lt(xt + Qt ,t ) = hE[max{xt + Qt ,t − Dt , 0}]
+ pE[max{Dt − xt − Qt ,t , 0}].

Then the buyer’s problem in period t = 2, . . . , T is:

(RHF) T C∗
t (xt , Qt−1,t , . . . , Qt−1,T ) =

min
Qt ,t ,...,Qt ,T

T Ct (Qt ,t , . . . , Qt ,T |xt , Qt−1,t , . . . , Qt−1,T ) (3)

subject to

(1−αt ,i )Qt−1,i ≤ Qt ,i ≤ (1+αt ,i )Qt−1,i i = t , . . . , T
(4)

where,

T Ct(Qt ,t , . . . , Qt ,T |xt , Qt−1,t , . . . , Qt−1,T ) =
cQt ,t +Lt(xt +Qt ,t )+ EDt

{
T C∗

t+1(xt+1, Qt ,t , . . . , Qt ,T )
}

is the expected cost from period t through T given a starting
inventory of xt and commitments Qt−1,t , . . . , Qt−1,T made in
period t − 1, and xt+1 = xt + Qt ,t − Dt for t = 1, . . . , T .
Define the terminal cost T C∗

T +1(xT +1) = −sxT +1. For t = 1,
the buyer solves (3) without the constraint (4).

It should be clear that an optimal policy for problem
RHF will be extremely complex and perhaps unattractive for

1 Even with independent demands, there is value to RHF contracts
as the commitments are influenced by the inventory position of
the buyer. Our model can be extended to incorporate a dependent
demand process generated via, say, a forecasting methodology. The
heuristics and lower bound analyses under such an extension will
remain unchanged.

Naval Research Logistics DOI 10.1002/nav



Bassok and Anupindi: Analysis of Supply Contracts with Commitments and Flexibility 463

implementation. This motivates us to develop some heuris-
tics. We discuss these in the next section. We close this section
with a discussion of measurements for variability in the order
process and accuracy of advance information it generates.

3.1. Order Process Measurements

An RHF contract attempts to serve two purposes. First, it
restricts the variability in the order process to be less than
the variability in the demand process. Second, information
regarding future orders is conveyed to the supplier through
commitments for future periods made by the buyer.2 Thus
it is useful to measure the effectiveness of RHF contracts in
achieving these two purposes. We propose two metrics.

Order Process Variability
Recall that Qt ,t is the order quantity in period t under the

RHF contract. It should be clear that in a finite horizon prob-
lem, the average quantity ordered will vary depending upon
the various parameters (purchase cost, flexibilities, etc.) of the
contract. Therefore, we focus on the coefficient of variation
(CV) of period t order, ORCVt , defined as:

ORCVt =
√

E
[
Q2

t ,t

] − {E[Qt ,t ]}2

E[Qt ,t ] . (5)

This metric captures the relative variability in the order
process and can be used by a supplier for capacity investment
and production planning decisions.

Advance Information
By making commitments for the future using RHF con-

tracts a buyer also provides advance information regard-
ing (future) orders. Naturally, a supplier would be inter-
ested in knowing how good this advance information is; for
example, he may use this information to plan his procure-
ment/production. We measure the mean absolute deviation
(MAD) between the commitment made in period t for period
t + i and the actual order placed in period t + i.3 That is,

MADt ,t+i = E|Qt ,t+i − Qt+i,t+i | (6)

Using computational studies we will characterize the behav-
ior of MADt ,t+i as t approaches t + i for various levels of
flexibilities.4

2 One can also argue that another benefit of commitments is that
it increases sales for the supplier by forcing the buyer to buy a
minimum quantity every period. While this effect is valid for short-
horizon problems, under backlogging assumption of demand, its
value diminishes as horizon gets longer.
3 Observe that this is different from the usual MAD measure for
a random variable where the average absolute deviation from the
mean of the random variable is taken. The expression in (6) is more
appropriate for the current situation.
4 While MAD measures the absolute deviation, we comment on
whether there is an upward or downward bias in commitments
vis-a-vis orders in our numerical studies; see Section 6.

The validity of the MAD metric needs some justifica-
tion. Clearly the supplier relies on the early commitments
to plan her procurement/production. Therefore, it is impor-
tant to have reliable commitments. Whether or not the MAD
metric defined above is useful will then naturally depend on
the supplier’s planning process. An explicit model of the sup-
plier is beyond the scope of this article. Therefore, we posit
scenarios when the proposed MAD metric would be useful.
Commitments by a buyer usually entail order compliance by
the supplier to provide quantities up to the upper bound dic-
tated by the level of flexibility in the contract. If the supplier
has no alternate sources of supply, then given a finite pro-
duction lead time he is bound to produce up to the upper
limit of the commitment one-leadtime ahead of the actual
order. Under such a scenario, MAD is admittedly not very
useful within the production leadtime. Outside of the lead
time of production, it may be used for better production or
capacity planning. On the other hand, a supplier who has alter-
nate sources of supply (e.g., flexible capacity or an outside
option) may not, a priori, produce up to the upper limit of the
forecast within the production leadtime.5 In such situations
early information may help the supplier to better forecast the
buyer’s orders, produce the optimal quantities and reduce its
costs.

4. HEURISTICS AND A LOWER BOUND

In this section, we present two heuristics to solve the gen-
eral RHF contract presented earlier. We will start with an
OLFC solution mechanism. We call this the OLFC-RHF
heuristic. We then introduce a specialization of the RHF con-
tract, namely the ZLF contract. We show that the optimal
solution to a specific form of ZLF contract gives us an upper
bound on the optimal solution of the general RHF contract.
This is called the ZLF-UB heuristic. Finally, we present a
lower bound for the RHF contract.

4.1. OLFC-RHF Heuristic

The basic idea in the OLFC approach is to determine the
optimal periodical commitments at the beginning of period
t , assuming that these commitments will not be changed at a

5 For example, if the supplier has flexible capacity, she may decide
to produce less than the upper limit of the forecast, take a risk, and if
the actual order placed by the buyer turns out to be too large, make
up the deficit using a faster but more expensive production mode.
Moreover, a supplier that sells goods to several buyers may sign a
flexibility contract with some of the buyers. In this case, the supplier
may pool the risk over the buyers’ demand. If the demand turns to be
too large the buyers with a flexibilty contract will get first priority,
and their demand will be satisfied. The other buyers will get only
part of their orders.
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future period. In general OLFC policies are not optimal but
are a “satisfactory mode of control for many problems” (Bert-
sekas [9], p. 149). We refer a problem formulation to derive
the OLFC solution to the RHF contract as the OLFC-RHF
problem. The optimal solution to the OLFC-RHF problem
will then be a heuristic to the RHF contract. We call this the
OLFC-RHF heuristic.

Let Qt(i) denote the sum Qt ,t +· · ·+Qt ,i and Dt(i) denote
the sum Dt +· · ·+Dt+i . Let J (Qt(t), . . . , Qt(T )) be the total
expected costs for periods t through T . We write,

J (Qt(t), . . . , Qt(T )) = cQt(T ) +
T∑

i=t

Mt ,i (Qt(i)), (7)

where

Mt ,i (Qt(i)) = hE[max{Qt(i) − Dt(i), 0}]
+ pE[max{Dt(i) − Qt(i), 0}]

is the expected holding and penalty costs in period i < T for
a problem starting in period t ≤ i. For i = T , we write,

Mt ,T (Qt(T )) = (h − s)E[max{Qt(T ) − Dt(T ), 0}]
+ pE[max{Dt(T ) − Qt(T ), 0}]

Let Q1(0) = 0. The OLFC-RHF problem is defined as
follows: For period one:

min
Q1(1),...,Q1(T )

J (Q1(1), . . . , Q1(T ))

s.t. Q1(i) ≥ Q1(i − 1) ∀i = 1, . . . , T . (8)

Constraints (8) ensure that the commitment in every period
is non-negative. For period t = 2, . . . , T

min
Qt (t),...,Qt (T )

J (xt + Qt(t), . . . , xt + Qt(T )) (9)

subject to

Qt(t + i) ≥ Qt(t + i − 1) ∀i = 0, . . . , T − t (10)

(1 − αt ,t+i )Qt−1,t+i ≤ Qt ,t+i ≤ (1 + αt ,t+i )Qt−1,t+i

∀i = 0, . . . , T − t . (11)

We first present the solution for period one. For conve-
nience, we refer to the first period problem as the static
problem because flexibility plays no role in its solution. It
is easy to see that the static problem is a convex problem in
Q1(1), . . . , Q1(T ). Let Si , i = 1, . . . T − 1 solve

F1,i (Si) = p

p + h
, (12)

and ST solve:

F1,T (ST ) = p − c

p + (h − s)
, (13)

where F1,i is the cumulative distribution function of D1,i for
i = 1, . . . , T . Observe that S1 ≤ S2 ≤ · · · ≤ ST −1. The fol-
lowing Lemma gives the structure of the optimal policy for
the static problem.

LEMMA 4.1: Let S0 ≡ 0.

1. If ST ≥ ST −1 then the optimal solution is Q∗
1,i =

Si − Si−1 for t = 1, . . . , T .
2. If ST < ST −1 then there exists a k∗ < T and S̃k∗ ,

such that

Q∗
1,i =




Si − Si−1 if i < k∗

S̃k∗ − Si if i = k∗
0 if i > k∗

. (14)

Algorithm 1 described in Appendix A results in the optimal
solution for period one of the OLFC-RHF problem. Convex-
ity of the cost function J (·) guarantees that the sum of first
partials of J (·) in step 2 of Algorithm 1 are monotone and
thus the optimum can be found by a simple binary search.
We now illustrate the structure of the optimal solution for
the static problem when demands are stationary and follow a
Normal distribution with mean µ and standard deviation σ .
We have:

Si = iµ + k
√

iσ , i = 1, . . . T − 1, and

ST = T µ + kT

√
T σ ,

where �(k) = p

p+h
and �(kT ) = p−c

p+(h−s)
and �(·) is the

cumulative standard normal density. In addition, if conditions
of part 1 of Lemma 4.1 are satisfied, we have

Q∗
1,i = Si−Si−1 = µ+k(

√
i−√

i − 1)σ , i = 1, . . . , T −1,
(15)

and

Q∗
1,T = ST − ST −1

= µ + (kT

√
T − k

√
T − 1)σ . (16)

Observe that the periodical commitments are decreasing
with time (converging towards the mean demand), except for
the last period of non-zero commitment.

We now solve the OLFC-RHF problem for period t > 1.
The solution to the problem in period t > 1 can be obtained
by solving a relaxed problem obtained by ignoring constraints
(11). Subsequently, we check if the constraints are satisfied.
If they are not, then we simply purchase quantities as speci-
fied by the constraints and carry forward a surplus or deficit
(between the unconstrained quantity and the upper or lower
bound) to the next period. This procedure is presented as
Algorithm 2 in Appendix A.
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4.2. ZLF-UB Heuristic

We now define the following specialization of the RHF
contract. In period one the buyer makes a commitment to pur-
chase certain quantities in each period of the horizon. In any
given period t , he is allowed to adjust his actual order quan-
tity, Qt ,t within some prespecified limits; however, the buyer
is not allowed to update the commitments for future periods.
Because the buyer is only allowed to adjust the order quan-
tity in the current period, we call this a ZLF contract. Thus
a ZLF contract is a special case of the RHF contract with
αt ,i = 0 and αt ,i = 0 for t > i. We will show that the opti-
mal solution to an appropriately defined ZLF contract gives
us an upper bound to the optimal solution of the correspond-
ing RHF contract. We postpone the discussion of the optimal
policy structure for the generic ZLF contract and a solution
procedure to Section 5.

Consider the RHF contract with flexibilities [α] and [α].
Define a flexibility matrix [β] such that β

i,j
= 0 for i �= j

and β
i,i

= αi,i . Similarly, define another flexibility matrix

[β] such that βi,j = 0 for i �= j and βi,i = αi,i . Clearly, a
contract with flexibility matrices [β] and [β] is a ZLF con-
tract. We will henceforth refer to it as ZLF-UB contract. Thus
using a ZLF-UB contract, the buyer initially gives a commit-
ment Q1,1, . . . , Q1,T for the entire horizon. Subsequently, in
any period t he adjusts his orders Qt ,t such that,

(1 − β
t ,t

)Q1,t ≤ Qt ,t ≤ (1 + βt ,t )Q1,t .

Furthermore, he does not update any commitments for the
future. Because the ZLF-UB contract is a restriction on the
RHF contract, we have the following result.

PROPOSITION 4.1: At optimality the expected cost of the
ZLF-UB contract gives an upper bound on the expected costs
of a RHF contract.

We refer to the optimal solution of the ZLF-UB contract
as a ZLF-UB heuristic for the RHF contract.

To summarize, we have presented two heuristics for the
solution of a general RHF contract. The first one, called
OLFC-RHF, is an open loop feedback control (OLFC) solu-
tion implemented in a rolling horizon manner. Next, the
ZLF-UB heuristic is an optimal solution to a ZLF-UB con-
tract, which is a restriction on the original RHF contract.
It is not a priori clear which of the two heuristics—OLFC-
RHF or ZLF-UB—will perform better. We report numerical
comparisons between the two in section 6.

4.3. A Lower Bound

An obvious lower bound is given by solving the finite
horizon newsvendor problem. Using computational studies

(discussed later), however, we observe that it is not a good
lower bound. We now derive another lower bound, which we
numerically demonstrate to be tight. Consider the following
specialization of the RHF contract with flexibilities [α] and
[α]. Define matrices [γ ] and [γ ] such that,

γ
i,j

=
{

0 if i �= j

1 − ∏j

k=1(1 − αk,j ) if i = j

and,

γ i,j =
{

0 if i �= j∏j

k=1(1 + αk,j ) − 1 if i = j .

A contract with flexibilities [γ ] and [γ ] is a ZLF contract
introduced in the previous section. Since we will shortly
demonstrate that this specific ZLF contract gives a lower
bound to the original RHF contract, we will henceforth refer
to it as a ZLF-LB contract.

PROPOSITION 4.2: The optimal solution to the ZLF-LB
contract gives a lower bound to the optimal solution to the
RHF contract.

5. THE ZLF CONTRACT: OPTIMAL POLICY
AND ALGORITHM

We now derive the optimal policy structure for a ZLF
contract and also outline a solution procedure. The buyer’s
objectives are to determine: (a) ex ante the optimal com-
mitments for every period given the flexibility parameters,
and (b) for the chosen commitments, the optimal (dynamic)
order policy for every period. This can be modeled as a
two-stage problem. We first show that the optimal (dynamic)
order policy given a vector of commitments and flexibilities
is a modified base stock policy. Subsequently, we present an
iterative procedure to compute (a) and (b) above, as well as
demonstrate its convergence.

5.1. Optimal Adjustment Policy Given Commitments

Consider a ZLF contract with flexibility matrices [α] and
[α]. We first analyze part (b) above to determine the optimal
order policy given a vector of commitments, Q1,1, . . . , Q1,T ,
made in period 1 for periods 1 through T . Recall that Q1,i

is the commitment in period 1 for period i. The order quan-
tity in period i, Qi,i , must satisfy the flexibility constraint
(1 − αi,i )Q1,i ≤ Qi,i ≤ (1 + αi,i )Q1,i .

Let the expected cost from period i through T given a
starting inventory of xi and commitments Q1,i , . . . , Q1,T for
periods i through T made in period 1 be

ACi(Qi,i |xi , Q1,i , . . . , Q1,T ) = cQ1,i + Li(xi + Qi,i )

+ EDi+1

{
AC∗

i+1(xi+1, Q1,i+1, . . . , Q1,T )
}
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where xi+1 = xi + Qi,i − Di for i = 1, . . . , T is the inven-
tory balance equation. Define AC∗

T +1(xT +1) ≡ −sxT +1. The
optimal order policy for period i, i = 2, . . . , T , can then
be derived by solving the following dynamic programming
formulation:

(P2) AC∗
i (xi , Q1,i , . . . , Q1,T )

= min
Qi,i

ACi(Qi,i |xi , Q1,i , . . . , Q1,T ) (17)

subject to

(1 − αi,i )Q1,i ≤ Qi,i ≤ (1 + αi,i )Q1,i (18)

For i = 1 we solve (17) without the constraint (18). The
cost function of Problem (P2) is identical to the cost function
of a newsvendor problem, which is known to be convex. It is
easy to see that the feasible set of the problem (P2) is convex.
Thus,

LEMMA 5.1: Problem (P2) is convex.

Given a commitment vector Q1,1, . . . , Q1,T , the optimal
order policy for period i is given by the following proposition.

PROPOSITION 5.1: There exists Zi for i = 1, . . . , T such
that the optimal order policy for period 1 is

Q∗
1,1 = max{Z1 − x1, 0}, (19a)

and for periods i = 2, . . . , T is:

Q∗
i,i =




(1 − αi,i )Q1,i if Zi − xi ≤ (1 − αi,i )Q1,i

Zi − xi if (1 − αi,i )Q1,i < Zi − xi

≤ (1 + αi,i )Q1,i

(1 + αi,i )Q1,i if Zi − xi > (1 + αi,i )Q1,i

(19b)

The Zi’s are similar to the modified base stock levels
described in Federgruen and Zipkin [13] for the capacitated
newsvendor problem. The following problem (ZLF) then
solves for optimal commitments Q1,1, . . . , Q1,T .

(ZLF) min
Q1,1,...,Q1,T

AC∗
1 (x1, Q1,1, . . . , Q1,T ) (20)

LEMMA 5.2: The function AC∗
1 (x1, Q1,1, . . . , Q1,T ) is

convex in (x1, Q1,1, . . . , Q1,T ).

Observe that the solution to (ZLF) is a set of T periodi-
cal commitments, Q∗

1,1, . . . , Q∗
1,T . From an operations point

of view it is also important to know the optimal modified
base stock levels, Z∗

1 , . . . , Z∗
T , because they will determine

the actual order quantity for a period given by (19). Convexity
of AC∗

1 (x1, Q1,1, . . . , Q1,T ) together with the facts that

lim
Q1,1,...,Q1,T →∞ AC∗

1 (x1, Q1,1, . . . , Q1,T ) → ∞

and Q1,i ≥ 0, for i = 1, . . . , T ensure that AC∗
1 (x1, Q1,1, . . . ,

Q1,T ) has a global minimum. However, a direct solution to
the (ZLF) problem is extremely difficult. We now outline an
iterative procedure to obtain the optimal commitments for the
ZLF problem.

5.2. Algorithm for Optimal Commitments

Thus far we have shown that for a given commitment
vector, Problem (P2) gives the optimal order policy defined
by the modified base stock levels Z1, . . . , ZT . Observe
that Z1, . . . , ZT are implicitly functions of Q1,1, . . . , Q1,T .
An iterative approach to solve for the optimal commit-
ments given by (ZLF) will involve repeatedly executing the
following steps (the superscript denotes iteration index): At
iteration j

Step (a) For a given commit vector Q
j−1
1,1 , . . . , Qj−1

1,T ,

solve (P2) to get the base stock policy Z
j

1 , . . . , Zj

T ,
and

Step (b) Given Z
j

1 , . . . , Zj

T , get a new commit vector
Q

j

1,1, . . . , Qj

1,T

until some convergence criteria is satisfied. We now out-
line a procedure to update the commitment vector—Step (b)
above—for a given base stock policy.

Updating the Commitment Vector
Recall that the actual purchase quantity in a period i

is given by (19), with appropriate superscript for iteration
number. Define BC

j

i (xi , Q
j−1
1,1 , . . . , Qj−1

1,i−1, Qj

1,i , . . . , Qj

1,T |
Z

j

1 , . . . , Zj

T ) as the expected cost starting at period i through
period T , for an initial inventory level of xi , and commitment
vector (Q

j−1
1,1 , . . . , Qj−1

1,i−1, Qj

1,i , . . . , Qj

1,T ), and given the

modified base stock levels Z
j

1 , . . . , Zj

T which are functions
of (Q

j−1
1,1 , . . . , . . . , Qj−1

1,T ). It is important to note that in order

to evaluate the function BC
j

i (·|·) we need to know the value
of the initial inventory xi in period i. But xi is a random vari-
able whose probability measure is not known and unlikely to
have a simple structure. Therefore, we evaluate the function
using simulation, the exact details of which are described in
Appendix C. Then:

BC
j

i

(
xi , Q

j−1
1,1 , . . . , Qj−1

1,i−1, Qj

1,i , . . . , Qj

1,T |Zj

1 , . . . , Zj

T

) =
cQ

j

i,i + Li

(
xi + Q

j

i,i

) + EDi

{
BC

j

i+1

(
xi+1, Qj−1

1,1 , . . . ,

Q
j−1
1,i−1, Qj

1,i , . . . , Qj

1,T

∣∣Zj

1 , . . . , Zj

T

)}
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where Q
j

i,i is given by Proposition 5.1 and xi+1 = xi +Q
j

i,i −
Di .

We now define problem (P3) as follows:

(P3) min
Q

BC
j

i

(
xi , Q

j−1
1,1 , . . . , Qj−1

1,i−1, Q, Qj

1,i+1, . . . ,

Q
j

1,T

∣∣Zj

1 , . . . , Zj

T

)
for i = T , . . . , 1 (21)

and Q
j

1,i = argmaxQBC
j

i (xi , Q
j−1
1,1 , . . . , Qj−1

1,i−1, Q, Qj

1,i+1,

. . . , Qj

1,T |Zj

1 , . . . , Zj

T ).
To solve problem (P3) at iteration j it is necessary to solve

T one-dimensional problems beginning with the last period
to obtain Q

j

1,T and sequentially solving for Q
j

1,T −1, . . . , Qj

1,1.
Observe that in solving problem (P3) we use the mod-

ified base stock levels (Z
j

1 , . . . , Zj

T ) that were obtained in
the solution of (P2) (at iteration j). In addition, the new
commitment Q

j

1,i is calculated assuming the commitments

Q
j−1
1,1 , . . . , Qj−1

1,i−1 that were determined in the previous itera-
tion. Thus, in general, the commitments obtained by solving
problem (P3) are not optimal for ZLF. However, the commit-
ment obtained by solving problem (P3) will always reduce
the total cost of ZLF. Algorithm 3 in Appendix A essentially
solves problems (P2) and (P3) iteratively to obtain the opti-
mal solution for ZLF. Observe that the modified base stock
levels uniquely determine the optimal order quantity and thus
problem (P2) can be defined as a problem in the space of Zi

instead of Qi,i .
For an initial solution to the commitment vector we use

the solution to the static problem. Clearly when the magni-
tude of the flexibility is small, optimal commitments for the
static problem are close to optimal commitments for the ZLF
problem. As the magnitude of flexibility increases our com-
putational studies indicate that the ZLF solution differs from
the static solution only in last few periods. Proposition 5.2
guarantees the convergence of Algorithm 3.

PROPOSITION 5.2: Algorithm 3 converges to the optimal
solution of problem (ZLF).

6. COMPUTATIONAL STUDIES

We now describe numerical studies to study the behavior of
RHF contracts. The parameters of the contract include a pur-
chase price, flexibilities, a decision horizon, and a demand
pattern. First we show effectiveness of the approximations
developed in this article by comparing the performance of
various heuristics against the lower bound. Subsequently, we
perform sensitivity analysis to gain insights into the problem.
From a managerial perspective, we are primarily interested
in answers to the following types of questions: (i) How much
flexibility of any given type is sufficient? (ii) What is the value
of an additional (say, 5%) flexibility? (iii) What is the impact

of various types of contracts on the order process variabil-
ity? (iv) What is the nature of advance information provided
by an RHF contract? In addition, using the OLFC-RHF and
ZLF-UB heuristics, we comment on the appropriateness of
a general RHF contract versus a suitably defined ZLF con-
tract from the perspective of both the supplier and the buyer.
Clearly, answers to such questions may depend on the demand
and cost parameters. While we have attempted an extensive
computational study, it is by no means exhaustive.

The following parameters are used for our computations.
The horizon length is 12 periods. Demands are assumed to
either (i) STATIONARY with a mean of 100.0 per period, or
(ii) non-stationary with four possible patterns of the mean,
viz., DECREASING (starting from 155.0 down to 100.0 in
steps of 5.0), INCREASING (starting from 100.0 to 155.0 in
steps of 5.0), TRIANGULAR (starting from 100.0, increas-
ing to 130.0 and then decreasing to 105.0 all in steps of 5.0),
and WEDGE shaped (starting from 130.0 decreasing to 100.0
and then increasing back to 125.0 in steps of 5.0). The coef-
ficient of variation (CV) of demand (for both stationary and
non-stationary patterns) was chosen from {0.25, 0.33, 0.5}.
We keep the CV of demand stationary even as mean demand
values change. The per unit purchase price was $5.0 and the
per unit holding cost was $0.1. The per unit penalty cost was
chosen from {$7.5, 10.0, 15.0, 25.0}. The end-of-horizon
salvage values were chosen to be either equal to the pur-
chase cost (at $5.0) or 20% of purchase cost (at $1.0). In
the RHF contracts considered for computational purposes,
we assumed that the flexibility available was stationary and
symmetric (the heuristics can be used even when flexibil-
ity is non-stationary and asymmetric). That is, αt ,t+i were
identical for all t ∈ [1, T ] and i ∈ [0, T − t] (stationary)
and αt ,t+i = αt ,t+i (symmetric). So henceforth when we say
5% flexibility we imply that αt ,t+i = αt ,t+i = 0.05 for all
t ∈ [1, T ] and i ∈ [0, T − t]. It is important to notice that
even when flexibilities are stationary, due to the cumulative
effect (through ability to change future orders) the “effective”
flexibilities are non-stationary. More specifically, the “effec-
tive” flexibility is smaller for a shorter time horizon and larger
for a longer time horizon.

Demands were assumed to follow a normal density func-
tion, truncated at zero. Before we present our sensitivity
analysis results, we briefly outline a few details regarding
our computational procedures. Implementation of algorithms
1 and 2 require computation of first partials of the expected
cost function; we use Monte-Carlo methods for the same.
The demand points were generated using the polar method
of normal deviates due to G.E.P Box, M.E. Muller, and G.
Marsaglia [See Knuth [14], page 117]. For each period, the
number of demand points generated with the underlying nor-
mal distribution was 2500. To get confidence intervals, we
repeated each computation 10 times; the coefficient of varia-
tion of the average costs was less than 0.25%. In the sequel,
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Figure 2. OLFC-RHF versus ZLF-UB heuristic for STATIONARY demand with CV = 0.5 and salvage value = 100% and 20% of purchase
cost respectively. [Color figures can be viewed in the online issue, which is available at www.interscience.wiley.com.]

to avoid clutter, we do not report the details of the confidence
intervals. Further details regarding the implementation of the
heuristics and the lower bound are given in Appendix C.

We now discuss the performance of the heuristics, some
comparisons, sensitivity analysis, and insights gained.

6.1. Performance of the Heuristics

6.1.1. Comparison of Heuristics

We compared the performance of OLFC-RHF and ZLF-
UB heuristics for various values of flexibilities. The percent-
age gap between the two heuristics with respect to the lower
bound was compared for both high and low salvage values.
The results for stationary demand with a CV=0.5 are plotted
in Fig. 2. Similar results are observed for the four nonstation-
ary demand patterns. For brevity of exposition, we do not
report the comparative results between the heuristics for the
various nonstationary patterns. As we see from Fig. 2, when
salvage value is high (left graph) the OLFC-RHF heuristic
outperforms the ZLF-UB heuristic for lower values of flexi-
bility. We see a similar behavior for lower values of the CV of
demand. An intuitive argument for the observed behavior is
as follows: in comparison to the ZLF-UB heuristic, the rolling
horizon nature of the OLFC-RHF heuristic, through its ability
to adjust future commitments, provides a larger flexibility to
adjust orders. However, when the original RHF contract itself
offers high flexibilities, this advantage diminishes and since
ZLF-UB solves for the optimal policy whereas OLFC-RHF
uses a suboptimal policy, the former dominates.

In contrast, as we see from Fig. 2 (right half), the ZLF-
UB heuristic outperforms the OLFC-RHF heuristic for lower
salvage values. In addition, performance of the OLFC-RHF
heuristic degrades as flexibility increases, which is counter-
intuitive. The pattern repeats at lower values of the CV of
demand. In this example when salvage values are low, the

initial commitment developed using the OLFC-RHF heuris-
tic for the last few periods of the planning horizon are zero. In
periods with non-zero commitments the OLFC-RHF heuris-
tic has the ability to order smaller quantities as flexibilities
increase. This turns out to be a disadvantage when entering
the last few periods of zero commitments. This phenome-
non occurs since an OLFC-RHF heuristic, being open-loop,
does not consider the future (decisions or possible states of
nature) in its decision making. We observed that the OLFC-
RHF heuristic outperforms the ZLF-UB heuristic in the first
10 (of the 12) periods in the horizon. However, it incurs huge
shortages in the last two periods due to its inability to order
non-zero quantities in the last two periods (since it’s initial
commitments for these periods were zero). Over the planning
horizon OLFC-RHF performs worse than ZLF-UB since the
penalty cost is an order of magnitude greater than the hold-
ing cost. The ZLF-UB heuristic being closed-loop adjusts
the commitments in the last few periods to be non-zero and
avoids this problem.

To summarize, we observe that for the various demand
patterns tested the OLFC-RHF heuristic performs better than
the ZLF-UB (at least for low to medium levels of flexibil-
ity) when salvage values are high. The gap between the two,
however, is small. On the other hand, when salvage values are
low, ZLF-UB appears to perform better than the OLFC-RHF
and the gap between the two is larger.

6.1.2. Performance of the Heuristics

On the basis of these observations, we compared the per-
formance of the OLFC-RHF heuristic (for high salvage value)
and of the ZLF-UB heuristic (for low salvage value) to the
lower bound (ZLF-LB) for various levels of the coefficient
of variation (CV) for each demand pattern. We summarize
the key observations here; detailed results are available in
Bassok and Anupindi [7]. We observe that the OLFC-RHF
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Table 1. Performance of the OLFC-RHF and ZLF-UB heuristics w.r.t. the newsvendor problem for STATIONARY demand.

OLFC-RHF Heuristic ZLF-UB Heuristic

CV = 0.25 CV = 0.33 CV = 0.50 CV = 0.25 CV = 0.33 CV = 0.50

Flexibility % Gap % ORCV Gap % ORCV Gap % ORCV Gap % ORCV Gap % ORCV Gap % ORCV

0 2.07 — 2.68 — 3.97 — 2.07 — 2.68 — 3.97 —
5 1.23 0.11 1.58 0.12 2.46 0.13 1.36 0.03 1.97 0.03 3.51 0.04

10 0.91 0.15 1.14 0.17 1.78 0.20 0.87 0.08 1.37 0.07 2.56 0.07
15 0.75 0.17 0.90 0.20 1.40 0.24 0.56 0.12 1.00 0.12 1.94 0.10
20 0.66 0.19 0.75 0.22 1.14 0.28 0.38 0.16 0.73 0.16 1.37 0.14
25 0.60 0.20 0.65 0.24 0.97 0.30 0.32 0.19 0.57 0.2 1.02 0.18
30 0.55 0.22 0.58 0.26 0.83 0.33 0.30 0.21 0.52 0.23 0.74 0.22
35 0.53 0.23 0.53 0.27 0.72 0.35 0.46 0.22 0.48 0.26 0.52 0.27
40 0.51 0.24 0.49 0.29 0.63 0.37 0.41 0.24 0.55 0.28 0.37 0.31
45 0.50 0.25 0.46 0.30 0.56 0.39 0.50 0.24 0.67 0.3 0.25 0.34
50 0.49 0.25 0.44 0.32 0.52 0.41 0.63 0.24 0.83 0.31 0.16 0.38

heuristic performs quite well relative to the lower bound for
a wide range of CV of demand and across all demand pat-
terns as a function flexibilities. The average gaps for salvage
value equal 100% and 20% of purchase cost, respectively, are
0.76% and 5.17%; the respective maximum gaps are 1.69%
and 10.9%. We also observe that for high salvage values, the
gap between the best heuristic (OLFC-RHF) and the lower
bound is quite small whereas for low salvage values the gap
between the best heuristic (ZLF-UB) and the lower bound is
somewhat larger.

For most mature product lines that are not towards the end
of their product life cycles, it is reasonable to assume that the
salvage value of the product at the end of the horizon will be
its purchase cost. On the other hand for products with a short
lifecycle, the salvage value could be significantly less than
the purchase cost. In the sequel, for brevity of exposition, we
assume salvage value equal to purchase cost. The nature of
the insights we obtain carry over to other cases as well.

6.2. Sensitivity Analysis and Insights

6.2.1. Flexibility versus Order Process Variability

Recall that the base case for comparison is the uncon-
strained newsvendor problem that provides “unlimited” flex-
ibility for a buyer. An RHF contract with limited flexibility
clearly raises the costs to the buyer. On the other hand, as
we motivated earlier, RHF contracts reduce the varibility in
the order process, a potential benefit to the supplier. Using
our computational studies, we first quantify the impact of
flexibility on expected costs to the buyer. Simultaneously we
measure the order process variability (ORCV), as defined in
(5), to highlight the potential benefit to a supplier. In Table
1, we display the percentage gap in expected cost between
the newsvendor problem and the OLFC-RHF and ZLF-UB
heuristics for various levels of flexibility for a stationary
demand pattern. We also show ORCV for each of these levels

of flexibility.6 As expected the gap between the expected cost
of the two heuristics and the newsvendor problem decreases
as flexibility increases. More importantly, only low to mod-
erate levels of flexibility are required to get the expected cost
within, say 1.0%, of the newsvendor solution. The corre-
sponding ORCV is quite low. For example, using OLFC-RHF
with demand CV = 0.33, less than 15% flexibility is required
to be within 1% of the corresponding newsvendor solution;
in Table 1 the two numbers in bold face bracket the flexibility
level for which the gap is just above and below the 1% level.
At 15% flexibility, ORCV is 0.20, which is significantly lower
than the corresponding ORCV of 0.33 (equal to the demand
cv) using the newsvendor model. In addition, we observe that
for the same flexibility level ORCV with ZLF-UB heuristic
is smaller than ORCV with OLFC-RHF heuristic. For exam-
ple, for a 10% flexibility and demand CV = 0.25, ORCV =
0.15 for OLFC-RHF and 0.08 for ZLF-UB. This observation
plays an important role in determining whether an RHF or
ZLF contract is superior. We postpone this discussion to the
end of this section.

We observe similar behavior for various nonstationary
demand patterns. For brevity we only report results for the
TRIANGULAR demand with CV = 0.33 in Table 2 which
displays the percentage gap between the newsvendor prob-
lem and the OLFC-RHF and the ZLF-UB heuristics as well
as the range of ORCV. We observe that with nonstationary
demand patterns, the ORCV is also nonstationary. In Table 2
we simply report the range of ORCV giving its minimum and

6 Observe that in a finite horizon model, the CV of orders in the early
periods will be small. This is basically due to the fact the “effec-
tive” flexibility in the earlier periods is small. In the computational
studies with stationary demand we observe that the CV of orders
converge as the horizon length increases. We therefore compare this
converged value of the CV of orders to the CV of demand and show
that the CV of orders in a RHF contract is significantly lower than
the CV of demand.
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Table 2. Performance of the OLFC-RHF and ZLF-UB heuristics
w.r.t. the newsvendor problem for TRIANGULAR demand with
CV = 0.33.

OLFC-RHF Heuristic ZLF-UB

Flexibility % Gap % ORCV Range Gap % ORCV Range

5 1.58 0.04–0.14 1.92 0.03–0.04
10 1.14 0.07–0.19 1.34 0.06–0.08
15 0.91 0.10–0.21 0.94 0.08–0.12
20 0.76 0.13–0.23 0.68 0.08–0.16
25 0.66 0.16–0.25 0.53 0.06–0.20
30 0.59 0.19–0.26 0.44 0.05–0.24
35 0.54 0.21–0.28 0.60 0.12–0.27
40 0.50 0.23–0.29 0.47 0.01–0.29
45 0.48 0.25–0.30 0.54 0.00–0.32
50 0.46 0.26–0.31 0.65 0.00–0.36

maximum across periods (excluding the first period which
will have an ORCV = 0.0). It is a priori unclear if the ORCV
of one heuristic dominates the other.

Finally, from Table 1 we see that the expected costs are
affected by both the CV of demand and the flexibility in
the supply contract.7 Internally, it points to the value of
coordination between the marketing (responsible for demand
forecasting and thus affecting CV of demand) and purchasing
functions (responsible for negotiating supply contracts).

6.2.2. Decreasing returns to additional flexibility

In Table 3, we plot the percentage decrease in total expected
costs for an additional 5% flexibility for various values of
the CV of stationary demand and observe that the marginal
returns for an additional 5% flexibility decreases drastically.
Similar results are observed (not reported here) for other non-
stationary patterns. Such a characterization is useful for a
buyer because it allows him to consider his “willingness-to-
pay” for additional flexibility from a supplier. Suppose the
supply contract is structured as a non-linear contract (fixed
fee + proportional costs) with fixed fee component a function
of the flexibility. The buyer should then be willing to pay a
fixed fee up to the value of additional 5% flexibility (Table
3). On the other hand, a supplier may likely offer a menu of
(linear price, flexibility) contracts [1]. Since our computation
methods are fast, such menus can be easily evaluated.

6.2.3. Effect of penalty costs

To test for the effect of penalty costs we measured the
average fill-rate (fraction of demand satisfied from stock) as
a function of flexibility for various values of the penalty cost
parameter. The results for stationary demands are graphed in

7 We observe that the same is true for the non-stationary demand
patterns; for brevity we do not report detailed results here.

Fig. 3. We observe that increased flexibility allows the buyer
to offer better customer service as measured by the average
fill-rate. Thus, we illustrate a link between a service measure
offered to a consumer (a marketing function) with the capa-
bility, in terms of flexibility, that needs to be acquired from a
supplier (a purchasing function). Similar results are observed
for the various non-stationary demand patterns.

6.2.4. Advance Information

To study the nature of advance information that a buyer
provides a supplier using commitments, we first observed
the nature of commitments made in period t for T − 1.8

Using the OLFC-RHF heuristic, we noticed that commit-
ments decrease over time; that is, commitments for more
“immediate” periods are usually larger than those for peri-
ods farther into the future. For the static problem, Eqs. (15)
and (16) suggest this behavior. Similar behavior then should
be expected of the OLFC-RHF heuristic because it solves
the static problem in a rolling horizon manner. Furthermore,
when operating in a rolling horizon manner, the commitments
for more “immediate” periods increase with flexibility. Thus
we argue that commitments Qt ,t+i are not very reliable pieces
of information for a supplier. On the other hand, the buyer
is obligated to purchase the minimum number of units given
by (1 − αt ,t+i )Qt ,t+i . Because this is a guaranteed minimum
purchase based on the commitments (and hence the buyer has
a financial liability), we claim it is a more reliable indicator of
the actual purchase quantity for period t + i. We thus modify
the measure in (6) to,

MADt ,t+i = E|(1 − αt ,t+i )Qt ,t+i − Qt+i,t+i |.
From a supplier’s viewpoint, since the commitments pro-

vide advance information regarding actual orders, it is useful
to compare MADt ,T −1 with the MAD for the demand and
order processes in period T − 1. For brevity we report here
results on MADt ,T −1 only for STATIONARY demand and
one value of CV. Similar results were observed for all other
cases. Table 4 lists MADt ,T −1 for t = 1, . . . , T − 2 for CV
of demand equal to 0.25.

Consider a scenario in which the demand distribution faced
by a buyer is unknown to the supplier. In such situations she
gets information regarding demands only through the com-
mitments that the buyer gives. It is useful then to compare
MADt ,T −1 (shown in Table 4 for t = 1, . . . , T − 2) with
the mean absolute deviation of demand (denoted by MADd )
for period T − 1. Recall that we assume demand to be nor-
mally distributed. This implies that the standard deviation of
demand, σ = 1.25 × MADd . Then for demand CV equal

8 We consider the penultimate period and not the last period to
account for any end of horizon effects.
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Table 3. Value of an additional 5% flexibility in the OLFC-RHF
contract for STATIONARY demand.

Decrease in costs %

Flexibility % CV = 0.25 CV = 0.33 CV = 0.5

5 0.83 1.07 1.44
10 0.31 0.43 0.66
15 0.16 0.24 0.38
20 0.10 0.15 0.25
25 0.06 0.10 0.17
30 0.04 0.08 0.14
35 0.03 0.05 0.11
40 0.02 0.04 0.09
45 0.01 0.03 0.07
50 0.01 0.02 0.05

to 0.25, MADd = 20. We observe that when flexibilities are
small, MADt ,T −1 < MADd suggesting that advance informa-
tion itself has reduced variability as compared to the demand
(we have already seen earlier that the order variability is
lower). However, when flexibilities are large, advance infor-
mation passed on to the supplier through commitments has a
variability higher than the variability in original demand (the
boldface numbers in Table 4 indicate the boundary for flex-
ibility above which this happens). This suggests that “order
processing” (the process that generates commitments/orders)
itself creates variability in the information passed on to the
supplier, even though the actual orders have variability lower
than that of the demand.9

Finally, recall the order process variability discussed ear-
lier and shown in Table 1. Assuming the orders are normally
distributed, we can compute the MAD of the orders and com-
pare it with the MADt ,T −1 displayed in Table 4. For each level

9 We also measured MAD for upward or downward biases. An
upward (downward) bias will be when the commitments are larger
(smaller) than actual orders. From our numerical studies, we observe
that under the original definition of MAD in Section 3.1 there is an
upward bias for every level of flexibility. This can be explained by
the relatively high shortage cost that encourages the buyer to com-
mit high to avoid shortages even at the expense of excess inventory.
Interestingly the ratio of upward to downward bias is decreasing with
flexibility. As flexibility increases the risk of shortages become small
but the risk of excess inventory might be high due to the minimum
quantity that must be purchased. We observe a similar phenome-
non when using the updated definition of MAD. While the trend
remains same with increase in flexibility, we observe an upward
bias for low flexibility (though at lower levels than with the origi-
nal MAD definition) which disappears when the flexibility is high.
Recall that using the updated definition we compare the actual orders
to the lower bound of feasible order quantities and not to the actual
commitments. Clearly, because we compare the actual orders to the
lower bound, upward bias is less likely as demonstrated by the data.
We tested our hypothesis by reducing the shortage cost and indeed
the magnitude of the upward bias decreases. Due to space limita-
tions we are unable to provide a complete numerical study of this
phenomenon.

Figure 3. Average fill rate versus flexibility for STATIONARY
demand with CV = 0.50.

of flexibility we identify the first period in which MADt ,T −1

drops below the MAD of orders for period T −1; this is shown
in italicized numbers in Table 4. For example, consider the
case when demand CV = 0.25 and flexibility is 5%. Then
MAD of order process is computed to be 8.31.10 From Table
4 we observe that the period with MADt ,T −1 closest to 8.31 is
period 8 and MADt ,T −1 ≤ 8.31 for t > 8. This again suggests
that due to order processing, the information passed to the
supplier in early periods has larger variability than the order
itself. Once we are within 1–3 periods of the time of actual
order, the MAD in the information reduces below the MAD
for the orders. Recall that for low levels of flexibility, advance
information has less variability than the demand. To under-
stand the logic for comparing the MAD of the order process
with the CV of demand, first consider the base case of no RHF
contract between the buyer and the supplier. We thus have the
classical newsboy model in which it is well known that the
order process tracks the demand process. So from the sup-
plier’s perspective, in absence of any contract, order process
variability tracks demand variability. By signing an RHF-type
contract, the supplier only hopes to reduce the order process
variability further. Hence if the MAD of order process devi-
ates much more than the inherent variability in the demand
process, that information is of little value to the supplier.

The above discussion suggests that information within
three periods of the actual order is quite informative. Using
this insight, we measured MADt ,t+i for all t = 1, . . . , T − 1
and i = 1, 2, and 3 for the various demand patterns.
As an illustration, results for the triangular demand pat-
tern with a CV = 0.33 is shown in Fig. 4. We make the
following observations. The MAD tracks the pattern of

10 This is derived by dividing the standard deviation of the order
process (not reported here) by 1.25. The standard deviation of the
order process cannot be directly inferred from Table 1 because the
average order size was not equal to the mean demand for the finite
horizon problems considered here.
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Table 4. Mean absolute deviation (MAD) of commitments for STATIONARY demand with cv = 0.25.

Period t

Flexibility % 1 2 3 4 5 6 7 8 9 10

5 10.52 10.76 10.81 11.31 11.19 10.97 10.35 8.58 6.04 1.40
10 11.69 11.77 11.78 12.02 12.03 12.22 12.49 11.90 9.89 2.95
15 14.34 14.13 14.13 13.78 13.78 13.67 13.50 13.37 12.15 5.35
20 17.52 17.13 17.13 16.40 16.40 16.05 15.44 15.17 14.01 8.18
25 21.08 20.57 20.57 19.58 19.58 19.11 18.20 17.78 16.22 11.39
30 25.24 24.67 24.67 23.54 23.54 22.99 21.91 21.39 19.42 15.82
35 29.99 29.40 29.40 28.24 28.24 27.67 26.54 25.97 23.81 20.42
40 35.09 34.52 34.52 33.37 33.37 32.81 31.68 31.12 28.91 25.79
45 40.43 39.89 39.89 38.82 38.82 38.28 37.21 36.68 34.56 31.38
50 45.88 45.38 45.38 44.39 44.39 43.89 42.90 42.41 40.44 37.26

nonstationarity. This is because while the mean demand
follows a TRIANGULAR pattern, the CV of demand is fixed
and hence the standard deviation of demand also follows
a TRIANGULAR pattern. Because MAD is closely related
to the standard deviation of demand, it too follows a trian-
gular pattern. Furthermore, the pattern is dampened as (i)
we get closer to the period of the order for a given flex-
ibility (MAD with 1-period window is flatter than with a
3-period window) , and (ii) flexibility reduces for a given
window (MAD for 10% flexibility is more flat as com-
pared to the MAD for 50% flexibility for a 1 or 3-period
window).

6.3. RHF versus ZLF: A Buyer-Supplier Perspective

Recall that the two primary motivations for a supplier to
offer an RHF contract are reduction in order process vari-
ability and the availability of advance information regarding
orders. Although a buyer could use any of the heuristics
presented to evaluate an RHF contract, based on our compu-
tational studies it is likely that when the salvage value is low
the buyer will use the ZLF-UB heuristic because it results
in lower expected costs. In addition, this heuristic results
in a lower variability of the order process; thus a supplier
would also prefer the order process of ZLF-UB to that of the
OLFC-RHF heuristic. Therefore, for low salvage values the

ZLF-UB heuristic dominates the OLFC-RHF heuristic for
both players.

On the other hand, when salvage values are high a buyer
prefers the OLFC-RHF heuristic over the ZLF-UB. We have
already seen the effect of the OLFC-RHF heuristic on the
order process variability and advance information. We also
studied the effect of the ZLF-UB heuristic on the order
process variability. From Table 1 we see that the ZLF-UB
heuristic often results in a smaller ORCV for any level of
flexibility. This is expected since for the OLFC-RHF heuris-
tic with, say, 5% flexibility, the effective flexibility in the later
periods is much larger. Thus the supplier prefers the order
process of a ZLF-UB heuristic over that of the OLFC-RHF
heuristic. Therefore for high salvage values neither heuristic
dominates.

However, assuming that the original flexibility is α, we
find that in many cases there is a flexibility α̃ (̃α > α) such
that the expected cost of using OLFC-RHF with α is equal
to the expected cost of using ZLF-UB with α̃. Furthermore,
the variability of the order process using ZLF-UB (with α̃)

is significantly smaller than that obtained by using OLFC-
RHF (with α). For example, with stationary demand at CV =
0.5 and salvage value equals purchase cost, we observe that
the expected cost to a buyer using the OLFC-RHF heuris-
tic to solve an RHF contract with 10% flexibility is equal
to the expected cost of a ZLF contract with 17% flexibility.

Figure 4. MAD of order with a one and three period before the order for TRIANGULAR demand with CV = 0.33.
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So the buyer should be indifferent between an RHF contract
with 10% flexibility and a ZLF contract with 17% flexibility.
However, the order process CV for a 10% flexibility RHF
contract is 0.20 (using an OLFC-RHF heuristic) while that
for a 17% flexibility ZLF contract is 0.12. So the supplier
gains with a ZLF contract in this situation. Thus a ZLF con-
tract with 17% flexibility weakly dominates an RHF contract
with 10% flexibility. This leads us to believe that both the
buyer and the supplier are better off signing a ZLF contract
with the appropriate flexibility even when salvage values are
high.

For nonstationary demands, the nonstationarity of the
ORCV itself makes the comparison between OLFC-RHF and
ZLF-UB difficult. We do observe that for low-medium flex-
ibility, the ORCV pattern for ZLF-UB dominates that under
OLFC-RHF. In general, however, for such situations compar-
isons will critically depend on the exact cost structure of the
supplier, which is beyond the scope of the present work.

To summarize, the order process under a ZLF-UB heuris-
tic is less variable than the order process under a OLFC-RHF
heuristic. On the other hand, for high salvage values the
OLFC-RHF heuristic results in lower costs for the buyer.
Other heuristics that balance the advantages of the two
presented here is potentially an area of further research.11

7. SUMMARY AND CONCLUSION

In this article, we study a class of contracts called the RHF
contract used as an instrument to share forecast information
and risk between a buyer and a supplier. Under such contracts,
at the beginning of the horizon a buyer makes commitments
for components for each period. The supplier in turn provides
limited flexibility to adjust the current order and update the
future commitments in a rolling horizon manner. We present
a general model for an RHF contract and propose two mea-
surements for the order process that capture the variability in
the order process and advance information shared between
the supplier and buyer through the commitments. The opti-
mal policy for the general model is unknown. We present

11 It should be rather straighforward too see that a combination of
the the rolling horizon OLFC-RHF and ZLF-UB heuristics would
give superior results. In Appendix D we present such a heuristic
called the OLFC-ZLF heuristic. The new heuristic is essentially a
rolling horizon implementation of ZLF-UB heuristic. Computing
OLFC-ZLF heuristic solution for a demand scenario (the demand
realizations in each period as we move forward in a horizon) is not
time consuming; it is approximately the horizon length times the
time to compute the optimal ZLF - see discussion in Appendix C.
Therefore, it is amenable to implementation. To test its efficacy,
however, requires computation of expected costs of the OLFC-ZLF
heuristic (important for comparing the performance of these heuris-
tics and for sensitivity analyses), a time consuming task since we
need to average over numerous demand scenarios.

two heuristics and a lower bound. Using extensive computa-
tional studies, we then demonstrate the effectiveness of the
heuristics and provide several managerial insights into the
properties of RHF contracts. For example, we show that (a)
often “unlimited” flexibility offered by a newsvendor model
is unnecessary, (b) low levels of flexibility is sufficient to
match the performance of a newsvendor model, (c) there are
decreasing returns to flexibility, (d) larger flexibilities allow
a buyer to offer higher service levels (measured by fill-rate),
(e) variability in the order process is lower than the variabil-
ity in the demand process, (f) mean absolute deviation of the
commitment from actual order decreases as we get closer to
the period in which orders are placed, and (g) “order process-
ing” creates variability in the order process that is sometimes
larger than the variability in the original demand. Finally, we
illustrate that for several cases a ZLF contract (which is a sub-
class of RHF contract) is efficient in that it provides a buyer
with the same expected cost as in a more general RHF con-
tract (under the OLFC-RHF heuristic) and simultaneously
provides a supplier with lower variability in the order process.

Our computational studies consider stationary and non-
stationary demands without any forecasting of market
demand. We believe that from an analytical perspective, the
heuristics and the lower bound will still be correct with a
slight modification. The ZLF-UB heuristic and the lower
bounds that follows a modified base stock policy will now
have to incorporate the most recent demand realization in its
state vector. We also believe that all the key insights generated
will hold for the case with demand forecasting.

The analysis presented here is a first step in understanding
contracts that require commitments with limited flexibil-
ity. We have analysed a contract for a single product in a
single-stage setting. Extensions of similar analyses to multi-
ple products with/without component commonality are also
areas of further research.

Finally, the focus of our paper has solely been on the
analysis of a contract presented to the buyer. We have demon-
strated its potential benefits to the supplier. Will such con-
tracts arise in a competitive setting that also includes the
supplier as a decision maker? From a supplier’s perspec-
tive, minimum orders guarantee business continuity; offering
flexibility allows it to exploit any upside potential that may
arise. Of course, the flexibility offered needs to be balanced
with the resulting impact (through order variability) on its
cost structure. Some papers in the literature have addressed
the contracting problem leading to contracts of the nature
described here, albeit in a single period (multi-stage) situa-
tion; see for example, Tsay [20] and Barnes-Schuster et al. [5]
for justification on the basis of channel coordination. These
papers, however, do not have a supplier cost model that is
impacted by order process variability; we conjecture that in
a model that has a supplier with such costs, one would see an
RHF type contract arising in equilibrium.
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APPENDIX A: ALGORITHMS

OLFC-RHF Heuristic
Algorithm 1:

1. Set j = 1.

2. Find xj such that
∑T

i=j
∂J

∂Q1(i)

∣∣∣
xj

= 0.

3. Find Sj . (This requires solving a single period “newsvendor”
problem).

4. If Sj ≤ xj then
set S∗

j = Sj .
If j = T then STOP.
else j = j + 1; GOTO 2.

else
set S∗

i = xj , i = j , j + 1, . . . , T
k∗ = j . STOP.

Algorithm 2:

1. Set i = 0 and �i = 0, for i = 0, . . . , T − t . The OLFC optimal
solution for periods t −1, . . . , T obtained in period t −1 is denoted
by Q∗

t−1,t−1, . . . , Q∗
t−1,T .

2. Solve a relaxed version of the problem in (9)–(11) (ignoring
constraints (11)). The relaxed problem can be solved by Algo-
rithm 1. Let the solution of the relaxed problem (for period t) be
Q̃t ,t , . . . , Q̃t ,T .

3. If (1 − αt ,t+i )Q
∗
t−1,t+i ≤ Q̃t ,t+i ≤ (1 + αt ,t+i )Q

∗
t−1,t+i then

set Q∗
t ,t+i = Q̃t ,t+i ; i = i + 1; Go to 3.

else If (1 − αt ,t+i )Q
∗
t−1,t+i ≥ Q̃t ,t+i then

set �i = Q̃t ,t+i − (1 − αt ,t+i )Q
∗
t−1,t+i ;

Q∗
t ,t+i = (1 − αt ,t+i )Q

∗
t−1,t+i ;

Q̃t ,t+i+1 = �i + Q̃t ,t+i+1;
If i = T then Stop;
else i = i + 1; Go To 3;

else set �i = Q̃t ,t+i − (1 + αt ,t+i )Q
∗
t−1,t+i ;

Q∗
t ,t+i = (1 + αt ,t+i )Q

∗
t−1,t+i ;

Q̃t ,t+i+1 = �i + Q̃t ,t+i+1;
If i = T then Stop;
else i = i + 1; Go To 3;

Algorithm 3:

1. Solve the static problem using Algorithm 1. Let the solution of this
problem be Q0

1,1, . . . , Q0
1,T .

2. Set j = 1.
3. Solve problem (P2) to get Zj

1 , . . . , Zj

T given Q
j−1
1,1 , . . . , Qj−1

1,T . This
can be done by a standard backward DP.

4. Solve problem (P3) to get Q
j

1,1, . . . , Qj

1,T .
5. If “termination condition is satisfied” then STOP; otherwise j =

j + 1; GOTO 3.

APPENDIX B: PROOFS

PROOF OF LEMMA 4.1: We first write (8) as:

min
Q1(1),...,Q1(T )

J (Q1(1), . . . , Q1(T ))

s.t. Q1(1) ≥ 0

Q1(i + 1) ≥ Q1(i) ∀i = 1, . . . , T − 1 (B1)

The Lagrangian relaxation of (B1) can be written as:

L(Q1(1), . . . , Q1(T )) = J (Q1(T ), . . . , Q1(T ))−
T −1∑
i=0

λi(Q1(i+1)−Q1(i)),

where λi is the Lagrange multiplier associated with the constraint Q1(i +
1) ≥ Q1(i), i = 1, . . . , T − 1 and λ0 = 0. The partial derivatives of the
Lagrangian function are:

∂L
∂Q1(i)

= (h+p)F1,i (Q1(i))−p+λi −λi−1 for i = 1, . . . , T −1 (B2)

and

∂L
∂Q1(T )

= (h − s + p)F1,T (Q1(T )) − p + λT −1 (B3)

To solve the problem we must find Q1(1), . . . , Q1(T ) and λ1, . . . , λT such
that:

1. The T partial derivatives of the Lagrangian function, given by
(B2)–(B3) are equal to zero.

2. Q1(i + 1) ≥ Q1(i) for i = 0, . . . , T − 1.
3. λi(Q1(i + 1) − Q1(i)) = 0 for i = 0, . . . , T − 1.

Part 1: Since S1 ≤ S2 ≤ · · · ≤ ST −1 ≤ ST the constraints in (8) are all
satisfied. We set the multipliers, λi to zero and Q1(i) = Si . Substituting into
(B2) and (B3) we see that the Kuhn-Tucker (K-T) conditions for optimality
are satisfied.

Part 2: Suppose ST < ST −1. We will show that the optimal solution has
the property that there exists a k∗ < T such that for every period j > k∗ the
periodical commitment quantity is equal to zero. Algorithm 1 (see Appen-
dix A) determines the optimal value of k∗. We make the following two
observations:

1. The static problem given by (8) is convex and thus all the partial
derivatives are monotone non–decreasing.

2. Let S∗
i , i = 1, . . . , T be the optimal solution of the static prob-

lem. Then, by summing the derivatives in (B2) and (B3) we have∑T
i=1

∂J
∂Q1(i)

∣∣∣
S∗
i

= 0.

To prove part 2 of the lemma, we first prove the existence of k∗ < T such
that Sj > xj for j ≥ k∗. By contradiction, suppose such a k∗ does not exist.
Then we get Sj ≤ xj for j = 1, . . . , T −1. From the definition of xT −1 (see
step 2 of Algorithm 1) we get

∂J

∂Q1(T )

∣∣∣∣
xT −1

+ ∂J

∂Q1(T − 1)

∣∣∣∣∣
xT −1

= 0. (B4)

Observe that xT −1 ≥ ST −1 > ST ; the first inequality is due to the contradic-
tion assumption and the second inequality is due to the condition assumed in

the Lemma. Observe that ST and ST −1 in (12) and (13) solve ∂J
∂Q1(T )

∣∣∣
ST

= 0

and ∂J
∂Q1(T −1)

∣∣∣
ST −1

= 0 respectively. But since xT −1 ≥ ST −1 > ST , we

get ∂J
∂Q1(T )

∣∣∣
xT −1

≥ 0 and ∂J
∂Q1(T −1)

∣∣∣
xT −1

> 0 which contradicts (B4). Thus

the existence of k∗ < T such that Sj > xj for j ≥ k∗ is guaranteed. To
prove the optimality of the periodical commitments in (14) we show that
the commitments Q1,i are feasible and satisfy the K-T conditions (B2) and
(B3).

To ensure feasibility we need to show that Q1(i) ≥ Q1(i − 1) for all i =
1, . . . , T . Observe that S1 ≤, . . . , ≤ Sk∗−1, and thus Q1(i)−Q1(i − 1) ≥ 0
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for i = 1, . . . , k∗ − 1. Since Sk∗−1 ≤ xk∗−1 (from the definition of k∗) we
have

∂J

∂Q1(k∗ − 1)

∣∣∣∣
xk∗−1

≥ ∂J

∂Q1(k∗ − 1)

∣∣∣∣∣
Sk∗−1

= 0.

But xk∗−1 solves

T∑
i=k∗−1

∂J

∂Q1(i)

∣∣∣∣∣
xk∗−1

= 0.

This implies that

T∑
i=k∗

∂J

∂Q1(i)

∣∣∣∣∣
xk∗−1

< 0.

But

T∑
i=k∗

∂J

∂Q1(i)

∣∣∣∣∣
xk∗

= 0.

Convexity of J (·) then implies that xk∗ ≥ xk∗−1 ≥ Sk∗−1. This completes
the feasibility proof. We now prove parts 2 and 3 of the Lemma to show that
Algorithm 1 results in the optimal solution.

Case 1(j < k∗): The partial derivatives of the Lagrangian

∂L
∂Q1(j)

∣∣∣∣
Sj

= (h + p)F1,j (Sj ) − p = 0

with λj = 0. The multipliers are non-negative and λj (Q1(j+1)−Q1(j)) =
0 for j = 0, . . . , k∗ − 1.

Case 2(j = k∗): For j = k∗, λj = − ∂J
∂Q1(j)

∣∣∣
xj

. Since ∂J
∂Q1(j)

∣∣∣
Sj

= 0,

xj < Sj and J (·) is convex, it is clear that λj ≥ 0. Thus all K-T conditions
are satisfied.

Case 3(k∗ < j ≤ T ): For j = k∗ + 1, . . . , T − 1 we set (refer to (B2))

λj = − ∂J

∂Q1(j)

∣∣∣∣
xj

+ λj−1.

Now, ∂J
∂Q1(j)

∣∣∣
xj

≤ 0 implies that λj ≥ 0. From (12) and (13) we have that

λT −1 = − ∂J

∂Q1(T )

∣∣∣∣
xj

≥ 0.

Again, all K-T conditions are satisfied and we have the optimal solution to
the static problem as described. �

PROOF OF PROPOSITION 4.2: b �

Consider the restrictions on the order quantity Qt ,t in period t under the
RHF contract,

(1 − αt−1,t )Qt−1,t ≤ Qt ,t ≤ (1 + αt−1,t )Qt−1,t . (B5)

Now the restrictions on the commitment for period t in period t − 1, Qt−1,t

were

(1 − αt−2,t )Qt−2,t ≤ Qt−1,t ≤ (1 + αt−2,t )Qt−2,t . (B6)

Substituting (B6) into (B5), we write,

(1 − αt−2,t )(1 − αt−1,t )Qt−2,t ≤ Qt ,t ≤ (1 + αt−2,t )(1 + αt−1,t )Qt−2,t .
(B7)

Observe that (B7) gives higher level of flexibility for Qt ,t than given by (B5).
Substituting bounds for Qt−2,t ,…,Q1,t into (B7) iteratively, we write,

t∏
k=1

(1 − αk,t )Q1,t ≤ Qt ,t ≤
t∏

k=1

(1 + αk,t )Q1,t (B8)

which is equivalent to (1 − γ
t ,t

)Q1,t ≤ Qt ,t ≤ (1 + γ t ,t )Q1,t . Since (B8)
gives a higher level of flexibility in choosing Qt ,t as compared to (B5), the
ZLF–LB contract provides a lower bound.

PROOF OF PROPOSITION 5.1: Observe that Problem (P2) as defined
by (17)–(18) is similar to the classical capacitated inventory problem. In
the capacitated inventory problem the lower bound on the order quantity
is always zero and the upper bound is always the capacity; in contrast, for
Problem (P2) with non–zero commitments, the actual order quantity in a
period will have a finite non–negative lower and upper bounds as described
by (18). Federgruen and Zipkin [13] proved the optimality of a modified base
stock policy for the capacitated inventory problem. The proof follows along
similar lines. �

PROOF OF LEMMA 5.2: The constraints (18) can be written as AX =
b where

A =
[

1 0 1 0
1 0 0 −1

]
,

the vector X = [Qi,i , Qi,i , ui , li ] with ui , li ≥ 0 as the slack and surplus
variables and the vector b = [(1 + αi,i )Q1,i , (1 − αi,i )Q1,i ]. Using the fact
that (P2) is convex and applying Theorem 5.7 of Rockafellar [17] we get
convexity of AC∗

1 (x1, Q1,1, . . . , Q1,T ) in (x1, Q1,1, . . . , Q1,T ). �

PROOF OF PROPOSITION 5.2: Observe that

BC
j

1

(
x1, Qj−1

1,1 , . . . , Qj−1
1,T

∣∣Zj

1 , . . . , Zj

T

) = AC
∗j

1

(
Q

j−1
1,1 , . . . , Qj−1

1,T

)
.

(B9)

After solving (P3) at iteration j , we get

BC
∗j

1

(
x1, Qj

1,1, . . . , Qj

1,T

∣∣Zj

1 , . . . , Zj

T

) ≤ AC
∗j

1

(
x1, Qj−1

1,1 , . . . , Qj−1
1,T

)
.

(B10)

Subsequently, solving problem (P2) given (Q
j

1,1, . . . , Qj

1,T ) we get

AC
∗j+1
1

(
x1, Qj

1,1, . . . , Qj

1,T

) ≤ BC
∗j

1

(
x1, Qj

1,1, . . . , Qj

1,T

∣∣Zj

1 , . . . , Zj

T

)
(B11)

Thus we get that BC
∗j+1
1 (·|·) ≤ AC

∗j+1
1 (·) ≤ BC

∗j

1 (·|·) for every
j . Since the cost functions are bounded from below by zero it is clear
that the algorithm converges. We now prove, by contradiction, that the
algorithm converges to the optimal solution of problem (ZLF). Suppose
that the algorithm converges to Q̃1,1, . . . , Q̃1,T , Z̃1, . . . , Z̃T whereas the
optimal solution to the problem (ZLF) is Q∗

1,1, . . . , Q∗
1,T , Z∗

1 , . . . , Z∗
T �=

Q̃1,1, . . . , Q̃1,T , Z̃1, . . . , Z̃T . Before, we show the last step, we need the fol-
lowing. To show the dependence of AC∗

1 (·) on the commit vector and the
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optimal modified base stock solution (the vector of Z) explicitly, we write
AC

∗j

1 (x1, Z1, . . . , ZT |Q1,1, . . . , Q1,T ) ≡ AC
∗j

1 (x1, Q1,1 . . . , Q1,T ). Then,

AC∗
1

(
x1, Z∗

1 , . . . , Z∗
T |Q∗

1,1, . . . , Q∗
1,T

)
< AC∗

1 (x1, Z̃1, . . . , Z̃T |Q̃1,1, . . . , Q̃1,T )

= BC
j

1 (x1, Q̃1,1, . . . , Q̃1,T |Z̃1, . . . , Z̃T ). (B12)

But inequality (B12) is a contradiction to the convexity of problems ZLF, P2,
and P3. Thus (B12) does not hold which proves that the algorithm converges
to the optimal solution. �

APPENDIX C: IMPLEMENTATION OF THE
HEURISTICS AND LOWER BOUND

ZLF Contract
Algorithm 2: Observe that problem (P2) can be easily solved by using
standard Dynammic Programming (DP) techniques. The only difference
between the standard newsvendor problem and (P2) is that in problem
(P2) the order quantities, Qi,i are constrained by the periodical commit-
ments Q1,1, . . . , Q1,T given by (18). In solving problem (P2) we proceed
exactly in the same way as if we solve the standard newsvendor problem
using backward DP. In the period i, to solve for Zi we assume knowl-
edge of the T − i modified base-stock levels for periods i + 1, . . . , T and
AC∗

i+1(xi+1, Q1,i+1, . . . , Q1,T ), the optimal expected costs from period i+1
through T . The modified base-stock level for period i, Zi is then calculated
assuming that period i is unconstrained. Subsequently, the new cost-to-go
function AC∗

i (xi , Q1,i , . . . , Q1,T ) is constructed. Observe that the cost-to-
go function, AC∗

i (xi , Q1,i , . . . , Q1,T ), will be affected by the constraints in
period i. Solving for the modified base stock level Zi for period i assuming
that the order quantity in period i is not constrained is justified by the fact
that the cost function ACi(·) is convex (see Lemma 5.2) and the constraints
are linear. Thus it is always optimal to order either up to the unconstrained
base stock level or quantities specified by the bounds.
Algorithm 3: For the ZLF contract, we implement Algorithm 3 to compute
the optimal commitment quantities and the corresponding adjustment policy
for given parameters. While the implementation of Algorithm 1 and steps 2
and 3 of Algorithm 3 are straightforward, we elaborate on implementation
of step 4 (updating the commitment vector). In step 4 of algorithm 2, we
solve (P3) to update the commit vector for the adjustment policy computed
earlier in step 3. Recall that we update the commit vector (Q1,1, . . . , Q1,T )

using (21) working backward from period T . The only problem in solving
(21) is to determine the starting inventory position xi for period i. We do
this as follows. Recall that we have the various demand points generated for
each period’s demands (see discussion just before subsection 6.1 on Monte
Carlo integration for computing first partials). We use these demand points
(for periods 1 to i − 1) to generate sample realizations of starting inventory
xi for period i. This is easily done since we know the optimal policy struc-
ture. For any given value of the minimizer Qi,i in (21), we then compute the
expected cost BCi using the sample realizations xi and demand realizations
for period i + 1 to T . Finally, searching over Qi,i gives us an update for the
commitment in period i. Clearly, this step of updating the commit vector
Q (step 4 of algorithm 3) is the most computationally intensive of all the
steps. Our computational studies indicate that the first iteration of Algorithm
3 takes about 1.5 seconds, whereas each subsequent iteration of step 4 and 3
of algorithm 2 take approximately one minute depending upon the number
of points used in the Monte Carlo simulation. We observe that the expected
costs converge within 4 to 5 iterations of Steps 3-4 of algorithm 3 when we
start with the commit vector which solves the static problem. We used 500
demand points for each iteration but the last; in the last period we use 2500
demand points. However, we also observe that the solution obtained using

steps 2 and 3 of Algorithm 3 alone is within 4% of the optimal solution for
the ZLF model. The difference is lower for low flexibilities.

APPENDIX D: OLFC-ZLF HEURISTIC

We now combine the rolling horizon OLFC–RHF and ZLF–UB heuristics
to give the OLFC–ZLF heuristic. Observe that using the ZLF–UB heuristic,
the buyer gives an initial commitment Q1,1, . . . , Q1,T in period one and sub-
sequently never updates this initial commitment. Now consider the following
rolling horizon implementation of the ZLF–UB heuristic.

1. Compute the initial commitment as in the ZLF–UB heuristic. This
gives us Q1,1, . . . , Q1,T .

2. In any period t , after observing the initial inventory, recompute
the optimal policy for the ZLF–UB contract under constraints
(1 − β

t ,i
)Qt−1,i ≤ Qt ,i ≤ (1 + βt ,i )Qt−1,i for i = t , . . . , T .

The difference between the OLFC–RHF heuristic and this rolling horizon
implementation of the ZLF–UB heuristic is that in a ZLF–UB heuristic we
compute the optimal commitment (assuming that the buyer will have flex-
ibility to later adjust the actual orders in a future period) whereas in the
OLFC–RHF heuristic we ignore this to compute an open loop feedback
control solution. We refer to the solution obtained from a rolling horizon
implementation of the ZLF–UB contract as the OLFC–ZLF heuristic.
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