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ABSTRACT

Tests of “variance bounds” have usually been derived in the context of a model with a

single representative firm.  In the equilibrium framework of this paper we show that when the

economy has multiple firms, the results of the classic variance bounds literature do not have any

theoretical validity.  The price volatility of a firm does not depend on the volatility of the firm’s

dividends.  As a consequence the “perfect foresight” price paths traditionally calculated in this

literature do not contain correct information about the price volatility of the firm.
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INTRODUCTION

In this paper we study the general equilibrium relation between the volatility of stock price

“fundamentals” and stock prices.  There is a large stock price volatility literature, which aims to

document the empirical relation between stock prices and dividend volatility, and to provide tests

of market efficiency by using the “variance bounds” methodology.  A fundamental theoretical

assumption in this methodology is that there is a direct relation between the volatilities of stock

prices and their fundamentals.  We develop a simple theoretical model to show that this

assumption is incorrect.  We also show that this result invalidates the inequality restrictions

derived in this literature. 

The “variance bounds” methodology develops tests of market efficiency that compare

variances of market prices with variances of dividends and other stock “fundamentals.”1,2 

Theoretical bounds on ratios of these variances (or functions of these variances) are derived by

invoking market efficiency and rational expectations.  The basic idea is that since the stock price is

the present value of future dividends, the variance of stock prices must be related to the variance

of the underlying dividends.3 

In the classical variance bounds tests, the observed ex-post dividend path, starting at some

past date t-n for a stock (or the market portfolio), is discounted to give *
ntP − .  Then a sequence of

                                               
1   The variance bounds methodology has been applied to stock prices (Grossman and Shiller 1981, Shiller
1981a,b), to the term structure of interest rates (Shiller 1979, Singleton 1980) and to the foreign exchange markets
(Evans 1986, Frankel and Meese 1987, Huang 1981). 
2   In a recent contribution, Cochrane (1991) challenges the notion that variance bounds tests address new aspects
of market efficiency, and he shows that these tests are identical to the traditional market efficiency tests.  However,
he does not challenge the validity of the variance bounds that are tested in the literature. 
3   Bounds are frequently derived for changes or growth rates of prices and dividends.  Shiller (1981a,b) and LeRoy
and Porter (1981) assume constant discount factors.  Grossman and Shiller (1981) allow the discount factors to be
time-dependent.  More recent work is Campbell and Shiller (1987, 1989), LeRoy and Parke (1988), Poterba and
Summers (1986), Summers (1986), and West (1986, 1988).  In most instances, the theoretical relations that have
been derived appear to be violated decisively by the data. 
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prices is computed starting at t-n up to a more recent date t-k (n>k):  *
ntP − , *

1+−ntP  … *
ktP − . 

Under the assumption of perfect foresight, the variance of *
τP , ought to be larger than the

variance of the observed market price, τP , in this interval. 

Statistical shortcomings of the variance bounds tests have been widely documented in the

literature, and the proposed remedies have concentrated on constructing stationary functions of

the nonstationary variables involved, with statistical properties that are better suited to time series

tests.4  Other shortcomings of the tests include their vulnerability to dividend-smoothing policies

of firms.5 

In this paper we do not focus on the well-understood statistical inadequacies of the

variance bounds tests.  Instead, we deliberately choose an equilibrium framework —stationarity in

all parameters and quantities— in which none of the real-life statistical or econometric difficulties

exist.  In this framework we examine a fundamental assumption of the above derivation, namely

that the price volatility of a stock is related to its dividend volatility, and that higher dividend

volatility will be associated with higher price volatility.  In our simple multi-firm stationary

economy everyone knows the discount factors exactly.  Our basic theoretical result (Theorem 1)

is that in equilibrium price volatility does not depend on dividend volatility (i.e., the dispersion or

the distribution of dividends), but rather it is governed by the state-dependence of market

                                               
4   Tests on stock returns have been criticized on empirical and theoretical grounds.  Kleidon (1986a,b) shows that
empirically these tests are flawed if dividends are nonstationary, because it is not possible to estimate the required
cross-sectional variance of dividends from time series data.  Flavin (1983) and Kleidon (1986a) show that many of
these estimates also have serious small sample biases.  West (1988) derives a test that is free of such small sample
biases and which may be applied to any stationary process.  His test also rejects these variance inequalities. 
5   Marsh and Merton (1986) examine the robustness of inequalities based on “perfect foresight” prices constructed
from ex-post dividends, p*(t).  They rely on Miller and Modigliani (1961) to propose a dividend-smoothing pattern
that violates the Shiller inequalities.  They show that certain dividend-smoothing patterns will reverse the variance
bounds when dividends are nonstationary. 
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valuation.6  In this connection we also show it is not possible to construct a rational economy that

is stationary, has aggregate uncertainty, and also has state-independent state prices.  Yet

stationarity of state prices is assumed to derive the variance bounds results. 

We derive our results in a representative consumer economy where uncertainty comes

from productivity shocks to a nonperishable and non-growing capital stock.  We use a Lucas

general equilibrium state-preference model (Lucas 1978) of asset valuation, with a representative

consumer, complete markets, and fully competitive firms.  Consumption, firm values, and earnings

are stationary.  State prices may be state-dependent but they are stationary.7 

Our results come from a straightforward observation:  The price of a stationary dividend

distribution will remain unchanged regardless of its dispersion as long as the pricing function is

unchanged.  State-dependent changes in the pricing function are the critical source of price

volatility.  The larger the state-dependent variations in the pricing function the more volatile the

more volatile stock prices become, again regardless of the distribution of their dividends. 

In particular, we show examples where —even though there is no dividend volatility— the

stock price is volatile.  Conversely, wide dispersions of dividends result in zero volatility if the

pricing function is state-independent. 

In section I we specify the model, derive its relevant equilibrium features, and obtain a

valuation result.  In section II we study the determinants of the variability of a firm's value, and in

section III we show simulations that compare the volatility of *
τP  and Pτ.  Section IV is the

conclusion. 

                                               
6 This result also holds in a nonstationary economy with production and growth (see Benninga and Protopapadakis

1996).

7   We choose such an economy in order to make our results directly comparable to the assumptions used in the
important papers in this literature, such as Shiller, and LeRoy and Porter. 
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I.   MODEL SPECIFICATION

Our model is a simple no-growth model with two future states possible from any date = t,

and an infinitely-lived representative consumer.  Markets are complete, and there is a single

consumption good.  There are two possible states of the world, labeled α and β.  Transition

probabilities depend on the current state of the world, and we assume these to be Markov:

To state
From state αα ββ

αα παα παβ

ββ πβα πββ

At each time-state pair, the representative consumer consumes the available consumption

good.  The consumption good is produced (or available) at each date, but there is no investment

and no growth in this economy. 

I.a  Equilibrium With Two Perfectly Competitive Firms

We assume that there are two independent production technologies, i.e., production

technologies are complete.8  One can think of these technologies as two types of firms that

operate in the fully competitive product market.  At each date the x-technology (or x-firm)

produces xα output if the α-state obtains and xβ output if the β-state obtains.  The z-technology

(or z-firm) produces zα output if the α-state obtains and zβ output if the β-state obtains.  Both

firms have shares outstanding that represent claims to their output in perpetuity.  The consumer

maximizes her expected utility:

                                               
8   Production technologies are complete if there are at least as many independent technologies as states.  This
definition parallels the definition of complete markets.  See Benninga and Protopapadakis (1991) for an extensive
discussion of the implications of this specification. 
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(1) ( ){ } ( ) ( ) ( ) ...2δππδ ββαα +++= nnnnnn cUcUcUcuE ,

where δ  is the time-preference parameter, subject to,

(2) cα   = xα + zα,          and  cβ  = xβ + zβ,   ∀ t.  

We assume that the utility function is of the form: 

(3) ( )U c
c

=
−

−1

1

γ

γ
 for 1>γ , where γ  is the relative risk aversion. 

The first-order conditions for the consumer are, 

(4)
( )
( ) α
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n q
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cU
=
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'
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( ) β
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'
, for any state n. 

Since consumption can take only one of two values, there are four possible state prices, as

shown below.
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


=
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c

c

cU

cU

'

'
, the state prices can be written more usefully as: 

To state
From state αα ββ

αα δπαααα =q Φ= δπαβαβq

ββ 1−Φ= δπ βαβαq δπ ββββ =q
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where 
γ

α

β
−









≡Φ

c

c
< 1. 

Lemma 1: In a stationary economy, uncertainty implies that state prices must be

time-dependent. 

The result is clear upon inspection of the above table.  Even when probabilities are state-

independent and equal (παα = παβ = πβα = πββ), the state prices will be state-independent if and

only if Φ = 1.  But this implies cβ = cα, i.e., no uncertainty.9  QED. 

Equilibrium state prices make it possible to price the shares of the x- and z-firms. 

Consider being in state α at date = t.  Since there is no growth over time and the transition

probabilities are time-independent, time is irrelevant.  The consumer will place the same value on

the future output of, say, the x-firm in all the α  states.  The same holds for the β states.  This

leads to a pair of linear equations for the two values of the x-firm.  Clearly a similar set of

equations apply for the z-firm.

(5a) value of the x-firm in the α state: [ ] [ ]ααααββαβα xVXqxVXqVX +++= ,

(5b) value of the x-firm in the β state: [ ] [ ]ββββααβαβ xVXqxVXqVX +++= . 

Denoting by Q the matrix of state prices, the analytic solution for this pair of equations is

( )
VX

VX
I Q Q

x

x
α

β

α

β









 = − ⋅ ⋅











−1
, where I is the 2 x 2 identity matrix.  Since the state-dependence of

the probabilities is not important for our main results, we study the solution for the case where the

                                               
9   However, state-independent state prices are compatible with uncertainty in growth equilibria.
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probabilities are state-independent, i.e., πππ βααα =≡ ,  and πππ ββαβ −=≡ 1 .  In this case

( )
( ) 








−Φ

Φ−
= − δππδ

δππδ
1

1
1Q , and the solution for the x-firm simplifies to: 

(6a) ( ) ( )[ ] ( )[ ]βαα ππ
πδδ

δ
xxVX Φ−+








−+−

= 1
2111

, 

(6b) ( ) ( )[ ] ( )[ ]βαβ ππ
πδδ

δ
xxVX −+Φ








−+−

= − 1
2111

1 . 

Similarly, the z-firm valuation is: 

(7a) ( ) ( )[ ] ( )[ ]βαα ππ
πδδ

δ
zzVZ Φ−+








−+−

= 1
2111

,

(7b) ( ) ( )[ ] ( )[ ]βαβ ππ
πδδ

δ
zzVZ −+Φ








−+−

= − 1
2111

1 . 

Note that the same macro-equilibrium—interest rates, state prices, consumption

allocations, and the value of the market—is compatible with an infinite number of underlying

micro-equilibria (i.e., production technologies and firm values) as long as the outputs add up to

the same macro quantities, state by state.  This is a very important feature of the model, because it

allows us to examine comparative static questions, such as the relation between dividend and

value volatility, within the same macro equilibrium. 

II.  THE DETERMINANTS OF DIVIDEND AND PRICE VOLATILITY

In this section first we show the determinants of value and price volatility, and state

Theorem 1.  We then turn our attention to the issues raised by Theorem 1 for the excess volatility

literature. 
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II.a.  Dividend and Price Volatility

We assume that firms pay out all their output as dividends, since there is no investment

decision and we are not interested in examining possible dividend-smoothing strategies. 

The standard deviation of the x-firm’s dividends is,

(8) ( ) ( ) ( )ππαβ −−= 1xxdivStd x . 

Without loss of generality, each firm issues one share, so that “share price” and “firm value” are

interchangeable.  The standard deviation of share prices is,

(9)

( ) ( )

( )
( ) ( )[ ] ( ) ( )( )[ ].111

2111

1

1

1
βα

αβ

ππ
πδδ

ππδ

ππ

xx

VXVXVXStd

Φ−−+−Φ










−+−
−

=

−−=

−

In Theorem 1 we show that equation (9) can be used to conclude that there is no obvious

equilibrium relation between the volatility of a firm’s dividends and the volatility of its value.  The

intuition behind the theorem is that the state-dependence of state prices causes the volatility of

stock prices, in a macro equilibrium that supports a variety of individual firm equilibria. 

1. First we note from equation (9) that it is not possible to write the relation as a function of the

standard deviation or variance of the x’s (the firm’s dividends) on the right-hand-side.  This

precludes a direct relation between the standard deviations of x and VX. 

2. Next, we note that by varying the outputs of both the x-firm and the z-firm, we can keep the

macro equilibrium constant and get same Std(VX) for different variances of the x’s.  This is

easily seen when equation (9) is rewritten as:

( ) ( )
( ) ( )[ ] ( )( ) ( )( )( )[ ]Std VX c z c z=

−

− + −











 − − + − − −−δ π π

δ δ π
π πα α β β

1

1 1 1 2
1 1 11Φ Φ . 
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Keeping the macro equilibrium identical (i.e., δ, π, γ, cα, cβ, and thus Φ, constant) still allows

infinite choices for xα, xβ, that would result in the same Std(VX).10 

3. The above includes the infinite number of special cases where Std(VX) > 0 but the volatility of

the x-dividends is zero.  To see this set  ββαα zczc −=− . 

4. Finally, holding the x-dividends fixed and varying the macro equilibrium will give different

STD(VX).  In the special case Φ = 1, Std(VX) = 0, regardless of the volatility of the dividends.

We summarize these four points in the following theorem: 

Theorem 1: The price volatility of the firm does not depend on the volatility of its dividends. 

Equation (9) shows that even when dividends are equal, price volatility exists.  Indeed,

price volatility is never zero, as long as there is macro uncertainty.  Price volatility depends mainly

on Φ, a macro quantity that measures macro uncertainty by the dispersion of consumption across

states;  Φ=1 when there is no macro uncertainty (see Lemma 1). 

Theorem 1 may be a surprising result.  In all equilibrium models in finance, share values

are always the present value of payoffs.  It seems only natural to conclude that the volatility of

these values must depend on the volatility of the payoffs!  We are not aware of any research in

which this proposition has been examined in equilibrium.  This apparently self-evident proposition

turns out to be false. 

                                               
10   A small example may be useful:  Take the following arbitrary but plausible values: π=0.30, δ = 0.99, γ  = 2.0,
cα = 2.10, cα = 2.30.   The values of xs that follow all result in the same Std(VX) = 6.00 but different Std(x). 

xαα xββ zαα zββ Std(x)
0.8000 0.4975 1.3000 1.8025 0.1386
1.0000 0.2578 1.1000 2.0422 0.3401
1.1000 0.1380 1.0000 2.1620 0.4408
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In Figures 1 and 2 we specify a reasonable macro equilibrium and examine the behavior of

the price volatility for both the x-firm and the z-firm as xα varies between 0 and cα.11  As Figure 1

shows, varying the dividends of the x-firm affects the value volatility of both firms; however, as

can be seen in Figure 2, there is no clear relation between dividend volatility and value volatility. 

In fact, as discussed in Theorem 1, dividend volatility of the x-firm can be zero even as the value

volatility of the firm is positive.

Figure 1 Figure 2

II.2   The Excess Volatility Literature

Theorem 1 raises fundamental questions about the underpinnings of the variance bounds

literature.  A fundamental quantity in this literature is the “perfect foresight” price of the firm, *
tP .

 This is the discounted value of the realized path of dividends.  Shiller (1981a,b), LeRoy and

Porter (1981), and others have shown that Var( *
tP ) > Var(Pt) where Pt is the observed price,

when markets are efficient, dividends stationary, and discount factors constant.  However, this

proposition relies on the premise that price volatility depends on dividend volatility. 
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We summarize briefly the theory.  Let f
tX  be an efficient forecast of *

tX .  It follows that

t
f

tt XX ε+=* , where εt is i.d.  The immediate result is that ( ) ( )f
tt XX varvar * > .  Leroy & Porter

and Shiller & Grossman use an ingenious approach to take advantage of this inequality.  They

note that the current price of a stock, Pt, is an efficient forecast, because it is the present value of

expected dividends.  They construct a price series, *
tP , from the actual ex-post dividends, *

tX . 

Assuming the researcher prices dividends correctly, it follows that ( ) ( )tt PP varvar * > , since the

actual dividends must be more volatile than the expectations of these dividends.  We will refer to

this inequality as the LPSG inequality. 

We address the following question:  Can this result be true if it is also true that price

volatility is independent of dividend volatility? 

Consider first the “constant discount factor” approach, which has been used often in this

literature.  If the actual dividends are discounted by a constant discount factor by the researcher,

the LPSG inequality cannot hold.12  To see why, consider the case of equal dividends.  When

dividends are equal, ( ) ( )tt PP var0var * <= .  By continuity, it follows that the LPSG inequality is

violated at least over some range of dividend volatilities.  Note, however, that using a constant

discount factor is theoretically incorrect, as shown in Lemma 1. 

The only hope is volatility in the discount factor.  We have already shown that in such a

stationary economy with uncertainty, the discount factor is state-dependent.  And as we have

seen, it is the variation in the volatility of state prices that produces price volatility. 

                                                                                                                                                      
11    The macro equilibrium is:  π=0.30, δ=0.99, γ=2.0, cα=2.10, cβ =2.30. 
12    We have already shown that a constant discount factor is inconsistent with a stationary equilibrium.  However,
the econometrician may choose to use a constant discount factor.  
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It is difficult to obtain analytic results for a path-dependent quantity like *
tP .  Therefore

we resort to numerical simulations.  Our main goal is to find legitimate counter-examples to the

LPSG inequality rather than to study the statistical properties of *
tP .  Since the LPSG inequality

is a general proposition, any well-specified counterexample is sufficient to falsify it. 

In the next section we discuss in detail the two method we use to construct *
tP .  The

marginal utility of consumption approach, which is precisely that used by Grossman and Shiller

(1981), and a state-dependent cost of capital that is used in the standard valuation formula of

finance.  In these simulations we have the advantage over real-life situations that the pricing

factors we use are “correct” because we know the model.  In our brief numerical analysis, the

LPSG inequality fails in all the cases we compute. 

III.  THE SIMULATIONS 

Throughout the simulations, the underlying macro equilibrium is unchanged.  This

equilibrium is the same as in Figure 1, and it is characterized as follows: 
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Macro Equilibrium States
αα ββ

Probability 0.30 0.70
Time Preference δδ 0.99
RRA γγ 2.00
Consumption c 2.10 2.30
Expected Consumption 2.24
Volatility of Consumption 0.0917
Market Value 195.24 234.21
Expected Market Value 222.52
Volatility of the Market 17.85
Risk Free Rate 14.32% -4.70%
Expected Risk Free Rate 1.01%
Market Div/Price Ratio 0.011 0.010

The micro equilibrium we use for the simulations we report is: 

Micro Equilibrium States
αα ββ

Firm Dividends
x-firm 1.25 1.15
z-firm 0.85 1.15

Stock Price Volatility
x-firm 9.47
z-firm 8.38

We first specify all the necessary steps to generate simulated data for P*.  Then we

compute the volatility of P* for each path and compare it to the volatility of the market price, P. 

Three steps are required to construct P*. 

1. Determine “sample” paths analogous to the “actual” dividend data in the empirical literature,

2. Compute:

a. The state-dependent Cost of Capital --coc-- that is needed to discount dividends.

b. The relevant marginal utilities of consumption for each dividend.

3. Construct the time series of P* by discounting appropriately each dividend along the sample

path. 
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III.1.   The Determination of the Sample Path

1. We draw at random 500 numbers, u, from a uniform distribution over the [0,1] interval.  Each

draw of 500 us is a sample path.  For the simulations we draw 250 such sample paths. 

2. We assign the sequence of states in the following way: ∀ u > π, assign the beta state; to all

others we assign the alpha state. 

Date=500 is the last (and nearest) date of the sample path, while the first observation (date=0) is

the furthest. 

For the results we present we use the same 250 sample paths for all the calculations in

order to make direct comparison possible. 

III.2.a.   The State-Dependent Cost of Capital,  coc

The discount factors, or the two costs of capital, coc, are derived from the firm values. 

Consider the x-firm:  Since expected dividends are constant, it follows that 

( ) ( ) ( )xxx divEdivEdivE == βα || . 

1. Let ( ) ( )[ ]







−+−

≡Γ
πδδ

δ
2111

.  Also define 
β

α

x

x
≡Θ .  Since expected dividends are

constant, the perpetuity relation gives:  
( )

a

x

coc

divE
VX =α ,  

( )
β

β coc

divE
VX x= .

2. It follows then that, 
( )

( ) 1

1
1

1

1
−

−
−

ΦΘ−+
Θ−+

Γ=
ππ
ππ

αcoc ,   
( )

( )ππ
ππ

β
−+ΘΦ

−+Θ
Γ=

−
−

1

1
1

1coc . 
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III.2.b   The Marginal Utility of Consumption

The marginal utilities of consumption are the corresponding probability-adjusted state

price for each state, and they are given by, 

To state
From state αα ββ

αα δαα =mu Φ= δαβmu

ββ 1−Φ= δβαmu δββ =mu

III.3.a.   The Calculation of *
tP  Using coc

1. We present value the 500 “actual” dividends of each sample path to the initial date (date=0),

using the appropriate coc for each state along the sample path. 

2. We also present value the theoretical price of the nearest observation (P500), to take into

account the present value of the dividends after date=500, that have been necessarily

truncated in the simulation.  This also helps eliminate any biases in *
tP associated with the

increasing importance of the truncation as we progress forward through the observations. 

( ) ( )

















+
+



















+
=

∏
∑

∏
=

=

=

500

0

500
500

1

0

*
0

11
τ

τ
τ

τ coc

P

coc

div
P

t
t

t . 

*
0P  is the first and furthest observation. 

3. We use the recursive nature of pricing to calculate the time series of *
tP .

t

t

t

t
t coc

P

coc

div
P

+
+

+
= ++

11

*
11*  can be rewritten as, ( ) 1

**
1 1 ++ −+= tttt divPcocP .  Equivalently, one can

use the method in (2) above for each observation. 
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III.3.b.  The Calculation of *
tP  Using Marginal Utilities

We use the same method as above.  The only difference is that we apply the state-specific

marginal utility to each dividend during the present valuing process. 

( ) ( )∏∑ ∏
== =

+







=

500

0
500

500

1 0
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III.4.   Computing the Volatility of P* and the Results

For each sample path drawn above, we compute the volatility (measured by the standard

deviation) of P*.13  We show typical results from these simulations in Figures 3 and 4.  Figures

3A and 3B show the simulation results for both the x- and z-firms when the coc is used to

discount the dividend path.  Figures 4A and 4B show similar simulation results that use the

marginal utilities to do the discounting, while figure 4C shows the results for the market volatility.

 The horizontal lines in each graph are the theoretical volatilities.  The same 250 sample paths are

used in all four figures. 

Using the coc for discounting produces very low volatilities compared to the theoretical

ones.  We have run several simulations with this method, and it is a rare event when a P* volatility

exceed the theoretical one.  In Figures 3A and 3B there are no instance of such an event.  The

reason for these typically low volatilities is that the cocs are too “smooth” by construction.  There

is no evidence of average mispricing, however. 

                                               
13    The computed standard deviation of P* can be influenced unduly by the “last” observation, i.e., the theoretical
P.  Because P becomes a larger part of P* as we approach the nearest observation, it will bias the computed Std
downwards if P* happens to be near P at this stage, and it will bias it upwards if P* happens to be far from P at this
stage.  Therefore, we omit the nearest 50 observations when we compute the path standard deviations.
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Using the marginal utilities produces markedly different results.  In figures 4A, 4B, and 4C

the volatilities of P* exceed the theoretical ones a little more than half the time.  The increased

volatility of P* should not be surprising, since the marginal utility method mirrors the theoretical

valuation.  These results hold both for the individual securities (figures 4A, 4B) and for the

market portfolio as a whole. 

From the point of view of the “volatility bounds” literature, these figures are conclusive

counterexamples to the volatility inequalities in the literature.  The Var( *
tP ) > Var(Pt) inequality

simply does not hold.  We have run many simulations that we do not report here, and we have

generated all sorts of results, including cases in which the volatility of P* is mostly below or

mostly above the theoretical volatility.  This shows that not only it is not possible to sign the

inequality theoretically, but also that the volatility of any given sample path is a very imprecise

estimator of the volatility of P. 

Our simulations are also consistent with the conclusion in Grossman and Shiller (1981),

that as the volatility of the discount factor increases (in their case the marginal utility), the

volatility of P* will eventually exceed that of P.  Even though our simulations are computed with

the “correct” discount factors, the volatility of P* is heavily path-dependent.  Thus, one cannot

rely on such a method to infer marginal utilities and implicitly relative risk aversion. 

IV.   CONCLUSION

We study the relation between the volatilities of stock “fundamentals” and stock prices,

using a multi-firm Lucas, stationary, state-preference economy, with a representative consumer

who maximizes a CRRA utility function.  There is one good produced by two perfectly

competitive firms that possess distinct production technologies.  Capital is fixed for each firm. 
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Uncertainty exists because the productivity of each firm is state-dependent.  We assume that only

two states are possible at each date and that markets are complete. 

First we show that in such a time-stationary economy, the volatility of stock prices does

not depend on the volatility of dividends or earnings.  Rather, it depends on the volatility of the

state-dependent pricing function.  The intuition here is that, regardless of the distribution of

dividends, their pricing will change over time only if the pricing function varies.  We also show

that uncertainty in a stationary economy necessarily implies a state-dependent pricing function. 

Next we turn to the “volatility bounds” literature, which derives inequalities between the

volatilities of “perfect foresight” prices and market prices.  Since these inequalities are based on

the assumption that stock price volatility depends on dividend volatility, it is likely that they will

fail.  We present simulation results which conclusively show that the inequalities in this literature

are incorrect. 
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FIGURE 3A

The Volatility of *
xP  Compared to Px, Using the CoC For Valuation; 

250 Simulations
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FIGURE 3B

The Volatility of *
zP  Compared to Pz, Using the CoC For Valuation; 

250 Simulations
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 FIGURE 4A

The Volatility of *
xP  Compared to Px, Using Marginal Utility For Valuation; 

250 Simulations
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FIGURE 4B

The Volatility of *
zP  Compared to Pz, Using Marginal Utility For Valuation; 

250 Simulations
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FIGURE 4C

The Volatility of *
marketP  Compared to Pmarket, Using Marginal Utility For Valuation; 

250 Simulations
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