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Abstract

I construct a generalized OLG economy where investors live for an arbitrary number of periods, and

trade an infinitely-lived risky asset. Investors are rational but asymmetrically informed about the value

of future dividends. I then compare asset pricing moments, and the informational role of prices, across

economies with different investment horizons. Horizons affects prices through two key mechanisms. As

horizons increase, 1) the age-adjusted risk aversion of the average investor falls, and 2) the risk transfer

from forced liquidators into voluntary buyers drops. These mechanisms allow equilibria that fail to exist

for short horizons to be recovered for high enough lifespans. There are typically two equilibria: a stable,

low-volatility equilibrium in which longer horizons reduce price variability and raise average prices, and

an unstable, high-volatility equilibrium with the opposite properties. Along the stable equilibrium, the

reduction in non-fundamental price volatility caused by longer lifespans incites more aggressive trading

by the informed investors, which impound more of their knowledge into prices. Longer investment hori-

zons thus improve market efficiency, and reduce the uncertainty of the uninformed investors. Expected

returns and return volatility are similar to an economy with full-information about fundamentals, even

if the informed are relatively few. For short horizons, cautious trading disaggregates information from

prices, and the economy approaches one with no private information.
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1 Introduction

The fact that investors care about returns over a limited horizon is a pervasive feature of financial markets.

With trading carried out mostly by intermediaries who care about short-term performance –be it through

explicit contracts, or by the threat of fleeing investors– one has good reasons to suspect long-run prospects

might often be underweighted in everyday market transactions. From a more cyclical perspective, the

outset of financial crises are characterized by widespread investors’ withdrawals and fund liquidations,

suggesting fund managers’ bias towards immediacy might be particularly acute during such episodes.

This opens the question of whether the radically different behavior of markets during crises –sharp price

drops, heightened volatility, and higher expected returns– could be partly explained by variations in the

effective horizons of intermediaries. Moreover, even leaving intermediation out of the story, the fact that

households literally have finite lifespans suggests concerns about the short-term are relevant.

Despite the apparent importance of constructing models where finite horizons play an explicit role,

our knowledge in this regard seems limited. Mainstream asset pricing theory often assumes infinitely-lived

investors who can voluntarily trade at all times.1 Alternative models with finite horizons, on the other

hand, build on an OLG framework where investors live for two periods.2 While useful to understand some

pricing features and the limitations of arbitrage activity, the lifespan of investors is, by construction, fixed

in these models. This rigid structure makes difficult to assess how asset prices in economies with different

investors’ lifespans compare to each other. The present paper contributes to filling this gap by providing

a model where investors trade an infinitely lived asset, but have (arbitrary) finite investment horizons, T .

The model then studies how variations in T affect asset returns in equilibrium, with a special focus on

the implications for the informational role of prices, or market efficiency.

The model is based on the dynamic rational expectations equilibrium analysis pioneered by Wang

(1994). Competitive investors trade an infinitely-lived asset to maximize utility of lifetime consumption

under CARA preferences. There are two types of investors: those who observe private information about

the persistent component of the dividend process (informed investors), and those who must infer it from

dividends and prices (uninformed investors). Investors also differ in their age. At any point in time, there

are T generations of investors coexisting. T − 1 groups (aged 1, 2, ...T − 1) are still active in the market

and can take voluntary positions, while the oldest generation (aged T ) is exiting and must unwind its

positions at prevailing prices. The net supply of the asset is random and causes prices to fluctuate for

reasons orthogonal to fundamentals. This prevents prices from fully revealing the information observed

by informed investors.

Generally speaking, the central finding of the paper is that investment horizons matter a great deal

for asset prices, and market efficiency. Along the stable equilibrium of the model, longer horizons increase

average prices, reduce price and return volatility, and lowers the risk premium. Moreover, since price

volatility is dominated by fundamentals for long horizons, prices are more informative for investors who

learn from them. The market is then not only more stable, but also more efficient in the informational

sense, in economies with longer investment lifespans. The generalized OLG economy developed here

1See Grossman and Shiller (1981), and Campbell (2000) for a comprehensive survey.
2See De Long et al. (1990); Spiegel (1998).

1



highlights two key and novel mechanisms that account for these results. The first relates to the “pricing”

of risk, which I label the age-adjusted risk aversion effect. As investors live longer, they are willing

to absorb the liquidations of the dying generation at lower expected returns, since they can smooth

their consumption over more periods and are less exposed to temporary price deviations. The second

mechanism relates to the “quantity” of risk that active investors must bear in equilibrium, which I label

the risk transfer effect. As horizons increase, the relative size of the dying generation shrinks in relation

to active investors (voluntary traders), who then bear less aggregate risk. As both mechanisms work in

the same direction, longer horizons unambiguously reduce risk premium, and mitigate volatility arising

from supply innovations.

More specifically, the paper makes three contributions. The first is methodological, and corresponds

to the characterization of existence, multiplicity, and stability properties of linear equilibria in generalized

OLG models. Nesting arbitrary investment horizons and different information structures, the model

studies a variety of economies whose equilibrium properties have not been previously addressed. Regarding

existence, economies which fail to exhibit linear equilibria for short horizons will always admit equilibria

for large enough T . As a reverse interpretation, market equilibria can break down as horizons shorten.

Regarding multiplicity, a finite horizon economy generically exhibits two equilibria (whenever equilibria

exists), a result consistent with the findings of Spiegel (1998), and Watanabe (2008), for the case where

T = 2.3 These include a stable, low volatility equilibrium (LVE) where supply innovation have small price

impact, and an unstable, high volatility equilibrium (HVE) where they cause large price fluctuations. This

paper describes the evolution of pricing moments along these equilibria, as a function of the investment

horizon. Along the stable LVE, increases in T lower the price impact of supply and decrease price volatility.

As T →∞, the LVE converges smoothly to the infinite-horizon economy of Wang (1994). Along the HVE

however, longer horizons leads to unbounded increases in price volatility. In the limit, this equilibrium

vanishes as T →∞. Intuitively, as investors live longer, both the increased willingness to take risks and

the smaller proportion of forced liquidations makes the HVE increasingly “difficult” to sustain. While

many of these results rely on numerical simulations, I prove analytically novel results for economies with

symmetric information. Namely, as T →∞, a linear equilibrium always exist, and it is unique.

Second, the paper introduces and analyzes the afore-mentioned mechanisms which are the key drivers

of the results. These mechanisms are, to the best of my knowledge, new to the literature. To understand

the age-adjusted risk aversion effect, consider the case of infinitely-lived investors. In this economy, the

marginal propensity to consume wealth is the ratio between the net and gross rate of interest, r/R. This

coefficient is precisely how agents price uncertainty about wealth fluctuations –the “age-adjusted” risk

aversion parameter corresponds to γ · r/R, and γ is the CARA parameter.4 In the other extreme case

in which agents live two periods, the marginal propensity to consume wealth is one, and the effective

risk aversion equals γ. In the present model, the pricing of risk depends on the age of the investor.

Importantly, as horizons increase, the average age-adjusted risk aversion declines.

The economics behind the risk transfer effect are as follows. Consider once again the infinite-horizon

case. Because investors always trade voluntarily, there is no forced transfer of risk between generations,

3Two equilibria arise in the single asset case, as studied here. In the N -risky asset case, there exists 2N equilibria.
4This is the economy considered by Wang (1994).
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and all agents bear the aggregate risk proportionally. In contrast, in a two-period OLG economy, the

dying generation (in mass 1/2) must unload all its positions into a single younger generation (also in mass

1/2). In other words, the whole aggregate risk must exchange hands every period! The generalized OLG

economy studied here essentially spans the whole intermediate region of horizons left out by these cases,

showing how increases in T lower the relative transfer of risk from the dying to all other generations.

The third contribution of the paper –and perhaps the most important one–, is the characterization

of asset price informativeness and uncertainty as a function of investors’ horizons. I study the behavior

of asset prices along the stable LVE for three generic economies: a full-information benchmark where all

investors are informed about the persistent component; a no-information economy in which all investors

learn only from dividends and prices; and the asymmetric-information economy where a relatively small

mass of investors has access to private information. A comparison between these economies reveals the

following results: a) For long horizons, the asymmetric information economy behaves similarly to the

full information benchmark. The low risk environment implied by large T induces active trading by the

informed, which impound their knowledge into prices. Uninformed investors extract precise information

from prices, which reduces their uncertainty. In this economy, price movements are largely driven by

fundamental volatility, and expected returns and return volatility closely mimic the full-information case.

b) For short investment horizons, the asymmetric information economy approaches the no-information

benchmark. The high risk implied by small T leads informed investors to trade more cautiously, dis-

aggregating information from prices and increasing uncertainty about fundamental asset values for the

uninformed. In this economy, price movements are largely driven by supply innovations, and expected

returns and return volatility line up closely with the no-information case.

The model presented here is related to the literature on trading in OLG environments. De Long et al.

(1990), as well as Spiegel (1998), study economies with 2-period lived investors. Spiegel (1998) is closest

to the present paper as in his model all investors are rational, and the random component of returns comes

from (rather small) random innovations in the asset supply. Watanabe (2008) extends Spiegel’s model

to introduce asymmetric information about forthcoming dividends. In all these models however, investor

horizons are fixed. Therefore, the discussion on how the economy can transition between episodes of high

and low price volatility remains, by construction, relegated to an equilibrium switching argument only. He

and Wang (1995), and Cvitanić et al. (2006), study finite horizon economies with incomplete information.

Since agents derive utility only from terminal wealth, the age-adjusted risk aversion coincides with the

CARA parameter in both papers. Moreover, in these papers all investors grow old simultaneously, so

there is no risk transfer from dying to active generations. The two main forces at work in the present

paper are therefore quite different.

Other related papers study the impact of short-term investors in the context of 3-period models.

In Froot et al. (1992), investors might choose to study information unrelated to fundamentals to the

extent it can predict short-term price movements. Kondor (2012) studies an economy with short-term

traders, focusing on how public disclosures can simultaneously increase divergence of (rational) beliefs

about returns while lowering the conditional uncertainty about fundamentals. Cespa and Vives (2012)

focus on how persistent noise trading can generate two equilibria even in a finite horizon economy. Albagli
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(2009) studies the impact of increased fund liquidations during downturns in effectively lowering investors’

horizon, and its implications for price informativeness and expected returns. It is of course difficult to

compare the results obtained in a fully dynamic model from those derived from finite horizon environments.

The key difference with these papers remains in that the present analysis allows for varying investment

horizons –indeed, such variation constitutes the baseline of the results discussed– whereas 3-period models

have a rigid lifespan structure.5

Finally, the work by Chien et al. (2012) is also related. In their model. some investors re-balance

portfolios infrequently, leaving the burden of the adjustment to a small group of sophisticated traders.

This mechanism amplifies price effects of negative shocks, generating countercyclical risk premium. Their

model has symmetric information, infinitely-lived agents and CRRA preferences, so the forces at work

are quite different. Nevertheless, a varying mass of investors who absorb risk is a common theme, and so

the findings presented here are complementary to their work.

The rest of the paper is organized as follows. Section 2 introduces the model and equilibrium concept.

Section 3 presents the characterization of existence, multiplicity, and stability, for symmetric information

economies. Section 4 studies the impact of horizons along the stable LVE in the asymmetric informa-

tion economy, discussing implications for expected returns, price volatility, and uncertainty. Section 5

concludes. All proofs are in the appendix.

2 A Generalized OLG economy with Asymmetric Information

2.1 Basic Setup

2.1.1 Securities

Time is discrete and runs to infinity. There is a risk-free asset in perfectly elastic supply yielding a gross

return of R = 1+r, and one risky asset paying an infinite stream of dividends {Dτ}∞τ=1. Dividends follows

a mean-reverting process with unconditional mean F̄ and persistence ρF (with 0 ≤ ρF ≤ 1):

Dt = Ft + εDt , with (1)

Ft = (1− ρF )F̄ + ρFFt−1 + εFt . (2)

Ft is the persistent payoff component. Due to disturbances εDt and εFt , Ft is not revealed by dividends.

The risky asset supply is given by θt, a mean-reverting stochastic process described by

θt = (1− ρθ)θ̄ + ρθθt−1 + εθt , (3)

where θ̄ ≥ 0 is its unconditional mean, ρθ denotes its persistence (with 0 ≤ ρθ ≤ 1), and εθt is a white

noise disturbance. The error vector εt ≡ [εDt εFt εθt ]
′

is serially uncorrelated, and follow a joint normal

distribution with mean zero, and variance-covariance matrix Σ = diag(σ2
D, σ

2
F , σ

2
θ).

5In Albagli (2009), changes in horizons are captured through comparative statics in the mass of investors forced to liquidate
early due to households’ withdrawals.
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2.1.2 Investors

The mass of investors in the economy is normalized to unity. A fraction µ of these, labeled uninformed

investors, have access to publicly available information only. Letting ht ≡ {ht−s}+∞s=0 denote the complete

history of variable h up to time t, public informationis the history of dividends and prices represented by

the filtration ΩU
t = {Dt, P t}. The complement share of investors (in mass 1−µ) are informed: in addition

to public information ΩU
t , they observe the contemporaneous realization of the persistent component, Ft.

The population in the economy follows a generalized overlapping generation structure with a stationary

age distribution. That is, at time t, a mass 1/T of investors aged T is dying, which is replaced by an

equal mass of new-born investors who live for T periods. Hence, at any point in time the economy has

T different generations of investors coexisting, aged j = 1, 2, ...T years. The mix between informed and

uninformed investors is assumed to be the same in each generation, so that the economy displays a constant

age/information distribution. Investors maximize utility of lifetime consumption:
∑T

s=1 β
sU(Ct+s), where

period-utility is given by negative exponential preferences U(C) = −e−γ·C with equal CARA coefficient

across generations/investor types. All investors are born with exogenous wealth w0.

2.1.3 Asset Markets

Investors can take long or short positions in the risky asset during active trading years j = {1, 2...T − 1},
for which they can borrow/save unlimited amounts of the risk-free asset. The dying generation aged T ,

however, must liquidate accumulated positions (and consume terminal wealth). Denoting XU
j,t and XI

j,t

the demand of uninformed and informed investors aged j in period t, aggregate asset demand is:

AD : Xt ≡
1

T
(µ ·

T−1∑
j=1

XU
j,t + (1− µ) ·

T−1∑
j=1

XI
j,t). (4)

Investors are price-takers and submit price-contingent demand orders (generalized limit orders) to a

“Walrasian auctioneer”, who then sets a price Pt for the risky asset such that all orders are satisfied.

Defining the dollar net excess return of investment in the risky asset as Qt+1 ≡ Dt+1 + Pt+1 − RPt, the

wealth of investor aged j consuming Cij,t and demanding Xi
j,t (for i = {U, I}) evolves according to

W i
j+1,t+1 = (W i

j,t − Cij,t)R+Xi
j,tQt+1. (5)

2.2 Equilibrium Characterization

2.2.1 Recursive Representation

The solution approach builds on the standard, 3-step technique used in CARA-normal REE setups.6 First,

conjecture a linear price function of the underlying state variables. Based on this conjecture, update beliefs

(posterior means and variance) of future returns. Second, derive optimal investors’ demands. Third,

impose market clearing and solve for the conjectured price coefficients in terms of underlying parameters.

6See Vives (2008) for a textbook discussion.
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More formally, for any filtration Ω, let H(x|Ω) : R → [0, 1] denote the conditional posterior cdf of

a random variable x. Let (j, i) denote the age/information type of each investor in the economy, with

j = {1, 2, ...T}, and i = {U, I}, and let the filtration ΩU
t = {Dt, P t} and ΩI

t = {Dt, P t, Ft} represent

the information available at time t to uninformed and informed investors, respectively.7 The equilibrium

concept is as follows:

A competitive rational expectations equilibrium is: 1. A price function given by (7), 2. A risky asset

demand Xi
j,t = x(Pt,Ω

i
t, j) by investor (j, i), 3. Posterior beliefs H(Ψt|ΩU

t ) and H(Ψt|ΩI
t ) for uninformed

and informed investors, respectively, such that ∀ (j, i): (i) Asset demands are optimal given prices and

posterior beliefs; (ii) The asset markets clear at all times; and (iii) Posterior beliefs satisfy Bayes law.

To characterize the equilibrium, the evolution of the state variables must be expressed in recursive

form. Let Ψt+1 ≡ [1 Ft+1 θt+1]
′
, and define F̂Ut ≡ E[Ft|ΩU

t ] as the uninformed investors’ forecast of the

persistent component Ft. Given equations (1), (2), and (3), the evolution of Ψt+1 can be written as

Ψt+1 = AψΨt +Bψε
U
t+1, (6)

where Aψ and Bψ are matrices of proper order, and the vector εUt+1 ≡ [εDt+1 εFt+1 εθt+1 F̃Ut ]
′

is the

expanded error vector faced by the uninformed investors, who in addition to the exogenous shocks, face

uncertainty coming from their own forecast error Ft; F̃
U
t ≡ F̂Ut − Ft (see the Appendix). The evolution

of beliefs, optimal demands, and prices, can now be expressed in terms of this recursive representation.

In particular, I conjecture the following linear equilibrium price:

Pt = p0 + p̂F F̂
U
t + pFFt + pθθt. (7)

2.2.2 Investors’ Problem

For an investor aged j in period t, with information given by the filtration Ωi
t, the problem is given by

max
Xi
j,t,Cj,t

E[−
T−j∑
s=0

βse−γCj+s,t+s | Ωi
t], s.t. W i

j+1,t+1 = (W i
j,t − Cj,t)R+Xi

j,tQt+1, W i
1,t = w0. (8)

This optimization remains analytically tractable as long as the evolution of future wealth, conditional on

information, is normally distributed. The value function then takes a known form in terms of its depen-

dence on the first and second conditional moments of investors’ beliefs about the state variables driving

future returns. With this tractable value function representation, asset demands and consumption/savings

policies can be determined in closed form (see the discussion in Wang (1994) for more details).

We now check whether future excess returns, Qt+1, are indeed conditionally normal. For informed

investors, this is immediate. Because the informed also observe the public information available to the

uninformed, they know the value of the current forecast F̂Ut . Since they also observe Ft privately, the

price reveals the realization of supply, θt. It is then straightforward to show that Qt+1 is conditionally

7Whether we allow informed investors to observe the complete history F t, or just the current value Ft, is irrelevant since
{θt, Ft} are sufficient statistics for predicting future returns.
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gaussian for the informed investors. For the uninformed, beliefs are characterized by a dynamic filter.

Note that from the price equation (7), uninformed investors back out a noisy signal about Ft, after

subtracting the constant, as well as the contribution of their own forecasts, to the price. I label this signal

the informational content of price, given by pt ≡ Ft + λ · θt, with λ ≡ pθ/pF . Together with dividends,

price signals constitute the public information about the state vector Ψt, and can be written as

St ≡ [Dt pt]
′

= AsΨt +Bsε
U
t . (9)

The next theorem describes the evolution of uninformed investors beliefs, showing that forecast errors

follow a normal distribution. Specifically, let O ≡ E[(Ψt − E[Ψt | ΩU
t ])(Ψt − E[Ψt | ΩU

t ])
′ | ΩU

t ] denote the

variance of the state vector, conditional on public information. Then,

Theorem 1 (Beliefs with public information): The distribution of the state vector Ψt, conditional

on the filtration ΩU
t = {Dt, P t}, is normal with mean E[Ψt | ΩU

t ] and variance O, where

E[Ψt | ΩU
t ] = AψE[Ψt−1 | ΩU

t−1] +K(St − E[St | ΩU
t−1]), (10)

and the conditional variance and projection matrix K jointly solve

O = (I3 −KAs)(AψOA
′
ψ +Bψ∆B

′
ψ), (11)

K = (AψOA
′
ψ +Bψ∆B

′
ψ)A

′
s(As(AψOA

′
ψ +Bψ∆B

′
ψ)A

′
s +Bs∆B

′
s)
−1, (12)

∆ = diag(σ2
D, σ

2
F , σ

2
φ,O(2, 2)).

Once we have checked investors’ beliefs follow a conditional gaussian distribution, we can state the

results characterizing value functions and the optimal consumption and investment policies.

Theorem 2 (consumption/investment policies): Let W I
j,t and WU

j,t denote wealth of a j-aged

informed and uninformed investor, respectively. Let Mt ≡ [1 Ft θt F̃
U
t ]
′

and MU
t ≡ [1 F̂Ut θ̂Ut ]

′
denote

the current projection of informed and uninformed investors about the expanded state vector, respectively.

Then,

1. The value function and optimal rules of informed investors correspond to

JI(W I
j,t;Mt; j; t) = −βte−αjW

I
j,t−V Ij (Mt), (13)

XI
j,t = (

AQ

αj+1ΓIj+1

−
hIj+1

αj+1ΓIj+1

) ·Mt, (14)

CIj,t = cIj+1 + (
αj+1R

αj+1R+ γ
)W I

j,t +
M
′
tm

I
j+1Mt

2(αj+1R+ γ)
. (15)
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2. The value function and optimal rules of uninformed investors correspond to

JU (WU
j,t;M

U
t ; j; t) = −βte−αjW

U
j,t−V Uj (MU

t ), (16)

XU
j,t = (

AUQ

αj+1ΓUj+1

−
hUj+1

αj+1ΓUj+1

) ·MU
t , (17)

CUj,t = cUj+1 + (
αj+1R

αj+1R+ γ
)WU

j,t +
MU ′
t mU

j+1M
U
t

2(αj+1R+ γ)
, (18)

where cIj+1, cUj+1, are age/information-type dependent constants.

Future returns, Qt+1, depend on the contemporaneous state variables Ft and θt, but also on the uninformed

investors’ projection about these variables. This can be conveniently reduced to a dependence on the

expanded state vector Mt ≡ [1 Ft θt F̃Ut ]
′
, which includes uninformed investors’ forecast error about

current state variables.8 While this vector is perfectly observed by the informed investors, it is observed

with noise by the uninformed investors. Conditional on their information however, their forecast error

is a zero-mean, normally distributed random variable. Hence, for both investor types, future returns are

linear in these projections (Mt for the informed, MU
t ≡ [1 F̂Ut θ̂Ut ]

′
for the uninformed), plus additional

white noise error with gaussian distribution. The problem then remains tractable and value functions

and optimal policies have the closed-form expression stated above.

Optimal portfolios take the form found in other dynamic CARA-normal models. Consider the informed

investors: the term AQ/(αj+1ΓIj+1) is a mean-variance efficient portfolio capturing the tradeoff between

expected returns (numerator) and risk (denominator), where αj+1 is the age-dependent risk aversion

coefficient, and ΓIj+1 is the renormalized covariance matrix of returns. In simple terms, this ratio is the

response of investors’ demand to an increase in expected returns. The second term is a hedging component

arising from the fact that innovations in returns affect expected returns further into the future. More

precisely, the error innovation εt+1 not only affects returns Qt+1, but also the value function at t + 1,

giving rise to an additional source of risk (see Wang (1994) for more details). What makes this particular

problem different is of course the dependence of these components on the age of the investor.

Barring some special cases commented below, the solution method relies on numerical procedures.

Beginning with a known terminal value function for the dying generation, one can iteratively compute

the value functions at earlier ages for each investor to find the optimal consumption and investment rules

for all the different ages actively interacting in the asset market. Equilibrium prices can then be solved

by imposing the market clearing condition:

1

T
(µ ·

T−1∑
j=1

XU
j,t + (1− µ) ·

T−1∑
j=1

XI
j,t) = θt. (19)

The price equilibria conjectured in (7) is the solution to a fixed-point problem. Starting from an initial

8This is because the forecast error of the uninformed about Ft is perfectly colinear with her forecast error about θt.
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price vector conjecture P , the equilibrium conditions deliver a new price vector P
′

= F (P ), where the

functional F (·) is implicitly defined by investors’ learning and optimization problems of Theorems 1 and

2, together with the market clearing condition (19). An equilibrium is a price vector satisfying:

P ∗ = F (P ∗) (20)

In the next two sections I analyze the properties of the equilibrium and discuss the implications of

varying investment horizons for particular classes of economies.

3 Symmetric Information Economies

This section compares equilibrium characteristics across economies with different investment horizons.

I restrict attention here to symmetric information environments, studying the following two benchmark

cases: the no-information economy where the mass of uninformed agents is µ = 1, and the full-information

economy, with µ = 0. These cases are more tractable and allow the derivation of some analytical results.

Moreover, these economies convey much of the intuition about the mechanisms triggered from variations

in horizons, providing a natural starting point for the analysis.

3.1 Existence and multiplicity of equilibria

I begin stating results which can be proven analytically. In particular, it is possible to derive existence

and multiplicity results for limiting cases of investment horizons.

Proposition 1 (2-period OLG): Let T = 2,

a) Let µ = 0, and define σ∗θ ≡
(R−ρθ)

4γ (σ2
D + ( R

R−ρF )2σ2
F )−1/2.

a.1) If σθ > σ∗θ , linear equilibria does not exist.

a.2) If σθ ≤ σ∗θ , there are (weakly) two linear equilibria, with price coefficients given by:

p0 =
1

r
[(1 + pF )(1− ρF )F̄ + pθ(1− ρθ)θ̄], pF =

ρF
R− ρF

,

p+
θ = −

(R− ρθ)σ−2
θ

4γ
(1−

√
1− (

σθ
σ∗θ

)2), (21)

p−θ = −
(R− ρθ)σ−2

θ

4γ
(1 +

√
1− (

σθ
σ∗θ

)2). (22)

b) Let µ = 1, and define σ∗∗θ ≡
(R−ρθ)

4γ (σ2
D + ( R

R−ρF )2(σ2
F + ρ2

Fσ
2
u))−1/2w−1/2.

b.1) If σθ > σ∗∗θ , linear equilibria does not exist.
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b.2) If σθ ≤ σ∗∗θ , there are (weakly) two linear equilibria, with price coefficients given by:

p0 =
1

r
[(1 + p̂F )(1− ρF )F̄ + pθ(1− ρθ)θ̄], p̂F =

ρF
R− ρF

,

p+
θ = −

(R− ρθ)σ−2
θ

4γ
(1−

√
1− (

σθ
σ∗∗θ

)2), (23)

p−θ = −
(R− ρθ)σ−2

θ

4γ
(1 +

√
1− (

σθ
σ∗∗θ

)2). (24)

where σ2
u =

σ2
D(1−ρ2F )+σ2

F

2ρ2F
(

√
1 +

4σ2
Dσ

2
F ρ

2
F

(σ2
D(1−ρ2F )+σ2

F )2
− 1), and w ≡

σ2
D+( R

R−ρF
)2(ρ2F σ

2
u+σ2

F )

σ2
D+ρ2F σ

2
u+σ2

F
≥ 1.

Proposition 1 makes two central points. First, it states that existence of (linear) equilibria is not granted

unless we impose parameter restrictions. Indeed, to confront this situation, many authors working in

the standard 2-period OLG model have assumed a very small value for the volatility of supply; σθ. The

second result is that, whenever equilibria exists, it is generally multiple (two equilibria). These results

are in line with the finding of earlier work,9 highlighting that the current model nests the standard OLG

economy previously studied. I now explain the intuition for each of these results.

The economics behind non-existence are as follows. Imagine we begin conjecturing a small (in absolute

magnitude) price coefficient for supply innovations; p
′
θ. When agents live for two periods, their fate is

determined in a single trading round. Given the rather high stakes, agents might be unwilling to hold the

asset even if they expect future supply shocks to have the modest price impact associated with p
′
θ. To

induce investors to absorb supply, a larger price concession might then be needed. But this is consistent

with a more negative coefficient p
′′
θ < p

′
θ, which implies even more volatility of future prices. This iteration

might go on without bound, depending on parameter values. Only when volatility of supply remains

below a threshold (σ∗θ and σ∗∗θ for the full- and no-information economies), the model admits a linear

price conjecture that constitutes an equilibrium. Notice also that whenever ρF > 0 (a necessary condition

for Ft to be predictive about future dividends), the full-information economy allows an equilibrium at a

higher critical σθ, since σ∗θ > σ∗∗θ in this case. Intuitively, agents in the full-information economy know

more about the asset’s fundamental value, and can tolerate more non-fundamental (supply) risk.

Regarding multiplicity, the coefficient pθ takes two possible values given by the positive and negative

roots of the quadratic equation arising form the market-clearing condition. Along the negative root

(equations (22) and (24) for the full- and no-information economies), innovations in supply have large,

negative price impact. This is the high-volatility equilibrium (HVE). Along the positive root, in contrast,

they have a milder effect in the price (equations (21) and (23)), which makes this the low-volatility

equilibrium (LVE). Which root obtains in turns determines the value of the constant term p0. The

coefficient associated with innovations in Ft, on the other hand, has a unique solution corresponding to

the expected present discounted value of dividends. For the full-information economy, these expectations

are a function of Ft, while for the no-information economy they depend on the forecast F̂Ut .

These equilibria reflect two rational, self-fulfilling outcomes. Imagine investors believe the LVE is

9See Spiegel (1998), Watanabe (2008), Bacchetta and van Wincoop (2008), and Banerjee (2011).
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being played, and will continue to played in the future. Because non-fundamental price fluctuations are

relatively modest, investors require low compensation for absorbing supply, which then has minor effects

on prices and returns. As a result of this low risk environment, the average price of the security is high,

reflected by both a large coefficient p0, and by a negative but small value pθ applied to the average

supply θ̄. But the situation might well be the converse. If investors believe the HVE is being played,

non-fundamental shocks impose large risks and agents become reluctant to trade. As a result, supply

shocks are accommodated through large price concessions, causing the HVE to be self-fulfilling as well.

The high risk faced by investors in this equilibrium is compensated through a large average premium (a

low, or even negative value of p0, and a large negative value pθ).

Proposition 2 provides results for the other extreme case in which agents are infinitely lived.

Proposition 2 (infinite horizon limit): Let µ = 0, or µ = 1. As T →∞,

a) A linear equilibrium always exists.

b) The equilibrium is unique (in the linear class).

The results of Proposition 2 are new. Wang (1994), for instance, states that an equilibrium price equation

similar to expression (7) can be solved for numerically. Whether this is the case for all possible parameters,

or whether the solution is unique, is left an open question.

Since a proof of existence and multiplicity for finite investment horizons T > 2 is not available, I

will proceed hereon mostly discussing results from numerical simulations. Table 1 introduces the baseline

parameters that I will use throughout (unless otherwise stated). I have chosen the variance of the persistent

dividend process as a normalization (equal to one) and made it relatively persistent (ρF = 0.95). In

comparison, the temporary dividend component is relatively volatile (σD = 3).10 The average net supply

of the risky asset, θ̄, is normalized to one, in accordance to the measure of agents in the economy. Its

standard deviation σθ is set to 10% of its unconditional value.

Table 1: Baseline parameters

.6

Figure 1 plots the first two pricing moments that emerge from the model under these parameters. The

top part of the figure shows how these moments depend on investment horizons under the LVE. Panel a)

shows the unconditional mean of prices, while panel b) computes price volatility, defined as the standard

deviation of future prices Pt+1, conditional on public information {Dt, P t}. The bottom panels plot the

behavior of these moments under the HVE. The circled lines correspond to the full-information economy

(µ = 0), while the crossed lines denote the no-information economy (µ = 1).

The first thing to note from Figure 1 is that under the baseline parameters, no equilibria exists for

an OLG economy with T = 2 (i.e., σθ > σ∗θ). The full-information economy exhibits equilibria starting

10Although the transitory dividend component volatility does not enter the price equation (7) directly, it makes inference
of the persistent dividend component Ft more difficult for the uninformed investors.

11



Figure 1: Existence and multiplicity
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from the critical horizon of T ∗ = 10 onwards, which coincides with the critical T ∗ for the no-information

economy. Regarding multiplicity, the figure shows that for each investment horizon equal or larger than

the minimum required for existence, there are 2 equilibria. These numerical results hence confirm that

multiplicity is a general feature of dynamic asset markets when agents live for finite periods.

Most importantly, Figure 1 contribute to our understanding of how variations in investor horizons

affect the properties of the equilibria in a generalized OLG economy (i.e., T ∈ [2,∞)). Along the LVE,

increasing the lifespan of investors increases average prices and reduces price volatility. As mentioned

earlier, this is due to two main mechanisms at work: the age-adjusted risk aversion effect, and the risk

transfer effect, which I will explain in more detail momentarily. The HVE, in contrast, exhibits the

exact opposite features, with average prices falling and volatility increasing with investment horizons.

Intuitively, it takes an increasingly volatile security to induce investors to demand the high levels of

compensation that are consistent with such volatility (and price discounts) in equilibrium.

In this context, the result of Proposition 2 that multiplicity vanishes as T →∞ should be intuitive: a
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second equilibrium with high volatility is a possibility only to the extent that investors are finitely lived,

since in this case the threat of a large, adverse price movements late in their lives makes them wary

of holding large positions in the asset.11 When investors are infinitely lived, however, they can always

accommodate a highly volatile asset price by voluntarily buying when it is underpriced, and selling when it

is overpriced. Hence, the attractiveness of the highly volatile asset cannot remain a feature of this economy.

In equilibrium, only a moderate level of price volatility (and average price discount) is sustainable.

The numerical results of Figure 1 have an important connection with the analytical results of Propo-

sition 2. Namely, while the increase in volatility and drop in average prices are unbounded along the

HVE (an equilibrium that vanishes as T →∞), these moments converge smoothly along the LVE to the

values of the infinite horizon economy (straight lines in panels a) and b)). This suggests that the unique

equilibrium of the infinite horizon economy corresponds to the limit of the LVE for finite horizons.

Figure 2: Existence regions
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Figure 2 gives a more general picture of the equilibrium existence regions. Starting from the bench-

mark parameters, each panel shows the dependence of the critical investment horizon T ∗ on a particular

parameter, for both the full- and no-information economy. Higher volatility of the dividend process (higher

σD, σF , or larger persistence ρF ) increases the fundamental risk of the security, and require increasing

critical horizons T ∗ for existence. Similarly, higher non-fundamental risk related to the random supply

shock (larger σθ, or an increase in persistence ρθ) also shift up the minimal horizon. Naturally, risk

aversion γ increases T ∗, while the converse is true for the interest rate, as prices respond less to funda-

11Note that Proposition 2 states a sufficient condition for uniqueness, but not a necessary one. In particular, it does not
rule out the case that a unique equilibrium might arise with a strictly finite horizon, for T large enough.
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mental innovations when investors discount future flows at a higher rate. Finally, although β matters

for the consumption path chosen by investors, it has no effect in trading decisions (which are wealth-

independent), and hence no impact on prices or the critical horizon T ∗. Moreover, for all parameter

values, the full-information information economy reaches an equilibrium at a (weakly) lower value of T ∗.

3.2 Stability

Another crucial feature that differs across the two possible equilibria is stability. I will define an equilib-

rium to be stable if, starting from a small perturbation of the price coefficient associated with the supply

shock, the resulting price coefficient after one iteration of the agents’ optimization leads to a new price

vector with a smaller deviation from the initial equilibrium. That is, starting from a small perturbation

p
′
θ 6= p∗θ, an equilibrium is stable if |p′′θ − p∗θ| < |p

′
θ − p∗θ|, and unstable if |p′′θ − p∗θ| > |p

′
θ − p∗θ|, where p

′′
θ is

the element of the price vector P
′′

associated with supply innovations, and P
′′

= F (P
′
).

For the general case, stability can only be inferred from numerical simulations. As discussed in more

detail in the appendix, the low-volatility equilibrium is stable according to the above definition, while the

high-volatility equilibrium is unstable. A special case which lends easily to an analytical derivation is the

symmetric information economy in the standard OLG model with T = 2.

Proposition 3 (stability): Let µ = 0, or µ = 1. For T = 2,

a. The low-volatility equilibrium is stable.

b. The high-volatility equilibrium is unstable.

The result in Proposition 3 sheds light into the fragile nature of the high-volatility equilibrium. Indeed, if

the initial price conjecture contains even a slight deviation from the equilibrium value, the “tatonnement”

process set in motion by the iteration P
′′

= F (P
′
) will lead the economy further away from the initial

equilibrium. In the case where the perturbation is positive (i.e., p
′
θ > p∗θ), the economy will converge to

the stable LVE. When negative, the economy diverges.

3.3 Which Equilibrium?

One of the main appealing properties of the HVE is precisely the capacity to generate high excess volatility,

and large correlation among different assets in the case of multiple securities.12 As several of the precedent

studies indicate, however, there are also some unappealing features about this equilibrium, including the

counterintuitive property that the variability of the supply shock (σθ) tends to decrease price volatility,

while it increases volatility along the LVE.13 This remains true in the current model (not reported).

The current study unveils several additional properties that tend to favor the low-volatility as the most

suitable candidate for equilibrium selection. First and foremost, volatility along this equilibrium falls as

investors’ horizons increase, while the opposite is true in the HVE. Not only is it more intuitive that

price volatility should decrease with investors’ lifespans, but this variation gives the model the potential

12See the discussion in Spiegel (1998) and Watanabe (2008).
13For a comprehensive comparison between different equilibria, see Banerjee (2011).
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to generate excess volatility by comparing economies with different investment horizons along the LVE.

This finding highlights that, in order to explain periods of high stock market volatility, one need not rely

on an equilibrium switching argument –a point I will come back to in section 4.

Second, while many of the previous studies ignore price levels and focus instead on volatility, it seems

like a minimum requirement to have a model that delivers positive prices (at least on average). The

present model attains this along the LVE (for long enough horizons) by assuming a positive unconditional

mean dividend. However, as panel b) in Figure 1 shows, it is increasingly hard to find positive average

prices as horizons increase along the HVE. Third, the present study reveals that while the LVE converges

smoothly to the infinite horizon economy, the HVE vanishes as T →∞, as shown by Proposition 2. Lastly,

the LVE is stable: were the economy to start slightly off-path, successive iterations will restore the LVE.

In contrast, the economy always moves away from the HVE even after an arbitrarily small perturbation.

For these reasons, I will focus the attention on the LVE in the remainder of paper.

3.4 The two key mechanisms

I now analyze in more detail the two main mechanisms driving the effects of investment horizons on asset

prices, in the case of economies with symmetric information.

3.4.1 Age-adjusted risk aversion effect

The first mechanism is related to the changes in the pricing of risk induced by changes in T , which I

will refer to as the age-adjusted risk aversion effect. A key determinant of the risk faced by finitely-

lived investors in a dynamic trading context are fluctuations in prices. In this respect, the 2-period

OLG economy represents a rather extreme case in which investors’ fate is determined in a single trading

round. When investors live for more periods however, they are less affected by price fluctuations at a

particular point in time, since they are not forced to unwind their portfolio at adverse prices –unless

they have reached their terminal date. In the words of De long et al. (1990), lengthening horizons is

akin to receiving “dividend insurance”: by living longer, dividend consumption diminishes the impact

non-fundamental risk in the utility of investors.

To understand this mechanism more formally, consider the optimal portfolio decisions of the informed

investors in the full-information economy by setting µ = 0 (an equivalent argument holds for other

information structures). The left panel of Figure 3 plots the age-adjusted risk aversion coefficient, αj+1,

for an investment horizon T = 30. Inspection from the numerical results reveal this is the key source

of variation in the denominator in the demand expression (14). As shown in the appendix, αj+1 can be

solved recursively through the equation:

αj =
γαj+1R

αj+1R+ γ
(25)

The economics behind this expression is as follows. Fluctuations in future wealth affect the utility of
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investors through its effect on future consumption, given by the marginal propensity to consume wealth:

∂CIj+1,t+1

∂W I
j+1,t+1

=
γαj+2R

αj+2R+ γ
, (26)

which follows from (15). Using (25), the marginal propensity to consume at age j + 1 given in (26)

must equal αj+1, which is precisely the age-adjusted risk aversion used to price return risk (ΓIj+1) in the

demand equation (14). For an investor aged j = 29, this propensity is one, so αj+1 = γ.14 At the other

extreme, in an economy with infinitely-lived investors (as in Wang (1994)), α is the stationary solution to

(25), corresponding to α∗ = γr/R. More generally, the age-adjusted risk aversion of finitely-lived agents

increases with age according to (25), as shown by the left panel of Figure 3.

Figure 3: Age-adjusted risk aversion effect

0 5 10 15 20 25 30

0.1

0.3

0.5

0.7

0.9

investor age: j
0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

investor age: j

Age-adjusted risk-aversion: α j Demand elasticity to supply:  dXj,t  / dθt

α = γr/R*

α  = γΤ

The right panel of Figure 3 shows the elasticity of demands to innovations in supply, as a function of

age: as investors get older and risk aversion increases, their relative participation in the market falls. If

we now compare economies with different horizons, the average investor in the economy with longer T

will be more willing to bear risk, as the average lifespan is higher. To my knowledge, this mechanism has

not been studied formally in OLG models of the financial market. A related discussion appears in De

long et al. (1990), who state that increasing the age of the 2-period lived investors in their model should

lead to more risk-taking and a diminished price impact from “noise traders”. This exercise is however not

formally carried out in that paper, nor in the successive OLG models which only consider T = 2.15

14Effective risk aversion for this age coincides with the static REE economy with a single consumption period.
15Closer in this respect are the dynamic, finite horizon models developed by He and Wang (1995), and Cvitanić et al.
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3.4.2 Risk transfer effect

The second mechanism is related to changes in the amount of risk that must be absorbed in equilibrium

by active generations, induced by changes in T . I label this mechanism the risk transfer effect. This

mechanism can be illustrated by a convenient decomposition of the market-clearing condition in (19).

Continuing with the full-information economy, we can write

1

T
(XI

1,t +XI
2,t + · · ·+XI

T−1,t) = XI
1,t−1 +XI

2,t−1 + · · ·+XI
T−1,t−1︸ ︷︷ ︸

θt−1

+ (1− ρθ)(θ̄ − θt−1) + εθt︸ ︷︷ ︸
∆θt

(27)

⇒ 1

T
(XI

1,t + ∆XI
2,t + · · ·+ ∆XI

T−1,t) = XT−1,t−1 + ∆θt

The demand in the left-hand side of (27) is composed of all current active investors. Of these, investors

aged 2, 3 · ··, T − 1 were also present in the previous period, and hence their net demands correspond to

∆XI
2,t = XI

2,t −XI
1,t−1 for the investor currently aged 2, ∆XI

3,t for the investor aged 3, and so on. For all

these investors, the change in net positions is voluntary. Only for the investor aged T − 1 in the previous

period the net demand is exogenously set at −XI
T−1,t−1. In equilibrium, the negative of this amount,

plus the supply innovation (1 − ρθ)(θ̄ − θt−1) + εθt , must be absorbed by changes in the net positions of

all active investors. Hence, there is a risk transfer from a mass of 1/T retirees to a mass of (T − 1)/T

voluntary investors, or a risk transfer ratio 1/(T − 1). For illustrative purposes, the left panel of Figure

4 plots the risk-transfer ratio as a function of the investment horizon.

As the right panel of Figure 3 showed earlier, however, as investors age the increase in (age-adjusted)

risk aversion leads to a progressive reduction in asset holdings. The vintage of investors exiting the

economy therefore hold less than their “fair share” of the supply. This is made explicit by the right panel

of Figure 4, which plots risky asset holdings of the exiting vintage, relative to the average holding. When

T = 70, the exiting vintage have cumulative holdings of about only 7% of the average investors’ holdings.

It follows that when this vintage exits the economy, they will increase the supply of the asset by only

(1/70) · 7% ≈ 0.1%. This gradual reduction in the risky positions suggests that the transfer of risk from

the dying generation to all others is a smooth process. The fact however remains that, at any point in

time, all vintages who hold less than the average share of the supply are transferring risk to those who

hold more, an effect induced by the anticipation of each generation that they will in fact die in a finite

number of periods. Hence, the risk transfer ratio 1/(T − 1) remains as the relevant statistic to account

for the importance of this effect.

These two mechanisms (the pricing and quantity of risk) suggest that outcomes in the workhorse OLG

economy with T = 2 might be a bit extreme, and model-specific. On the one hand, current participants

in the market must purchase an asset which they must completely unwind in a single future trading round

(2006). As time elapses, agents learn more about the fundamental value of the asset –which is a single terminal payoff.
However, since in both models agents derive utility only from consumption of terminal wealth, they price changes in current
wealth one-to-one (i.e., the marginal propensity to consume wealth changes is 1). Therefore, the age-adjusted risk aversion
coefficient coincides with the CARA parameter.
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Figure 4: Risk transfer effect
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(the age-adjusted risk aversion effect). But moreover, when they do liquidate in the next period, their

entire positions must be purchased by a generation with equal mass as them (the risk transfer effect).

Simply put, the whole aggregate risk of the economy must forcefully exchange hands every period!

To gauge the relative importance of these two mechanisms, I now perform a decomposition of the

change in price volatility through the following exercise. I fix the mass of active (voluntary) investors

in the market to one (which corresponds to the infinite horizon economy). I then vary the investment

horizon T , letting investors’ demands change purely as a result of the age-adjusted risk aversion effect.

Hence, the exercise captures the behavior of traders that expect to live for finite periods, but eliminates

the market impact of their liquidations by artificially normalizing the mass of liquidators to zero –hence,

shutting off the risk transfer mechanism.

Figure 5 shows the volatility of prices (conditional on public information) that emerges in these

economies. I consider the baseline parameters case, and a case with lower volatility of the random supply,

σθ = 0.05. As the figure makes clear, both effects are important in delivering the change in price volatility

explained by investment horizons. For the baseline parameters (black lines), the contribution of the risk

transfer effect is about 33% of the total price volatility increase produced by shrinking T from 70 to 10,

in the case of the full-information economy. For the no-information economy, the contribution of the risk

transfer effect reaches 39% over the same range. For economies that admit equilibria at lower investment

horizons –which is the case when σθ = 0.05 (gray lines)– the importance of the risk transfer effect grows

larger, since changes in the relative risk transfer ratio, 1/(T −1), become more significant as T approaches

the origin. For the full- and no-information economy, in this case the risk transfer effect account for 66%
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Figure 5: Relative contributions of the effects
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and 42% of total price volatility changes, respectively.

4 Asymmetric Information Economies

This section compares asset pricing moments and the informational role of prices (market efficiency) across

economies with different investment horizons, for the case where agents have asymmetric information. The

endogenous price signal derived in section 2, pt ≡ Ft + λ · θt, will be relatively more informative about

the persistent dividend component when the ratio λ ≡ pθ/pF is small (in absolute magnitude). But from

the discussion in section 3, we learned that as horizons shorten, volatility increases (along the LVE) due

to the heightened price response to supply innovations. It follows that in the asymmetric information

economy, the informational role of markets will be diminished as the lifespan of investors is reduced. This

section focuses on this mechanism, and contrasts the effect of horizons on asset prices with respect to the

symmetric information benchmarks analyzed in section 3.

4.1 Existence and multiplicity of equilibria

For comparison purposes, I briefly describe here the results on existence and multiplicity in asymmetric

information economies. Although in these economies closed-form solutions for prices –as a function of un-

derlying parameters only– are not available, we can learn about the main equilibrium characteristics from

numerical simulations. Qualitatively speaking, the results follow those describe in section 3. Regarding

existence, an equilibrium typically does not exist (under the baseline parameters) for very short horizons,
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but emerges as T exceeds a minimum threshold. As a function of the underlying model parameters, the

existence regions behave qualitatively similar as those described in Figure 2.

Regarding multiplicity, for any horizon admitting a solution, there are typically two equilibria. While

average prices increase and price volatility declines as a function of investment horizons along the LVE,

the converse is true along the HVE. Moreover, the LVE is stable to small perturbations, but the HVE is

unstable.16 For the reasons described in section 3.3, I hereon study the impact of investment horizons on

asset prices, and market efficiency, along the LVE.

4.2 Asset pricing moments

Figure 6 plots the first two moments of asset prices for three different economies: the full information

economy (circled line), the no-information benchmark (crossed line), and the asymmetric information case

when 20% of investors are informed (µ = 0.8, plain line).

The left panel of Figure 6 plots the mean price level. The ordering of mean prices across these

economies follow a one-to-one ranking with the amount of fundamental information available to agents:

prices are highest for full-information, intermediate for asymmetric information, and lowest for the no-

information economy. Note in particular that for long horizons, average prices in the asymmetric infor-

mation case approaches the full-information benchmark, but it approaches the no-information economy

as horizons shorten.
17

The right panel Figure 6 reveals that price volatility (the standard deviation of future prices, condi-

tional on current public information) might not follow the same ordering. In particular, the no-information

economy displays the least amount of price volatility, whereas the asymmetric-information economy is the

most volatile. The reason behind this result is intuitive. For the no-information economy, prices convey

less information about fundamentals and hence vary less to reflect changes in the underlying persistent

dividend component. As the investment horizon shrinks, volatility spikes mostly due to the increased

role of supply shocks. In the full-information economy, volatility is larger due to the large impact that

fundamentals have on the price when they can be observed without noise. Once again, as horizons grow

short, the increased importance of supply shocks raise price volatility.

Just as was the case for mean prices, price volatility in the asymmetric information economy inherits

the behavior of the benchmark cases to different degrees, depending on the horizon under consideration.

For long horizons, volatility is close to the full information case, although slightly larger since prices

respond more to non-fundamental innovations when uncertainty is higher. For relatively short horizons,

price volatility gets much closer to the no-information case.

16For space considerations, I do not report these results explicitly, but they are available upon request.
17This result is consistent with Wang (1993), who explicitly compares average prices in an economy with infinitely-lived

agents, under different proportions of informed traders. He finds that increasing the fraction of the uninformed strictly
decreases the average price level (by reducing the price coefficient p0). The recent work of Qiu and Wang (2010), and
Vayanos and Wang (2012), suggests that average prices can be strictly lower in the asymmetric information economy than
in both symmetric information counterparts, as long as investors have background risk exposure that induces trading based
on hedging needs. In this sense, it appears that whether the non-informational trading is motivated by background risk, or
simply comes from random supply innovations, matters for some asset pricing moments.
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Figure 6: Average prices and price volatility
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Figure 7: Risk premium and return volatility
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Figure 7 plots the expected return (risk premium) and the volatility of returns across the different

economies. Note that the conditional risk premium is time-varying, as it depends on the realization of the

state variables. I follow the literature by computing the average risk premium as the ratio between the

unconditional dollar return, and the unconditional mean price: E[Qt]/E[Pt].
18 This definition circumvents

the problem that prices can be negative, or arbitrarily close to zero, in linear pricing models. Naturally,

for the definition to be meaningful, one needs to restrict attention to economies with strictly positive

average prices, which for the baseline parameters occurs for T ≥ 20. Return volatility is computed as the

ratio between the standard deviation of returns, conditional on public information, and the mean price.19

The following patterns emerge in this figure which are independent of the parameters chosen. First,

both expected returns, and return volatility, are the lowest for the full information economy. Indeed,

although prices are relatively volatile in this economy, they are also the highest on average, so the volatility

of returns is diminished. Regarding the risk premium, it is intuitive that since investors have the most

information about fundamentals in this case, their willingness to participate in the market is the highest,

which is reflected by lower required returns. Second, risk premium and return volatility is highest for the

no-information economy, since agents face the largest amount of uncertainty regarding the fundamental

value of the asset.

Third, and most importantly, the asymmetric information economy lies strictly in between the sym-

metric information benchmarks. Both expected returns, and return volatility, approach the no-information

economy for short horizons. For long horizons, on the other hand, these moments are much closer to the

full-information economy. This pattern is to be expected given the discussion of the raw moments of

Figure 6. I will now explain in more detail the economic forces behind this last key result.

4.3 Market efficiency

Figure 8 plots the decomposition of price volatility (left panel) and the resulting uncertainty of the

uninformed investors (right panel), as a function of investment horizons. The share of price fluctuations

due to fundamentals is calculated as the fraction of the price variance explained by innovations in Ft,

while the non-fundamental share includes the fraction of price variance coming from both supply shocks,

and the forecast errors incurred by the uninformed investors (both shares sum to one).

Clearly, fundamental volatility dominates for long investment horizon, while the converse is true for

short lifespans. In consequence, the informational content of prices is diminished as investment horizons

shorten, and the uncertainty of the uninformed investors increases. As the right panel of the figure shows,

the uncertainty of the uninformed (the standard deviation of Ft, conditional on the history of public

information) nearly doubles as horizons fall from T = 70, to T = 20.

Indeed, this figure provides the central intuition for the behavior of investors’ required returns, and

return volatility, in the asymmetric information economy plotted in Figure 7. In particular, for long

investment horizons, the risk premium under asymmetric information comes very close to the returns

required in the full-information economy, whereas the no-information economy stands out with a larger

18This definition is also used in Wang (1993), while Banerjee (2011) discusses his results using mean dollar returns, E[Qt].
19Return volatility conditional on public information is constant through time, which follows directly from Theorem 1.
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Figure 8: Variance decomposition and uncertainty
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compensation for risk. However, as horizons shorten, the asymmetric information economy approaches the

no-information economy, both demanding significantly higher compensation for purchasing the security

than the full-information economy.

What explains the apparent switching of the asymmetric information economy between these different

benchmark regimes? Precisely the endogenous nature of information in rational expectations environ-

ments. In a competitive risk-averse framework, the central force determining how aggressively informed

investors react to their private knowledge is risk. For long investment horizons, both the age-adjusted risk

aversion, and the risk transfer effect, lead to investor demands which are relatively elastic to expected re-

turns. In consequence, the market is deep and supply innovations have modest price impacts. In response

to this low risk environment, competitive CARA-investors who posses superior knowledge will trade on

this information aggressively. This implies that the information that is originally observed privately by

say, 20% of the trader population, will mostly find its way into the price. As a direct result, asset prices

inherit the behavior exhibited by the full-information, since in this case the average investor is, in effect,

pretty well informed in equilibrium.

Conversely, for short investment horizons, the aforementioned effects incite cautious trading and de-

mands become relatively inelastic to private information about future returns. In consequence, informa-

tion that is private to a group of investors remains private to such group. Shrinking investment horizons

hence set in motion a process of information disaggregation from prices, and the knowledge of the popula-

tion becomes in effect much closer to the no-information benchmark –with asset pricing moments following

suit.

23



The above facts can also be explained in terms of the excess sensitivity of the risk premium to

changes in T in the asymmetric information economy, relative to the symmetric knowledge benchmarks.

This excess sensitivity is explained by the interdependence between the uninformed investors’ level of

uncertainty, and the risk faced by the informed. To understand this link, let’s describe in more detail the

consequences of a reduction in the demand elasticity of informed investors to private information. If these

agents respond less to information, the equilibrium price reveals less information about the fundamental

Ft, and uncertainty about fundamentals is higher for the uninformed. In response, the willingness to

make the market is reduced for these agents, which require a larger compensation for bearing a larger

amount of risk. In consequence, supply innovations are met with wider price fluctuations. The increased

volatility of prices, in turn, increases the risk for the informed, inducing them to react even less strongly

to private information. This last observations closes the interdependence, or “spiral”, between the risk

faced by the informed investors, and uncertainty of the uninformed.

However, one should note that there are limits to the strength of this spiral effect. Indeed, the uncer-

tainty of the uninformed in the asymmetric information economy is capped above by the knowledge of

investors in the no-information benchmark, which do learn about the persistent component Ft form the

observation of dividends. More interestingly, when horizons shrink and the uncertainty of the fundamen-

tal process grows larger, at the same time the price is becoming relatively more informative about the

noisy supply. Since this second source of price variation takes the center stage for relatively short hori-

zons (Figure 8, left panel), knowing relatively more about this second component becomes increasingly

important. In effect, the feedback loop between price volatility and investor uncertainty grows weaker

due to this counteracting force.20

4.4 Discussion

I conclude this section with some remarks on quantitative issues.

Linear pricing limitations:

First and foremost, CARA-normal models are obviously not designed to capture realistic variations in

asset pricing moments, as is the purpose of most of the asset pricing literature using wealth-dependent

preferences. This paper is no exception, and the central results should be interpreted as an illustration

of the qualitative mechanisms that are triggered by changes in effective investment horizons. That said,

the proposed mechanism of varying horizons does seem to play an important role within the confines of

the model.

A cyclical interpretation:

One could, of course, be suspicious about how big the changes in investment horizons need to be for

pricing moments to show interesting variations. To asses this question, I will interpret the increased

households’ withdrawals and fund liquidations that typically occur during crises as an effective shortening

20For a more detailed description of this counteracting mechanism, see the discussion in Avdis (2011).
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of horizons for intermediaries who make the trading decisions.

Under this interpretation, is a reduction from 70 to 20 periods (say, years) a reasonable proxy for what

happens at the business cycle frequency? Note that the inverse of the investment horizon corresponds

exactly to the fraction of investors which are liquidating forcefully at any given time (the mass of the

dying generation). In this light, an increase in liquidations from 1.42% (i.e., 1/70) to 5% (i.e., 1/20)

does not seem exaggerated if one considers the empirical findings of fund liquidations during periods of

financial distress. For instance, Ben-David et al. (2012) find that hedge funds reduced their exposure in

equity markets in almost 30% during the 2008:Q3-Q4 contraction, which corresponded roughly to 1% of

all outstanding equities. Importantly, their results indicate that most of this selling was actually forced by

investors withdrawing financing. Carhart et al. (2002) study attrition rates in the mutual fund industry,

and find that while 3.6% of funds disappear yearly on average over their sample, the standard deviation is

quite high, at 2.4%. Chen et al. (2008) measure distress selling of troubled –but still alive– mutual funds,

and report average distress-driven sales between 0.6-1% of mutual funds holdings at quarterly frequency

(when using the asset-weighted measure of outflows). Moreover, this fraction spikes considerably (nearly

doubles) during the mayor episode of financial turbulence covered in their sample: the demise of LTCM

in 1998.

Taken together, variations in forced liquidations between 1% and 5% per year seem to be in the ball

park of the magnitudes reported in these studies for variation at the business cycle frequency.

The importance of endogenous information:

The last observation relates more generally to the quantitative importance of endogenous information

aggregation. As Figure 7 shows, although the asymmetric information economy reacts much more to

changes in investment horizons than the full-information economy, one could argue that the no-information

economy does a reasonable job in delivering comparable variations in risk premium, and return volatility,

as the asymmetric information case. What is then the value added of a (more complex) model that

highlights endogenous learning ?

The answer is that symmetric information benchmarks have no implications for market efficiency.

For the no-information economy, prices contain no additional information about the persistent dividend

process –over and above from what can be learned from dividends. In the full-information economy,

on the other hand, prices are irrelevant as a source of information since agents already know the value

of fundamentals. It is in this respect that the analysis of asymmetric information in financial markets

becomes crucial. The results in section 4.3 stress that while return volatility will be high for short horizons,

it is the non-fundamental part of volatility that takes the center stage during these episodes. To the extent

we believe financial markets matter for the allocation of resources, the loss in informational value of the

price system could propagate to the real side of the economy.
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5 Conclusions

This paper analyzed the asset pricing implications of finite investment horizons in financial markets. The

main message is twofold. First, horizons matter for both the pricing of risk of the average investor (the

age-adjusted risk aversion effect) and the amount of risk that must be held in equilibrium by the active

investors in a generalized OLG economy (the risk transfer effect). Both mechanism have the potential of

delivering interesting variations in expected returns and return volatilities when we compare economies

with different length of investors’ lifespans.

Second, investment horizons matter for market efficiency. While long horizons incite informed investors

to release their private information into prices through the trading process, the high risk environment

triggered by short investment horizons can significantly reduce asset price informativeness. In particular,

even if the fraction of informed investors is relatively low, the degree of information contained in prices can

show ample variations across different horizon regimes. Economies where effective investment horizons

are long behave similarly to a hypothetical case in which all investors observe economic fundamentals in

real time, while they align much closer with a no-information benchmark when horizons are short. This

findings suggests information disaggregation from the price process can be an important mechanism for

understanding variations in economic uncertainty more specifically, and market efficiency more generally.

There are several avenues in which one can extend and complement the current analysis. First,

although the focus of the paper is studying the asset pricing effects of varying investment horizons, the

analysis is limited to the comparison between steady states of different economies, rather than actual time

variation in horizons within the same economy. While a very interesting question to study, this type of

analysis is difficult to handle within rational expectations models as equilibrium prices lose their linear

form. This makes the standard solution methods inapplicable and the analysis becomes intractable.

A related extension which can, in principle, be analyzed under the current framework is the effects

of deterministic changes in population demographics. The analysis suggests that a generation of “baby

boomers” entering the economy could lead to higher asset prices and reduced uncertainty early in their life,

but to declining prices, heightened volatility and poor informational efficiency as the generation approaches

old age. Although the equilibrium in this economy would exhibit time-dependent price coefficients, the

analysis remains tractable as long as these demographic changes are perfectly anticipated.

Finally, one could also study the incentives to acquire information for different investment horizons.

While investors have more incentives to become informed when prices are less reliable, these are also the

times when the lifespan over which they plan to use such information is shorter. This leads to non-trivial

predictions about the effects of investment horizons on endogenous information acquisition. I leave these

important questions for future research.
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6 Appendix

Proof of Theorems 1 and 2:

To characterize beliefs, optimal consumption and investment rules, and equilibrium prices, one must first

find the matrices Aψ and Bψ in expression (6). From equations (1), (2), and (3), the evolution of Ψt+1 is

given by (6) as long as

Aψ =

 1 0 0

F0 ρF 0

θ0 0 ρθ

 , and Bψ =

 0 0 0 0

0 1 0 0

0 0 1 0

 .
where F0 ≡ (1− ρF )F̄ , and θ0 ≡ (1− ρθ)θ̄. I will prove Theorem’s 1 and 2 through the following 4 steps.

1) For given coefficients in the price equation, solve the Bayesian filtering problem of the uninformed,

and find the autoregressive process of their forecast errors. 2) Find the recursive representation of the

conditional state vectors Mt and MU
t , and the conditional distributions of future excess returns, Qt+1.

3) Solve optimal demands, and impose market clearing to find equilibrium prices. The resulting price

function is then found by equating the market clearing price to the initial price conjecture.

Step 1: Together with the coefficients in the price equation (7), the recursive representation in (6) leads

directly to the results in Theorem 1, which is just the Bayesian updating of beliefs described by the

Kalman filter. A derivation of the Kalman filter can be found in most advanced statistics textbooks.21

Writing E[Ψt | ΩU
t ] ≡ ΨU

t and ΨU
t −Ψt ≡ Ψ̃U

t for notational convenience, the evolution of the uninformed

investors’ forecast error vector can be found from manipulation of (10):

Ψ̃U
t+1 = AU · Ψ̃U

t +BU · εUt+1, with

AU ≡ (I3 −KAs)AΨ, and BU ≡ (K(AsBΨ +Bs)−BΨ).

But notice that the observation of the price implies forecast errors about Ft and θt are perfectly colinear

for the uninformed; i.e, Ft + λ · θt = FUt + λ · θUt , or θ̃Ut = −λ−1 · F̃Ut . This allows to rewrite the vector

Ψ̃U
t+1 as Ψ̃U

t+1 = [0 F̃Ut+1 θ̃Ut+1]
′

= AU · [0 F̃Ut θ̃Ut ]
′
+BU · εUt+1, or

F̃Ut+1 = ρU · F̃Ut + bU · εUt+1, (28)

with ρU ≡ AU (2, 2)− λ−1AU (2, 3), and bU ≡ BU (2, :).

21See Ljungqvist and Sargent (2000) for applications in macroeconomics.
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Step 2: Using (28), the evolution of the conditional state vectors Mt and MU
t can now be found:

Mt+1 = AM ·Mt +BM · εt+1, (29)

MU
t+1 = AUM ·MU

t +BU
M · εUt+1, (30)

with AM =


1 0 0 0

(1− ρF )F̄ ρF 0 0

(1− ρθ)θ̄ 0 ρθ 0

0 0 0 ρU

 , BM =


0 0 0

0 1 0

0 0 1

BU (2, 1) BU (2, 2) BU (2, 3)

 ,
AUM = AΨ, BU

M = K(AsAΨl0v0 +AsBΨ +Bs), l0 ≡ [0 − 1 − λ−1]
′
, and v0 ≡ [0 0 0 1].

Expressions (29) and (30) can now be used to express the conditional moments of future returns for

informed and uninformed investors. Note that the forecast FUt in the price equation (7) can replaced to

express prices as a function of current state variables and the forecast error of the uninformed,

Pt = p0 + p1 · Ft + p2 · θt + p3 · F̃Ut ≡ P ·Mt, (31)

where p1 = p̂F + pF , p2 = pθ, p3 = p̂F , and P ≡ [p0 p1 p2 p3]. Moreover, writing the dividend in (1)

as Dt+1 = AD ·Ψt+1 + BD · εt+1, with AD ≡ [0 1 0], BD ≡ [1 0 0], the future return Qt+1 can now be

written as:

Qt+1 = AQ ·Mt +BQ · εt+1, (32)

with AQ ≡ ADAM + P · (AM − I4R), and BQ ≡ (AD + P ) ·BM +BD.

For uninformed investors, the corresponding expression in terms of their conditional expectations and

forecast errors is:

Qt+1 = AUQ ·MU
t +BU

Q · εUt+1, (33)

with AUQ ≡ AQm0, BU
Q ≡ AQm1v0 +BQm

′
0, m0 ≡

 1 0 0 0

0 1 0 0

0 0 1 0


′

, and m1 ≡ [0 − 1 λ−1 1]
′

Expression (32) and (33) confirm that future returns indeed follow a conditional gaussian distribution for

both informed and uninformed investors.

Step 3: Optimal investment and consumption policies can now be found by applying a known result on

value functions in gaussian-exponential environments (see Vives, 2008). In particular, the conjectured

value function at t+ 1 for an informed investor aged j at time t takes the form

JI(W I
j+1,t+1;Mt+1; j + 1; t+ 1) = −βt+1 · exp{−αj+1W

I
j+1,t −

1

2
M
′
t+1V

I
j+1Mt+1}.
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The value function at t then takes the form

JI(W I
j,t;Mt; j; t) = max

{X,C}
− exp{−γC} − βδIj+1exp{−αj+1R(W I

j,t + C)− αj+1XAQMt (34)

−1

2
M
′
tv
I,aa
j+1Mt +

1

2
(αj+1XBQ +M

′
tv
I,ab
j+1Mt)(Ξ

I
j+1)−1(αj+1XBQ +M

′
tv
I,ab
j+1Mt)

′
)}, with

vI,aaj+1 ≡ A
′
MV

I
j+1AM ; vI,bbj+1 ≡ B

′
MV

I
j+1BM ; vI,abj+1 ≡ A

′
MV

I
j+1BM ; (35)

ΞIj+1 ≡ Σ−1 + vI,bbj+1, and δIj+1 ≡ |Σ · ΞIj+1|−1/2.

The optimal consumption/investment policies can now be found through differentiation. Letting ΓIj+1 ≡
BQ(ΞIj+1)−1B

′
Q, we get

XI
j,t =

AQ − hIj+1

αj+1ΓIj+1

·Mt, (36)

CIj,t = cIj+1 + (
αj+1R

αj+1R+ γ
) ·W I

j,t +
M
′
tm

I
j+1Mt

2(αj+1R+ γ)
, where (37)

cIj+1 ≡ log(γ/(βδIj+1αj+1R))/(αj+1R+ γ); hIj+1 ≡ BQ(ΞIj+1)−1vI,ab
′

j+1 , and (38)

mI
j+1 ≡ g

′
j+1(ΓIj+1)−1gj+1 + vI,aaj+1 − v

I,ab
j+1(ΞIj+1)−1vI,ab

′

j+1 .

The matrices V I
j+1 and scalars αj , for j = 1, 2...T , can be solved recursively by setting αT = γ, V I

T = 04,

and using the recursive equations found in the f.o.c.s:

αj =
γαj+1R

αj+1R+ γ
, and V I

j = mI
t+1 · (

αj
αj+1R

) + 2 · i1,1 · (γcIj+1 + log
αj
γ

). (39)

where i1,1 is a 4x4 matrix with all element equal to zero except for the first, which equals one. For the

uninformed investors the procedure is similar, but one must replace Mt, AQ, BQ, and Σ, for MU
t , AUQ,

BU
Q , and ∆, respectively. This allows solving investment and consumption policies using the appropriate

superscript U instead of I.

We can now impose the market clearing condition (19). Note that although the conditional state

vector has different dimensions for the informed and uninformed investors, the uninformed forecasts can

be replaced by the actual values of the state variables plus the forecast noise. This leads to the following

equation that must be satisfied by the price:

P = Y · Z−1, where (40)

Z ≡ [(AM − I4R) · ((m0w̄
U
0 −m1v0w̄

U
1 ) · (m′0 + x0) + I4w̄

I
0)−BM ((m

′
0w̄

U
1 · (m

′
0 + x0) + I4w̄

I
1)],

31



Y ≡ [Aθ − (ADAMm0w̄
U
0 − (ADAMm1v0 + (ADBM +BD)m

′
0)w̄U1 ) · (m′0 + x0)

−ADAM w̄I0 + (ADBM +BD)w̄I1], w̄U0 ≡
1

T

T∑
s=2

(αsΓ
U
s )−1, w̄I0 ≡

1

T

T∑
s=2

(αsΓ
I
s)
−1,

w̄U1 ≡ 1

T

T∑
s=2

(ΞUs )−1vU,ab
′

s (αsΓ
U
s )−1, w̄I1 ≡

1

T

T∑
s=2

(ΞIs)
−1vI,ab

′
s (αsΓ

I
s)
−1,

Aθ ≡ [θ̄ 0 1 0], and x0 ≡ [0 1 − λ−1]
′ · v0.

Equation (40) is the fixed point problem that determines the equilibrium price vector (whenever an

equilibrium exists). To see this, notice that both the (1x4) matrix Y and the (4x4) matrix Z depend on

an initial conjecture of the price vector P0 through their dependence on AM , BM , AQ, BQ, AUM , BU
M ,

AUQ, and BU
Q , all function of P0. The fixed point in (40) that defines the solution can then be written

as P ∗ = Y (P ∗)Z(P ∗)−1 = F (P ∗), where the functional F (·) is implicitly defined by the f.o.c’s in the

dynamic optimization of investors together with the market clearing requirement.

Proof of Proposition 1:

a) For the full-information economy (µ = 0), the price vector P I = [p0 pF pθ] loads on the state vector

Mt ≡ [1 Ft θt]
′. The market clearing condition then reads (dropping age subscripts):

AQ
2γΓI

Ψt = [0 0 1]Ψt,

where AQ = [−p0r+pFF0 +pθθ0 +F0 pF (ρF −R)+ρF pθ(ρθ−R)], and ΓI = σ2
D+(1+pF )2σ2

F +p2
θσ

2
θ .

This yields the following three equations for the price coefficients p0, pF and pθ:

0 = −p0r + pFF0 + pθθ0 + F0,

0 = pF (ρF −R) + ρF ,

pθ(ρθ −R) = 2γ(σ2
D + (1 + pF )2σ2

F + p2
θσ

2
θ),

which yield the quadratic equation for the price coefficient pθ stated in equations (21) and (22). Clearly,

when σθ > σ∗θ , the term in the square root is negative and there exist no real solution. Hence, there is no

equilibria when σθ > σ∗θ , and (weakly) two equilibria whenever σθ ≤ σ∗θ .
b) For the no-information economy (µ = 1), the price vector PU = [p0 p̂F pθ] loads on the state vector

MU
t ≡ [1 FUt θt]

′ (as the price reveals the random supply θt in the absence of informed traders). The

market clearing condition in this case reads (dropping age subscripts):

AUQ
2γΓU

MU
t = [0 0 1]MU

t ,

where AUQ = [−p0r+ p̂FF0 + pθθ0 +F0 p̂F (ρF −R) + ρF pθ(ρθ −R)]. To find ΓU = BU
Q(ΞUj+1)−1BU ′

Q ,

note that we can write BU
Q = (AD +PU )BU

M + B̃D in this case, where BM = K(AsBΨ−AsAΨm1v0 +Bs)
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(using λ−1 = 0 in m1), and B̃D = BD−ADm1j0, with j0 ≡ [BU (2, 1) BU (2, 2) BU (2, 3) ρU ]. The matrix

K gives the weighting of the uninformed investors’ forecast of the state AΨ on the vector of signals. When

all investors are uninformed, the signal vector includes the dividend –which gives information about the

fundamental Ft–, and the price –which is fully informative about the noisy supply θt, but contains no

information about Ft. K can be solved through the iteration presented in equations (11) and (12), which

in this case allows to solve for the conditional variance of Ft (element (2,2) in the O matrix) and matrix

K in closed form. Labeling O(2, 2) ≡ σ2
u, we can write:

K =


0 0

ρ2F σ
2
u+σ2

F

σ2
D+ρ2F σ

2
u+σ2

F
0

θ0 0

 , and O =


0 0 0

0
σ2
D(ρ2F σ

2
u+σ2

F )

σ2
D+ρ2F σ

2
u+σ2

F
0

0 0 0

 .
This gives a quadratic equation for σ2

u, whose positive root corresponds to

σ2
u =

σ2
D(1− ρ2

F ) + σ2
F

2ρ2
F

(

√
1 +

4σ2
Dσ

2
Fρ

2
F

(σ2
D(1− ρ2

F ) + σ2
F )2
− 1),

as stated in Proposition 1, part b). We can now write

ΓU =
(σ2
D + (1 + p̂F )2(ρ2

Fσ
2
u + σ2

F ))2

σ2
D + ρ2

Fσ
2
u + σ2

F

,

which yields the following three equations for the price coefficients p0, p̂F and pθ:

0 = −p0r + (1 + p̂F )F0 + pθθ0,

0 = p̂F (ρF −R) + ρF ,

pθ(ρθ −R) = 2γ(w(σ2
D + (1 + p̂F )2(ρ2

Fσ
2
u + σ2

F )) + p2
θσ

2
θ),

with w ≡ σ2
D+(1+p̂F )2(ρ2F σ

2
u+σ2

F )

σ2
D+ρ2F σ

2
u+σ2

F
≥ 1. This yield the quadratic equation for the price coefficient pθ stated

in equations (23) and (24). Clearly, when σθ > σ∗∗θ , the term in the square root is negative and there

exist no real solution. Hence, there is no equilibria when σθ > σ∗∗θ , and (weakly) two equilibria whenever

σθ ≤ σ∗∗θ . This completes the proof.

Note also that since w ≥ 1, and σu > 0, we have that σ∗∗θ ≥ σ∗θ . This means that, as expected,

obtaining equilibria in the no-information economy is harder than in the full-information economy, as

the range of values for σθ satisfying the existence condition in the former is a subset of the parameters

yielding existence in the latter.

Proof of Proposition 2:

This proof consists of three steps. 1) Derive the price equation that arises from the market clearing

condition. This leads to a quadratic equation for the random supply coefficient pθ in the price equation

(7). I will show here that both roots of the equation depend on a particular coefficient of the value
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function matrix V (the stationary value function matrix in the infinite horizon case). This coefficient is

the ninth element of the matrix, associated with the utility (value function) impact of random supply

innovations, which I label Vθ. 2) Derive a second equation which describes the element Vθ as a function

of the price coefficient pθ. An equilibrium is then a pair {pθ, Vθ} satisfying both equations. 3) show that

a) an intersection between these functions always exists (part a) of the proposition), and b) it is unique

(part b) of the proposition). Since the problem of investors in the no-information economy can always be

represented as an equivalent full-information economy with scaled up noise, and the proof is valid for all

possible parameter values, I will prove here the proposition for the full-information economy only.

Step 1: In the infinite horizon case with full information (µ = 0), there exists only one type of investor

whose asset demand (equation (36)) can be restated (dropping the age and information subscripts) as:

Xt =
AQ −BQΞ−1vab

′

αΓ
Ψt,

where AQ = [−p0r + pFF0 + pθθ0 + F0 pF (ρF − R) + ρF pθ(ρθ − R)] and BQ = [1 (1 + pF ) pθ]

are the row vectors associated with the loadings of future returns on the vector of contemporary state

variables, and future disturbances, respectively. It is straightforward to show that for this economy,

Ξ =

 σ−2
D 0 0

0 σ−2
F 0

0 0 σ−2
θ + Vθ,

 , Γ = σ2
D + (1 + pF )2σ2

F + p2
θ

1

σ−2
θ + Vθ

, and α =
γr

R
.

Moreover, from equation (35), it can be shown that the second term in the demand’s numerator corre-

sponds to BQΞ−1vab
′

= [pθ
V1,3+Vθθ0
σ−2
θ +Vθ

0 pθ
ρθVθ

σ−2
θ +Vθ

], where V1,3 is the 3rd (and 7th) term of the

(symmetric) matrix V . The market clearing condition then reads

[−p0r + pFF0 + pθ(θ0
σ−2
θ

σ−2
θ +Vθ

− V1,3
σ−2
θ +Vθ

) + F0 pF (ρF −R) + ρF pθ(ρθ
σ−2
θ

σ−2
θ +Vθ

−R)]

γ(r/R)(σ2
D + (1 + pF )2σ2

F + p2
θ

1
σ−2
θ +Vθ

)
= [0 0 1],

which gives rise to three equations determining the price coefficients p0, pF and pθ:

0 = −p0r + pFF0 + pθ(θ0
σ−2
θ

σ−2
θ + Vθ

− V1,3

σ−2
θ + Vθ

) + F0 (41)

0 = pF (ρF −R) + ρF (42)

pθ(ρθ
σ−2
θ

σ−2
θ + Vθ

−R) = p2
θ

γ(r/R)

σ−2
θ + Vθ

+ γ(r/R)(σ2
D + (

R

R− ρF
)2σ2

F ). (43)

Expression (43) is the first equation we will use to find the equilibrium pair {pθ, Vθ}. Defining k ≡
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(2γ/R)(r/R)2(σ2
D + ( R

R−ρF )2σ2
F )1/2, and σ−2 ≡ σ−2

θ
R−ρθ
R , we can rewrite the two roots of (43) as

p+
θ,1(Vθ) = −R

2(σ−2 + Vθ)

2γr
+
R2(σ−2 + Vθ)

2γr

√
1− k2

σ−2
θ + Vθ

(σ−2 + Vθ)2
, (44)

p−θ,1(Vθ) = −R
2(σ−2 + Vθ)

2γr
− R2(σ−2 + Vθ)

2γr

√
1− k2

σ−2
θ + Vθ

(σ−2 + Vθ)2
. (45)

Step 2: to find the dependence of the value function term Vθ on the model parameters and the price

coefficient pθ, we adapt equation (39) to the infinite horizon case to write

V =
m

R
+ 2 · i1,1 · (γc+ log

α

γ
),

but since i1,1 is zero for all terms besides the first, the expression for the ninth term in V reduces to

Vθ =
m(3, 3)

R
= pθ(ρθ

σ−2
θ

σ−2
θ − Vθ

−R)
rγ

R2
+ Vθρ

2
θ

σ−2
θ

σ−2
θ − Vθ

, or

pθ,2(Vθ) = −Vθ
R

γr
(1 +

ρθ(1− ρθ)σ−2
θ /R

σ−2 + Vθ
) (46)

Step 3: I now study equations (43) and (46). Figure 9 provides the loci of these equations in the {Vθ, pθ}
space. To find existence, it suffices to show that over the range of values of Vθ for which (43) has a real

solution, it intersects either of the two roots of equation (46) at least once. Uniqueness then amounts to

showing that this intersection is a singleton. I will prove existence and uniqueness by establishing the

following facts:

i) ∂p+
θ,1(·)/∂Vθ > 0;

ii) ∂p−θ,1(·)/∂Vθ < 0, ∂2p−θ,1(·)/∂V 2
θ > 0, and lim

Vθ→∞
∂p−θ,1(·)/∂Vθ = −R2

γr ,

iii) ∂pθ,2(·)/∂Vθ < 0, ∂2pθ,2(·)/∂V 2
θ > 0, and lim

Vθ→∞
∂pθ,2(·)/∂Vθ = −R

γr , and

iv) At V ∗θ , |∂p−θ,1(V ∗θ )/∂Vθ| > |∂pθ,2(V ∗θ )/∂Vθ|, where V ∗θ satisfies p−θ,1(V ∗θ ) = pθ,2(V ∗θ ), whenever an

intersection between pθ,2(·) and the negative root p−θ,1(·) exists.

Facts i)-iii) imply that an intersection between equations (43) and (46) always exist. This is because

equation pθ,2(·) in (46), which begins in the origin and has a strictly negative slope that converges to

a constant, will either intersect the negative root p−θ,1(·) in (45) (case 1), whose strictly negative slope

converges to a constant of larger absolute magnitude than the limit of pθ,2(·), or it will intersect the

positive root p+
θ,1(·) in (44) (case 2), which has strictly positive slope.
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Figure 9: Infinite horizon economy with symmetric information
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Fact iv) provides the uniqueness result. To see this, notice that in case 1, the condition that

|∂p−θ,1(V ∗θ )/∂Vθ| > |∂pθ,2(V ∗θ )/∂Vθ| implies that the two lines can only intersect once. If this was not

true, then at least in one of these intersections condition iv) would be violated. Regarding case 2, when-

ever equation pθ,2(·) intersects the positive root p+
θ,1(·), condition iv) implies it cannot also intersect the

negative root p−θ,1(·), even once. This is because whenever p+
θ,1(·) and pθ,2(·) intersect, the first intersection

with p−θ,1(·) would be from above, implying |∂p−θ,1(V ∗θ )/∂Vθ| < |∂pθ,2(V ∗θ )/∂Vθ|, or a violation of condition

iv). Hence, condition iv) establishes the global uniqueness of the solution. I now prove each of these claims.

To establish fact i), derive equation (44) w.r.t. Vθ, which yields the result immediately. For fact ii),

simply derive the negative root p−θ,1(·) in (45) twice, which gives

∂p−θ,1(·)/∂Vθ = − R
2

2γr
[1 +

2(σ−2 + Vθ)− k2

2((σ−2 + Vθ)2 − k2(σ−2
θ + Vθ))1/2

] < 0,

∂2p−θ,1(·)/∂V 2
θ =

R2

2γr
[

k2σ−2
θ ρθ/R+ k4/4

((σ−2 + Vθ)2 − k2(σ−2
θ + Vθ))3/2

] > 0, and

lim
Vθ→∞

∂p−θ,1(·)/∂Vθ =
−R2

γr
.
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Similarly, for fact iii) we derive equation pθ,2(·) in (46) twice to find

∂pθ,2(·)/∂Vθ = − R
γr

[1 +
σ−2σ−2

θ ρθ(1− ρθ)/R
(σ−2 + Vθ)2

] < 0,

∂2pθ,2(·)/∂V 2
θ =

R

γr
[
2σ−2σ−2

θ ρθ(1− ρθ)/R
(σ−2 + Vθ)3

] > 0, and

lim
Vθ→∞

∂pθ,2(·)/∂Vθ =
−R
γr

.

Finally, to establish fact iv), let’s define the following objects:

a(Vθ) ≡
σ−2
θ ρθ(1− ρθ)/R
(σ−2 + Vθ)2

, b(Vθ) ≡
Vθ

σ−2 + Vθ
, c(Vθ) ≡ 1− k2 σ−2

θ + Vθ
(σ−2 + Vθ)2

, and d(Vθ) ≡
R(1− b(Vθ))
R− ρθb(Vθ)

.

Intersection of equations p−θ,1(·) and pθ,2(·) at Vθ = V ∗θ implies we can write

− R
2

2γr
(σ−2 + V ∗θ )(1 + c(V ∗θ )1/2) = − R

γr
V ∗θ (1 + a(V ∗θ )), or (47)

c(V ∗θ ) =
4

R
b(V ∗θ )(1 + a(V ∗θ ))(

b(V ∗θ )(1 + a(V ∗θ ))

R
− 1) + 1. (48)

We now compare the slopes between equations p−θ,1(·) and pθ,2(·) at Vθ = V ∗θ . Manipulation of ∂p−θ,1(V ∗θ )/∂Vθ

using the equality condition in (48) allows to write (omitting the dependence on Vθ)

∂p−θ,1(·)/∂Vθ|Vθ=V ∗θ
= − 1

γr

[b2(1 + a)2 + b(1 + a)R−b(1+a)
R ρθ]

2
Rb(1 + a)− 1

, (49)

while the slope of equation pθ,2(·) takes the form

∂pθ,2(·)/∂Vθ|Vθ=V ∗θ
= − R

γr
(1 + a(1− b)). (50)

Proving condition iv) then amounts to establishing

[b2(1 + a)2 + b(1 + a)R−b(1+a)
R ρθh]

2
Rb(1 + a)− 1

> 1 + a(1− b). (51)

but notice that a(·) can be expressed as ρθ(1− b(·)) 1−ρθ
R−ρθ . Using this last transformation in (49) and (50)

gives after some (tedious) manipulation, the result in (51). This completes the proof.

Proof of Proposition 3:

Since the problem of investors in the no-information economy can always be represented as an equivalent

full-information economy with scaled up noise, I will prove the proposition for the full-information economy
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only. Let P ∗ ≡ [p∗0 p∗F p∗θ] be an equilibrium price vector, and P
′ ≡ [p∗0 p∗F p

′
θ] represent a perturbation

from the equilibrium. When T = 2, the value function matrix V is the zero matrix, and α = 1. Let

m ≡ 2 γ
R−ρθ (σ2

D + ( R
R−ρF )2σ2

F )1/2. The solution for the price coefficient associated with the supply shock,

pθ, is then given by the following roots

p∗,+θ = −
σ−2
θ (R− ρθ)

2γ
(1−

√
1−m2σ2

θ), (52)

p∗,−θ = −
σ−2
θ (R− ρθ)

2γ
(1 +

√
1−m2σ2

θ). (53)

Let’s now analyze the effects of perturbing the equilibrium by setting p
′
θ 6= p∗θ. From the agents optimiza-

tion and market clearing condition, we get a new implied price coefficient p
′′
θ given by

p
′′
θ = −

γ(σ2
D + ( R

R−ρF )2σ2
F )

R− ρθ
−

(p
′
θ)

2

R− ρθ
,

from which we can subtract the initial perturbation p
′
θ to write

p
′′
θ − p

′
θ = −(p

′
θ − p∗θ)(1 +

γσ2
θ(p

′
θ + p∗θ)

R− ρθ
).

If we now evaluate this expression at p
′
θ → p∗θ along the low volatility equilibrium in the positive root

(equation (52)), we find

p
′′
θ − p

′
θ|p′θ→p∗,+θ = −(p

′
θ − p∗θ)

√
1−m2σ2

θ ,

and so |p′′θ − p∗θ| < |p
′
θ − p∗θ| and the equilibrium is stable. Along the high-volatility equilibrium in the

negative root (equation (53)), we get

p
′′
θ − p

′
θ|p′θ→p∗,−θ = (p

′
θ − p∗θ)

√
1−m2σ2

θ ,

and so |p′′θ − p∗θ| > |p
′
θ − p∗θ| and the equilibrium is unstable. This completes the proof.

Numerical solution method:

I now describe the numerical methodology used to find the equilibrium coefficients in the price function

of equation (7). The problem consists in finding the (possibly multiple) price coefficients that satisfy

the fixed point representation in expression (40). As initial price coefficients, I use a matrix whose rows

correspond to different starting values for the price vector, where the only element changing across rows

is the coefficient associated with the random supply, pθ. Due to its convergence properties, the low

volatility equilibrium is straightforward to find as initial guesses using relatively low values of pθ (in

absolute magnitude) quickly converge to the the same fixed point price vector.
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The complications arise when trying to find the price coefficients in the unstable price vector. To

find it I postulate successively decreasing (more negative) supply coefficients as an initial guesses. If the

iteration brings the price coefficient to the low-volatility equilibrium, this means that the conjectured

supply coefficient is still not negative enough. Beyond some threshold, the postulated value of pθ is

too negative and the iteration diverges. This implies that the second equilibrium value of pθ must lie

in between the last initial guess that produced a convergence, and the first guess that produced the

divergence. I then zoom into this region, creating a new matrix of price vectors that span this narrower

range of price coefficients.

I then repeat the process, every time defining a new range of price coefficients between the last

converging and first diverging row vector of the initial matrix. After a few iterations, the range of

values where the second equilibrium pθ lies can be made arbitrarily narrow, providing an arbitrarily close

approximation to the true equilibrium value.
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